Publications

SOUND LOCALIZATION

1. Razak KA. Functional segregation of monaural and binaural selectivity in the pallid bat auditory cortex. Hearing Res. 337:35-45, 2016. pdf file

2. Razak KA, Yarrow S and Brewton D. Mechanisms of sound localization in two functionally distinct regions of the auditory cortex. J. Neurosci., 35:16105-16115, 2015. pdf file

3. Yarrow S, Razak KA, Seitz, A and Series, P. Detecting and quantifying topography in neural maps. PloS One 9(2): e87178, 2014. pdf file

4. Razak KA. Mechanisms underlying azimuth selectivity in the auditory cortex of the pallid bat. Hear Res. 290:1-12, 2012. pdf file

5. Razak KA. Systematic representation of sound locations in the primary auditory cortex. J Neurosci. 31:13848-13859, 2011. pdf file

6. Razak KA, Fuzessery ZM. GABA shapes a systematic map of binaural sensitivity in the auditory cortex. J Neurophysiol. 104:517-528, 2010. pdf file

7. Razak KA, Fuzessery ZM. Functional organization of the pallid bat auditory cortex: emphasis on binaural organization. J Neurophysiol. 87:72-86, 2002. pdf file

8. Razak KA, Fuzessery ZM. A systematic representation of interaural intensity differences in the auditory cortex of the pallid bat. Neuroreport. 11:2919-2924, 2000. pdf file

9. Razak KA, Fuzessery ZM, Lohuis TD. Single cortical neurons serve both echolocation and passive sound localization. J Neurophysiol. 81:1438-1442, 1999. pdf file

SPECTROTEMPORAL PROCESSING

1.Measor KR, Leavell BC, Brewton DH, Rumschlag J, Barber JR and Razak KA. Matched Behavioral and Neural Adaptations for Low Sound Level Echolocation in a Gleaning Bat, Antrozous pallidus. eNeuro, 4(1), ENEURO-0018, 2017. pdf file

2. Skorheim S, Razak KA, Bazhenov, M. Network models of frequency modulated sweep detection. PloS One 9(12):e115196, 2014. pdf file

3. Razak KA. Effects of sound intensity on temporal properties of inhibition in the pallid bat auditory cortex. Front Physiol. 2013 Jun 3;4:129. doi: 10.3389/fphys.2013.00129. Print 2013. pdf file

4. Trujillo M, Carrasco MM, Razak KA. Response properties underlying selectivity for the rate of frequency modulated sweeps in the auditory cortex of the mouse. Hear Res. 298: 80-92, 2013. pdf file

5. Carrasco MM, Trujillo M, Razak KA. Development of response selectivity in the mouse auditory cortex. Hear Res. 296:107-120, 2013. pdf file

6. Razak KA.Mechanisms underlying intensity-dependent changes in cortical selectivity for frequency-modulated sweeps. J Neurophysiol. 107:2202-2211, 2012. pdf file

7. Trujillo M, Measor K, Carrasco MM, Razak KA. Selectivity for the rate of frequency-modulated sweeps in the mouse auditory cortex. J Neurophysiol. 106:2825-2837, 2011. pdf file

8. Razak KA, Fuzessery ZM. Experience-dependent development of vocalization selectivity in the auditory cortex. J Acoust Soc Am. 128:1446-1451, 2010. Review. pdf file

9. Fuzessery ZM, Razak KA, Williams AJ. Multiple mechanisms shape selectivity for FM sweep rate and direction in the pallid bat inferior colliculus and auditory cortex. J Comp Physiol A 197:615-623, 2010. Review. pdf file

10. Razak KA, Fuzessery ZM. GABA shapes selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex. J Neurophysiol. 102:1366-1378, 2009. pdf file

11. Razak KA, Fuzessery ZM. Facilitatory mechanisms underlying selectivity for the direction and rate of frequency modulated sweeps in the auditory cortex. J Neurosci. 28:9806-9816, 2008. pdf file

12. Razak KA, Richardson MD, Fuzessery ZM. Experience is required for the maintenance and refinement of FM sweep selectivity in the developing auditory cortex. Proc Natl Acad Sci U S A. 105:4465-4470, 2008. pdf file

13. Razak KA, Fuzessery ZM. Development of inhibitory mechanisms underlying selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex. J Neurosci. 27:1769-1781, 2007. pdf file

14. Razak KA, Fuzessery ZM. Neural mechanisms underlying selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex of the pallid bat. J Neurophysiol. 96:1303-1319, 2006. pdf file

PARALLEL AUDITORY PATHWAYS AND PROCESSING

1.Campo HM, Measor K, & Razak KA. Parvalbumin and calbindin expression in parallel thalamocortical pathways in a gleaning bat, Antrozous pallidus. Journal of Comparative Neurology, 522(10), 2431-2445, 2014. pdf file

2. Razak KA, Fuzessery ZM. Development of parallel auditory thalamocortical pathways for two different behaviors. Front Neuroanat. 21;4, 2010. Review. pdf file

