LOGISTIC REGRESSION, POISSON REGRESSION AND GENERALIZED LINEAR MODELS
We have introduced that a continuous response, Y, could depend on continuous or discrete variables X1, X2,… Xp-1. However, dichotomous (binary) outcome is most common situation in biology and epidemiology. 
	Example: 

In a longitudinal study of coronary heart disease as a function of age, the response variable Y was defined to have the two possible outcomes: person developed heart diease during the study, person did not develop heart disease during the study. These outcomes may be coded 1 and 0, respectively.
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	The simple linear regression model

Yi=(0+(1Xi+(i     Yi=0,1

The response function 

E{Yi}=(0+(1Xi   

 We view Yi as a random variable with a Bernoulli distribution with parameter (I
Yi
Prob(Yi)
1

0

P(Yi=1)= (i

P(Yi=0)= 1-(i
P(Yi=k)= 
[image: image4.wmf]k

1

i

k

i

)

1

(

-

p

-

p

, k=0,1
E{Yi}=1*(i+0*(1-(i)= (i
	Special Problems When Response Variable Is Binary

1. Nonnormal Error Terms

When Yi=1: (i =1-(0-(1Xi    

When Yi=0: (i =-(0-(1Xi    

Can we assume (i are normally distributed?

2. Nonconstant Error Variance

(2{(i}= ((0+(1Xi)(1-(0-(1Xi)

ordinary least squares is no longer optimal

3. Constraints on Response Function

0(E{Yi}(1

	What does E{Yi} mean?

 
[image: image5.wmf]E{Yi}=(0+(1Xi  = (i
E{Yi} is the probability that Yi=1 when then level of the predictor variable is Xi .

This interpretation applies whether the response function is a simple linear one, as shown above, or a complex multiple regression one.
	[image: image6.emf]The logistic function 
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Both theoretical and empirical results suggest

that when the response variable is binary, the

shape of the response function is either as 

a tilted S or as a reverse tilted S. 
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Simple Logistic Regression
1. Model: Yi=E{ Yi }+(i         
 Where, Yi are independent Bernoulli random variables with 
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2. How to estimate (0 and (1?

a. Likelihood Function: 
Since the Yi observations are independent, their joint probability function is:
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The logarithm of the joint probability function (log-likelihood function):
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b. Maximum Likelihood Estimation: 
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The maximum likelihood estimates of (0 and (1 in the simple logistic regression model are those values of (0 and (1 that maximize the log-likelihood function. However, no closed-form solution exists for the values of (0 and (1 that maximize the log-likelihood function. Several Computer-intensive numerical search procedures are widely used to find the maximum likelihood estimates b0 and b1. We shall rely on standard statistical software programs specifically designed for logistic regression to obtain the maximum likelihood estimates b0 and b1.

3. Fitted Logit Response Function

[image: image14.wmf]i

1

0

i

i

e

X

b

b

)

ˆ

1

ˆ

(

log

+

=

p

-

p


4. Interpretation of b1
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when X=Xj,     
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when X=Xj+1,     
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	Example:

· Y = 1 if the task was finished

            0 if the task wasn’t finished
· X = months of programming 

             experience
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i

1
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.

.
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14
29
6

.
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Task Success
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0

0
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1
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1
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	SAS CODE:

proc logistic data = ch14ta01 ;

  model y (event='1') = x ;

 run;
Notice that we can specify which event to model using the event = option in the model statement. The other way of specifying that we want to model 1 as event instead of 0 is to use the descending option in the proc logistic statement.

	SAS OUPUT:

The LOGISTIC Procedure
       Analysis of Maximum Likelihood Estimates

                                             Standard          Wald

Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq

Intercept     1     -3.0597      1.2594        5.9029        0.0151

x             1      0.1615      0.0650        6.1760        0.0129

               Odds Ratio Estimates

               Point          95% Wald

     Effect    Estimate      Confidence Limits

     x            1.175       1.035       1.335
How to use the output to calculate 
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	Interpretation of Odds Ratio 
OR=1.175 means that the odds

of completing the task increase by 17.5 percent with each additional month of experience. 

	Interpretation of b1
b1=0.1615 means that the log-odds of completing the task increase 0.1615 with each additional month of experience. 



