Papers
Broitman-Maduro G, Maduro M (2023). Evolutionary change in gut specification in Caenorhabditis centers on the GATA factor ELT-3 in an example of Developmental System Drift. J. Dev. Biol. 11, 32. https://doi.org/10.3390/jdb11030032
Broitman-Maduro G, Maduro M (2023). The long isoform of the C. elegans ELT-3 GATA factor can specify endoderm when overexpressed. microPublication Biology. https://doi.org/10.17912/micropub.biology.000748
Broitman-Maduro G, Sun S, Kikuchi T, Maduro M (2022). The ELT-3 GATA factor specifies endoderm in Caenorhabditis angaria in an ancestral gene network. Development (2022) 149 (21): dev200984. https://doi.org/10.1242/dev.200984
• Commented on in a Research Highlight. • UCR Press release here. • Finalist for Outstanding Paper of 2022 from Development (link).
Ewe CK, Sommermann E, Kenchel J, Flowers SE, Maduro MF, Joshi PM, Rothman, J (2022). Feedforward regulatory logic controls the specification-to-differentiation transition and terminal cell fate during C. elegans endoderm development. Development (2022) 149(12): dev200337. https://doi.org/10.1242/dev.200337
Eurmsirilerd E, Maduro M (2020). Evolution of developmental GATA factors in Nematodes. J. Dev Biol. 8, 27; https://doi.org/10.3390/jdb8040027
Soto J, Rivera M, Broitman-Maduro G, Maduro M (2020). Expression of a FRET-based ATP Biosensor in the C. elegans Intestine. microPublication Biology. https://doi.org/10.17912/micropub.biology.000284
Maduro M (2020). Evolutionary dynamics of the SKN-1 → MED → END-1,3 regulatory gene cascade in Caenorhabditis endoderm specification. G3 (Bethesda). 2020 Jan 7;10(1):333-356. https://doi.org/10.1534/g3.119.400724
Dimov I, Maduro M (2019). The C. elegans Intestine: Organogenesis, Digestion and Physiology. Cell and Tissue Research 377: 383-396. https://doi.org/10.1007/s00441-019-03036-4
Maduro M (2018). Genetic interaction between DNA replication and the Notch signaling pathway. The FEBS Journal, https://doi.org/10.1111/febs.14584
Choi H, Broitman-Maduro G, Maduro M (2017). Partially compromised specification causes stochastic effects on gut development in C. elegans. Developmental Biology 427, 49-60. https://doi.org/10.1016/j.ydbio.2017.05.007
Coffman SR, Lu J, Guo X, Zhong J, Jiang H, Broitman-Maduro G, Li W-X, Lu R, Maduro M, Ding S-W (2017). RIG-I homolog mediates antiviral RNAi downstream of Dicer-dependent biogenesis of viral siRNAs. mBio, 21:8(2). pii: e00264-17. https://doi.org/10.1128/mbio.00264-17
Maduro MF. (2017). Gut Development in C. elegans. Seminars in Cell & Developmental Biology 66, 3-11. https://doi.org/10.1016/j.semcdb.2017.01.001
Maduro MF. (2015). Developmental Robustness in the C. elegans embryo. Molecular Reproduction and Development 82: 918-931. https://doi.org/10.1002/mrd.22582 • Cover article.
Maduro MF. (2015). 20 years of unc-119 as a transgene marker. Worm 4:3, e1046031. https://doi.org/10.1080/21624054.2015.1046031
Maduro MF, Broitman-Maduro G, Choi H, Carranza F, Wu AC-Y, Rifkin S. (2015). MED GATA factors promote robust development of the C. elegans endoderm. Developmental Biology 404: 66-79. • Cited in Faculty of 1000/H1Connect. • https://doi.org/10.1016/j.ydbio.2015.04.025
Broitman-Maduro G and Maduro MF. (2015). In Situ Hybridization Methods for RNA Visualization in C. elegans. in In Situ Hybridization Methods, Neuromethods, vol. 99, Giselbert Hauptmann (ed.)., Humana Press, pp. 29-44.