3. Razak KA, Zumsteg T, Fuzessery ZM. Development of auditory thalamocortical connections in the pallid bat, Antrozous pallidus. J Comp Neurol. 515:231-242, 2009. pdf file

4. Razak KA, Fuzessery ZM. Development of functional organization of the pallid bat auditory cortex. Hear Res. 228:69-81, 2007. pdf file

5. Razak KA, Shen W, Zumsteg T, Fuzessery ZM. Parallel thalamocortical pathways for echolocation and passive sound localization in a gleaning bat, Antrozous pallidus. J Comp Neurol. 500:322-338, 2007. pdf file

6. Barber JR, Razak KA, Fuzessery ZM. Can two streams of auditory information be processed simultaneously? Evidence from the gleaning bat Antrozous pallidus. J Comp Physiol A. 189:843-855, 2003. pdf file

FRAGILE X SYNDROME

1. Wen TW, Afroz S, Reinhard, SE, Tapia K, Binder DK, Razak KA* and Ethell IM*. Genetic reduction of MMP-9 promotes formation of perineuronal nets around parvalbumin-expressing interneurons and normalizes auditory cortex responses in developing Fmr1 KO mice. Cerebral Cortex, In Press. * co-corresponding authors.

2. Sinclair D, Oranje B, Razak KA, Siegel SJ, & Schmid S. Sensory processing in autism spectrum disorders and Fragile X syndrome—From the clinic to animal models. Neuroscience & Biobehavioral Reviews, 76, 235-253, 2017. pdf file

3. Lovelace JW, Wen TH, Reinhard SE, Hsu MS, Sidhu H, Ethell IM, Binder DK and Razak KA. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome. Neurobiology of disease 89: 126-135, 2016. pdf file

4. Rotschafer SE and Razak KA. Auditory processing in Fragile X Syndrome. Frontiers in Cellular Neuroscience 8, 2014. pdf file

5. Dansie LE, Phommahaxay K, Okusanya AG, Uwadia J, Huang M, Rotschafer SE, Razak KA, Ethell DW, Ethell IM. Long-lasting effects of minocycline on behavior in young but not adult Fragile X mice. Neuroscience. 246:186-98. doi: 10.1016/j.neuroscience.2013.04.058. Epub 2013. pdf file

6. Rotschafer SE, Razak KA. Altered auditory processing in a mouse model of fragile X syndrome. Brain Res. 1506:12-24. 2013. pdf file

7. Rotschafer SE, Trujillo MS, Dansie LE, Ethell IM, Razak KA. Minocycline treatment reverses ultrasonic vocalization production deficit in a mouse model of Fragile X Syndrome. Brain Res. 1439:7-14, 2012. pdf file

HEARING LOSS

1. Nguyen A, Khaleel HM and Razak KA. Effects of noise-induced hearing loss on parvalbumin and perineuronal net expression in the mouse primary auditory cortex. Hearing Research 350: 82-90, 2017. pdf file

2. Brewton DH, Kokash J, Jimenez O, Pena ER and Razak KA. Age-related deterioration of perineuronal nets in the primary auditory cortex of mice. Frontiers in aging neuroscience, 8, 2016. pdf file

3. Martin del Campo HN, Measor KR, Razak KA. Parvalbumin immunoreactivity in the auditory cortex of a mouse model of presbycusis. Hear Res. 294:31-39, 2012. pdf file

4. Trujillo M and Razak KA. Alterered spectrotemporal processing with age-related hearing loss. J. Neurophysiology.  110:2873-2886, 2013. pdf file

PREDATOR PREY INTERACTIONS

Hopp BH, Arvidson, RS, Adams, ME and Razak KA. Arizona bark scorpion venom resistance in the pallid bat, Antrozous pallidus. PloS One. 12(8):e0183215, 2017. pdf file

SUPERIOR COLLICULUS DEVELOPMENT

1. Razak KA, Pallas SL. Inhibitory plasticity facilitates recovery of stimulus velocity tuning in the superior colliculus after chronic NMDA receptor blockade. J Neurosci. 27:7275-7283, 2007. pdf file

2. Pallas SL, Wenner P, Gonzalez-Islas C, Fagiolini M, Razak KA, Kim G, Sanes D, Roerig B. Developmental plasticity of inhibitory circuitry. J Neurosci. 26:10358-10361, 2006. Review. pdf file

3. Razak KA, Pallas SL.Dark rearing reveals the mechanism underlying stimulus size tuning of superior colliculus neurons. Vis Neurosci. 23:741-748, 2006. pdf file

4. Razak KA, Pallas SL. Neural mechanisms of stimulus velocity tuning in the superior colliculus.
J Neurophysiol. 94:3573-3589, 2005. pdf file

5. Carrasco MM, Razak KA, Pallas SL. Visual experience is necessary for maintenance but not development of receptive fields in superior colliculus. J Neurophysiol. 94:1962-1970. 2005. pdf file

6. Razak KA, Huang L, Pallas SL.. NMDA receptor blockade in the superior colliculus increases receptive field size without altering velocity and size tuning. J Neurophysiol. 90:110-119, 2003. pdf file