4. Repeat Observations-Binomial Outcomes

In some cases, particularly for designed experiments, a number of repeat observations are obtained at several levels of the predictor variable X. For example, in a study of the effectiveness of coupons offering a price reduction on a given product, 1000 homes were selected at random. The coupons offered different price reductions (5,10,15,20 and 30 dollars), and 200 homes werej assigned at random to each of the price reduction categories. 

	Level

j

1

2

3

4

5
	Price Reduction      

Xj 

5

10

15

20

30
	Number of Households      

nj   

200

200

200

200

200                                
	Number of Coupons Redeemed    Y..j              

30

55

70

100

137
	Proportion of Coupons Redeemed   pj
.150

.275

.350

.500

.685
	Mondel-Based Estimate       
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	SAS CODE:

data ch14ta02;

infile 'c:\stat231B06\ch14ta02.txt';

input x n y pro;
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proc logistic data=ch14ta02;

model y/n=x;

/*request estimates of the predicted*/
 /*values to be stored in a file named */

/*estimates under the variable name pie*/

output out=estimates p=pie;

run;
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proc print data=estimate;

run;
	SAS OUTPUT:

  The LOGISTIC Procedure

                           Analysis of Maximum Likelihood Estimates

                                             Standard          Wald

              Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq

              Intercept     1     -2.0443      0.1610      161.2794        <.0001

              x             1      0.0968     0.00855      128.2924        <.0001

                                      Odds Ratio Estimates

                                        Point          95% Wald

                           Effect    Estimate      Confidence Limits

                           x            1.102       1.083       1.120
                           Obs     x     n      y      pro       pie

                           1      5    200     30    0.150    0.17362
                           2     10    200     55    0.275    0.25426

                           3     15    200     70    0.350    0.35621

                           4     20    200    100    0.500    0.47311
                           5     30    200    137    0.685    0.70280


Multiple Logistic Regression
1.  Model: Yi=E{ Yi }+(i         
 Where, Yi are independent Bernoulli random variables with 
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2. How to estimate the vector (?
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3. Fitted Logit Response Function


[image: image28.wmf]b

X

i

i

i

e

'

)

ˆ

1

ˆ

(

log

=

-

p

p


	Example:
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Study purpose: assess the strength of the association between each of the predictor variables and the probability of a person having contracted the disease

SAS CODE:

data ch14ta03;

infile 'c:\stat231B06\ch14ta03.txt' DELIMITER='09'x;

input case x1 x2 x3 x4 y;

proc logistic data=ch14ta03;

model y (event='1')=x1 x2 x3 x4;

run;
	Case

i

1

2

3

4

5

6

.

98

Age

Xi1

33

35

6

60

18

26

.

35

Socioeconomic Status

Xi2       Xi3

0           0

0           0

0           0

0           0

0           1

0           1

.

0           1

City Sector

Xi4

0

0

0

0

0

0

.

0

Disease Status

Yi

0

0

0

0

1

0

.
0

Fitted Value
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SAS OUTPUT:

      Analysis of Maximum Likelihood Estimates

                                             Standard          Wald

              Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq

              Intercept     1     -2.3127      0.6426       12.9545        0.0003

              x1            1      0.0297      0.0135        4.8535        0.0276

              x2            1      0.4088      0.5990        0.4657        0.4950

              x3            1     -0.3051      0.6041        0.2551        0.6135

              x4            1      1.5746      0.5016        9.8543        0.0017

                                     Odds Ratio Estimates

                                        Point          95% Wald

                           Effect    Estimate      Confidence Limits

                           x1           1.030       1.003       1.058

                           x2           1.505       0.465       4.868

                           x3           0.737       0.226       2.408                                         

                           x4           4.829       1.807      12.907
The odds of a person having contracted the disease increase by about 3.0 percent with each additional year of age (X1), for given socioeconomic status and city sector location. The odds of a person in section 2 (X4) having contracted the disease are almost five times as great as for a person in sector 1, for given age and socioeconomic status.