Burniston JG, Meek T, Pandey SN, Broitman-Maduro G, Maduro MF, Bronikowski AM, Garland T, Chen Y-W. (2013). Gene expression profiling of gastrocnemius of 'Mini-Muscle' mice. Physiological Genomics, 45: 228-36. https://doi.org/10.1152/physiolgenomics.00149.2012
Haznedaroglu BZ, Yates MV, Maduro MF and Walker SL. (2012). Effects of Residual Antibiotics in Groundwater on Salmonella typhimurium: Changes in Antibiotic Resistance, in vivo and in vitro Pathogenicity. J. Environ Monit. 14: 41-47. • Cover article. https://doi.org/10.1039/c1em10723b
Broitman-Maduro G, Maduro MF. (2011). In situ Hybridization of Embryos with Antisense RNA Probes. Methods in Cell Biology 106: 253-270. https://doi.org/10.1016/b978-0-12-544172-8.00009-8
Praitis V, and Maduro MF. (2011). Transgenesis in C. elegans. Methods in Cell Biology 106: 159-185. https://doi.org/10.1016/b978-0-12-544172-8.00006-2
Fraire-Zamora JJ, Broitman-Maduro G, Maduro M and Cardullo R. (2011). Evidence for phosphorylation in the MSP cytoskeletal filaments of amoeboid spermatozoa. Int J Biochem Mol Biol 2: 263-273.
Panhuis TM, Broitman-Maduro G, Uhrig J, Maduro M and Reznick DN. (2011). Analysis of Expressed Sequence Tags from the Placenta of the Live-Bearing Fish Poeciliopsis (Poeciliidae). Journal of Heredity 102: 352-361. https://doi.org/10.1093/jhered/esr002
Sommermann EM, Strohmaier KR, Maduro MF and Rothman JH. (2010). Endoderm development in C. elegans: the synergistic action of ELT-2 and -7 mediates the specification to differentiation transition. Developmental Biology 347: 154-166. https://doi.org/10.1016/j.ydbio.2010.08.020
Maduro M. (2010). Cell Fate Specification in the C. elegans Embryo. Developmental Dynamics 239: 1315-29. https://doi.org/10.1002/dvdy.22233
Owraghi M, Broitman-Maduro G, Luu T, Roberson H, and Maduro M. (2010). Roles of the Wnt effector POP-1/TCF in the C. elegans endomesoderm specification gene network. Developmental Biology 340: 209-221. • Accepted in 2009 to celebrate the 50th anniversary of Developmental Biology. https://doi.org/10.1016/j.ydbio.2009.09.042
Broitman-Maduro G, Owraghi M, Hung WWK, Kuntz S, Sternberg PW, and Maduro M. (2009). The NK-2 class homeodomain factor CEH-51 and the T-box factor TBX-35 have overlapping function in C. elegans mesoderm development. Development 176: 2735-2746. Issue highlight. https://doi.org/10.1242/dev.038307
Lowry JA, Gamsjaeger R, Thong SY, Hung W, Kwan AH, Broitman-Maduro G, Matthews J, Maduro M, and Mackay J. (2009). Structural analysis of MED-1 reveals unexpected diversity in the mechanism of DNA recognition by GATA-type zinc finger domains. J. Biol. Chem. 284: 5827-5825. https://doi.org/10.1074/jbc.m808712200
Lin KT-H, Broitman-Maduro G, Hung WWK, Cervantes S, and Maduro M. (2009). Knockdown of SKN-1 and the Wnt effector TCF/POP-1 reveals differences in endomesoderm specification in C. briggsae as compared with C. elegans. Developmental Biology 325: 296-306. https://doi.org/10.1016/j.ydbio.2008.10.001
Maduro M. (2009). Structure and Evolution of the C. elegans Embryonic Endomesoderm Network. BBA - Gene Regulatory Mechanisms 1789: 250-260. https://doi.org/10.1016/j.bbagrm.2008.07.013
Maduro M, Broitman-Maduro G, Mengarelli I, and Rothman JH. (2007). Maternal deployment of the embryonic SKN-1 → MED-1,2 cell specification pathway in C. elegans. Developmental Biology 301: 590-601. https://doi.org/10.1016/j.ydbio.2006.08.029
Maduro M. (2006). Endomesoderm specification in C. elegans and other nematodes. BioEssays 28: 1010-1022. https://doi.org/10.1002/bies.20480
Broitman-Maduro G, Lin KT-H, Hung WWK, and Maduro M. (2006). Specification of the C. elegans MS blastomere by the T-box factor TBX-35. Development 133: 3097-3106. https://doi.org/10.1242/dev.02475
Maduro M. (2006). Use of a consumer-grade digital camera to archive written exams. Journal of College Science Teaching, Jan-Feb 2006.