Polynomial Logistic Regression
1.  Model: Yi=E{ Yi }+(i         
 Where, Yi are independent Bernoulli random variables with E{Yi}=(i=
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Where x denotes the centered predictor, X-
[image: image35.wmf]X
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Study purpose: determine the characteristics of companies that attract venture capital.
SAS CODE:

data ipo;

infile 'c:\stat231B06\appenc11.txt';

input case vc faceval shares x3;

lnface=LOG(faceval);

run;
* Run 1st order logistic regression analysis;
proc logistic data=ipo descending;

model vc=lnface;

output out=linear p=linpie;

run;

* produce scatterplot and fitted 1st order logistic;
data graph1;
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set linear;

run;

proc sort data=graph1;

by lnface;

run;

proc gplot data=graph1;

symbol1 color=black value=none interpol=join;

symbol2 color=black value=circle;

title'Scatter Plot and 1st Order Logit Curve';

plot linpie*lnface vc*lnface/overlay; 
/* /overlay means to overlay the two graph*/
run;

*Find mean of lnface=16.7088;
proc means;

var lnface;

run;

* Run 2st order logistic regression analysis;
data step2;

set linear;

xcnt=lnface-16.708;

xcnt2=xcnt**2;

run;

proc logistic data=step2 descending;

model vc=xcnt xcnt2;

output out=estimates p=pie;

run;

* produce scatterplot and fitted 2st order logistic;
data graph2;

set estimates;

run;

proc sort data=graph2;

by xcnt;

run;

proc gplot data=graph2;

symbol1 color=black value=none interpol=join;

symbol2 color=black value=circle;

title'Scatter Plot and 1st Order Logit Curve';

plot pie*xcnt vc*xcnt/overlay; 
/* /overlay means to overlay the two graph*/
run;
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1. The natural logarithm of face value is chosen because face value ranges over several orders of magnitude, with a highly skewed distribution)
2. The lowess smooth clearly suggests a mound-shaped relationship.

SAS OUTOUT:

        The LOGISTIC Procedure

                           Analysis of Maximum Likelihood Estimates

                                             Standard          Wald

              Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq

              Intercept     1      0.3000      0.1240        5.8566        0.0155

              xcnt          1      0.5530      0.1385       15.9407        <.0001

              xcnt2         1     -0.8615      0.1404       37.6504        <.0001

                                      Odds Ratio Estimates

                                        Point          95% Wald

                           Effect    Estimate      Confidence Limits

                           xcnt         1.739       1.325       2.281

                           xcnt2        0.423       0.321       0.556


Inferences about Regression Parameters

1. Test Concerning a Single (k: Wald Test

Hypothesis: H0: (k=0    vs. Ha: (k(0    

     Test Statistic: 
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Decision rule: If |z*|( z(1-(/2), conclude H0.

                             If |z*|> z(1-(/2), conclude Ha.
               Where z is a standard normal distribution.
Note: Approximate joint confidence intervals for several logistic regression model parameters can be developed by the Bonferroni procedure. If g parameters are to be estimated with family confidence coefficient of approximately 1-(, the joint Bonferroni confidence limits are

bk(Bs{ bk}, where B=z(1-(/2g).

2.  Interval Estimation of a Single (k
The approximate 1-( confidence limits for (k:

bk(z(1-(/2)s{ bk}

The corresponding confidence limits for the odds ratio exp((k):
exp[bk(z(1-(/2)s{ bk}]
	Example:

· Y = 1 if the task was finished

            0 if the task wasn’t finished
· X = months of programming 
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	SAS CODE:
proc logistic data=ch14ta01 ;

model y (event='1')=x /cl;
run ;
Notice that (1) we can specify cl in the model statement to get the output for interval estimate for (0, (1, etc. (2) The test for (1 is a two-sided test. For a one-sided test, we simply divide the p-value (0.0129) by 2. This yields the one-sided p-value of 0.0065. (3) The text authors report Z*=2.485 and the square of Z* is equal to the Wald Chi-Square Statistic 6.176, which is distributed approximately as Chi-Square distribution with df=1.
	SAS OUPUT:
The LOGISTIC Procedure

                           Analysis of Maximum Likelihood Estimates

                                             Standard          Wald

              Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq

              Intercept     1     -3.0597      1.2594        5.9029        0.0151
              x             1      0.1615      0.0650        6.1760        0.0129
H0: (1(0  vs. Ha: (1>0
for (=0.05, Since one-sided p-value=0.0065<0.05, we conclude Ha, that (1 is positive.
                                      Odds Ratio Estimates

                                        Point          95% Wald

                           Effect    Estimate      Confidence Limits

                           x            1.175       1.035       1.335
                            Wald Confidence Interval for Parameters

                        Parameter     Estimate     95% Confidence Limits

                        Intercept      -3.0597      -5.5280      -0.5914

                        x               0.1615       0.0341       0.2888
With approximately 95% confidence that (1 is between 0.0341 and 0.2888. The corresponding 95% condidence limits for the odds ratio are exp(.0341)=1.03 and exp(.2888)=1.33.