Coroian C, Broitman-Maduro G, and Maduro M. (2006). Med-type GATA factors and the evolution of mesendoderm specification in nematodes. Developmental Biology 289: 444-455. https://doi.org/10.1016/j.ydbio.2005.10.024
Lu R, Maduro M, Li F, Li HW, Broitman-Maduro G, Li WX, and Ding SW. (2005). Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436: 1040-1043. https://doi.org/10.1038/nature03870
Maduro MF, Kasmir JJ, Zhu J, Rothman JH. (2005). The Wnt effector POP-1 and the PAL-1 /caudal homeoprotein collaborate with SKN-1 to activate C. elegans endoderm development. Developmental Biology 285: 510-523. https://doi.org/10.1016/j.ydbio.2005.06.022
Maduro MF, Hill RJ, Heid PJ, Newman-Smith ED, Zhu J, Priess JR, Rothman JH. (2005). Genetic redundancy in endoderm specification within the genus Caenorhabditis. Developmental Biology 284: 509-522. • cited in Faculty of 1000/H1Connect. • https://doi.org/10.1016/j.ydbio.2005.05.016
Broitman-Maduro G, Maduro MF, Rothman JH. (2005). The Noncanonical Binding Site of the MED-1 GATA Factor Defines Differentially Regulated Target Genes in the C. elegans Mesendoderm. Developmental Cell 8: 427-433. https://doi.org/10.1016/j.devcel.2005.01.014
Gay F, Calvo D, Lo MC, Ceron J, Maduro M, Lin R, Shi Y. (2003). Acetylation regulates subcellular localization of the Wnt signaling nuclear effector POP-1. Genes & Development 17: 717-722. https://doi.org/10.1101/gad.1042403
Koh K, Peyrot SM, Wood CG, Wagmaister JA, Maduro MF, Eisenmann DM, Rothman JH. (2002). Cell fates and fusion in the C. elegans vulval primordium are regulated by the EGL-18 and ELT-6 GATA factors - apparent direct targets of the LIN-39 Hox protein. Development 129: 5171-5180. https://doi.org/10.1242/dev.129.22.5171
Maduro MF, Lin R, Rothman JH. (2002). Dynamics of a developmental switch: recursive intracellular and intranuclear redistribution of Caenorhabditis elegans POP-1 parallels Wnt-inhibited transcriptional repression. Developmental Biology 248: 128-142. • Cited in Faculty of 1000/H1Connect. • https://doi.org/10.1006/dbio.2002.0721
Maduro MF, Rothman JH. (2002). Making worm guts: the gene regulatory network of the Caenorhabditis elegans endoderm. Developmental Biology 246: 68-85. https://doi.org/10.1006/dbio.2002.0655
Calvo D, Victor M, Gay F, Sui G, Luke MPS, Dufourcq P, Wen G, Maduro M, Rothman J, Shi Y. (2001). A POP-1 repressor complex restricts inappropriate cell type-specific gene transcription during Caenorhabditis elegans embryogenesis. EMBO Journal 20: 7197-7208. • Cited in Faculty of 1000/H1Connect. • https://doi.org/10.1093/emboj/20.24.7197
Maduro MF, Meneghini MD, Bowerman B, Broitman-Maduro G, Rothman JH. (2001). Restriction of mesendoderm to a single blastomere by the combined action of SKN-1 and a GSK-3 beta homolog is mediated by MED-1 and -2 in C. elegans. • Cover article. • Molecular Cell 7: 475-485. https://doi.org/10.1016/s1097-2765(01)00195-2
Maduro MF, Gordon M, Jacobs R, Pilgrim DB. (2000). The UNC-119 family of neural proteins is functionally conserved between humans, Drosophila and C. elegans. Journal of Neurogenetics 13: 191-212. https://doi.org/10.3109/01677060009084494
Maduro M, Pilgrim D. (1996). Conservation of function and expression of unc-119 from two Caenorhabditis species despite divergence of non-coding DNA. Gene 183: 77-85. https://doi.org/10.1016/s0378-1119(96)00491-x
Maduro M, Pilgrim D. (1995). Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics 141: 977-988. https://doi.org/10.1093/genetics/141.3.977