3. Test Whether Several (k=0: Likelihood Ratio Test

Hypothesis: H0: (q=(q+1=...(p-1=0    v




Ha: not all of the (k in H0 equal zero
Full Model: 
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Reduced Model: 
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The Likelihood Ratio Statistic: 
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The Decision rule: If G2( (2(1-(;p-q), conclude H0.

                               If G2> (2(1-(;p-q), conclude Ha.
	Example:
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Study purpose: assess the strength of the association between each of the predictor variables and the probability of a person having contracted the disease
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	SAS CODE:

data ch14ta03;

infile 'c:\stat231B06\ch14ta03.txt' DELIMITER='09'x;

input case x1 x2 x3 x4 y;

/*fit full model*/

proc logistic data=ch14ta03;

model y (event='1')=x1 x2 x3 x4;

run;

/*fit reduced model*/

proc logistic data=ch14ta03;

model y (event='1')=x2 x3 x4;

run;


	SAS OUTPUT:

Full model:

Model Fit Statistics

                                                          Intercept

                                           Intercept            and

                             Criterion          Only     Covariates

                             AIC             124.318        111.054

                             SC              126.903        123.979

                             -2 Log L        122.318        101.054
Reduced model:

                        Model Fit Statistics

                                                          Intercept

                                           Intercept            and

                             Criterion          Only     Covariates

                             AIC             124.318        114.204

                             SC              126.903        124.544

                             -2 Log L        122.318        106.204
We use proc logistic to regress Y on X1,X2,X3 and X4 and refer to this as full model. In SAS output for full model we see that -2 Log Likelihood statistic=101.054. We now regress Y on X2,X3 and X4 and refer to this as the full model. In SAS output for reduced model we see that -2 Log Likelihood statistic=106.204. Using equation (14.60), test page 581, we find G2=106.204-101.054=5.15. For (=0.05 we require (2(.95,1)=3.84. Since our computed G2 value (5.15) is greater than the critical value 3.84, we conclude Ha, that X1 should not be dropped from the model.


4. Global Test Whether all (k=0: Score Chi-square test 

Let 
[image: image49.wmf])

(

b

U

 be the vector of first partial derivatives of the log likelihood with respect to the parameter vector (, and let 
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 be the matrix of second partial derivatives of the log likelihood with respect to (. Let I(()  be either -
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. Consider a null hypothesis H0. Let 
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be the MLE of ( under H0. The chi-square score statistic for testing H0 is defined by 
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 and it has an asymptotic 
[image: image55.wmf]2

c

 distribution with r degrees of freedom under H0, where r is the number of restriction imposed on ( by H0. 
	Example:
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Study purpose: assess the strength of the association between each of the predictor variables and the probability of a person having contracted the disease
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	SAS CODE:

data ch14ta03;

infile 'c:\stat231B06\ch14ta03.txt' DELIMITER='09'x;

input case x1 x2 x3 x4 y;

proc logistic data=ch14ta03;

model y (event='1')=x1 x2 x3 x4;

run;
	SAS OUTPUT:
Testing Global Null Hypothesis: BETA=0

                    Test                 Chi-Square       DF     Pr > ChiSq

                    Likelihood Ratio        21.2635        4         0.0003

                    Score                   20.4067        4         0.0004
                    Wald                    16.6437        4         0.0023
Since p-value for the score test is 0.0004, we reject the null hypothesis H0: (1=(2=(3=(4=0. We can also wald test and likelihood ratio test to test the above null hypothesis.
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Logistic regression 





 Age and signs of coronary heart disease (CD)











			Age


			CD


			


			Age


			CD


			


			Age


			CD





			22


			0
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			0
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			0
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			0
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			55


			1
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