POLYTOMOUS LOGISTIC REGRESSION, POISSON REGRESSION AND GENERALIZED LINEAR MODELS
Polytomous Logistic Regression for Nominal Response:

What do we do if the response variable has more than two levels?
Logistic regression can still be employed by means of a polytomous (or multicategory) logistic regression model. 

Example: A study which determines the strength of association between several risk factors (mother’s age, nutritional status, history of tobacco use, and history of alcohol use) and the during of pregnancies (preterm, intermediate term, full term).
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	     Age-Category     Xi2        Xi3
<20 years old          1           0

21-30 years old       0           0   (reference group because mothers in this age group tend to have the lowest risk of preterm delivery)
>30 years old          0           1


 There are 3 response categories. If we use category 3 as the baseline   category, there are two comparisons to this referent category. All other comparisons can be obtained based on these two comparisons. Let 
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 denote the probability that category j is selected for the ith response, then the logit for the two comparisons are:


[image: image3.wmf]2

'

3

2

1

'

3

1

log

   

,

log

b

=

p

p

b

=

p

p

i

i

i

e

i

i

i

e

X

X

(
[image: image4.wmf],

)

exp(

)

exp(

1

)

exp(

2

'

1

'

1

'

1

b

+

b

+

b

=

p

i

i

i

i

X

X

X


[image: image5.wmf])

exp(

)

exp(

1

)

exp(

2

'

1

'

1

'

2

b

+

b

+

b

=

p

i

i

i

i

X

X

X




[image: image6.wmf])

exp(

)

exp(

1

1

2

'

1

'

3

b

+

b

+

=

p

i

i

i

X

X


We use maximum likelihood method to estimate parameter vectors (1, (2. 
The idea:

Step 1:  P(Yi=2)=P(Yi1=0, Yi2=1, Yi3=0)=(i2=
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Step 2:   P(Y1,… Yn)= 
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Step 3:   loge P(Y1,… Yn)= 
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Step 4:   Find b1, b2 that will maximize loge P(Y1,… Yn) by using standard statistical software.

Step 5:  
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SAS CODE: 

data pregnancy;

infile 'c:\stat231B06\ch14ta13.txt';

input case y rc1 rc2 rc3 x1 x2 x3 x4 x5;

x2=1-x2;

x3=1-x3;

x4=1-x4;

x5=1-x5;

run;

/*use link=glogit option right after model statement will produce*/

/*appropriate analysis for a multinomial response*/
proc logistic data=pregnancy;

class x2 x3 x4 x5;

model y=x1 x2 x3 x4 x5/link=glogit;

run;
SAS OUTPUT:
                                        Response Profile

                               Ordered                      Total

                                 Value            y     Frequency

                                     1            1            26

                                     2            2            35

                                     3            3            41

First indicates that the response had three levels 1,2,3 with different frequency.
                       Logits modeled use y=3 as the reference category.

Y=3 is the reference category
                            Analysis of Maximum Likelihood Estimates

                                                 Standard          Wald

           Parameter      y    DF    Estimate       Error    Chi-Square    Pr > ChiSq

           Intercept      1     1     10.2306      2.5966       15.5240        <.0001

           Intercept      2     1      8.0069      2.2027       13.2141        0.0003

           x1             1     1     -0.0654      0.0182       12.8642        0.0003

           x1             2     1     -0.0464      0.0149        9.7357        0.0018

           x2        0    1     1      1.4784      0.4822        9.3990        0.0022

           x2        0    2     1      1.4567      0.4288       11.5420        0.0007

           x3        0    1     1      1.0298      0.4474        5.2982        0.0213

           x3        0    2     1      0.9437      0.4044        5.4457        0.0196

           x4        0    1     1      1.0214      0.3549        8.2847        0.0040

           x4        0    2     1      0.5335      0.3248        2.6984        0.1004

           x5        0    1     1      1.2261      0.3657       11.2382        0.0008

           x5        0    2     1      1.1152      0.3341       11.1419        0.0008

This table contains estimated regression coefficient, estimated approximate standard errors, the wald test statistics and p-vlues. As the table shows, all Wald test P-vlaues are less than .05- with the exception of alcohol in the second linear predictor – indicating that all of the predictors should be retained. For all cases, the direction of the association between the predictors and the estimated logits, as indicated by the signs of the estimated regression coefficients, were as expected.
                                      Odds Ratio Estimates

                                            Point          95% Wald

                       Effect       y    Estimate      Confidence Limits

                       x1           1       0.937       0.904       0.971

                       x1           2       0.955       0.927       0.983

                       x2 0 vs 1    1      19.237       2.905     127.382

                       x2 0 vs 1    2      18.418       3.430      98.895

                       x3 0 vs 1    1       7.842       1.358      45.295

                       x3 0 vs 1    2       6.602       1.353      32.221

                       x4 0 vs 1    1       7.712       1.919      30.997

                       x4 0 vs 1    2       2.906       0.814      10.381

                       x5 0 vs 1    1      11.614       2.769      48.710

                       x5 0 vs 1    2       9.303       2.511      34.464
This table contains the estimated odds ratios for the two estimated linear predictors, and the 95% confidence intervals for the odds ratios. For example, for teenagers, the estimated odds of delivering preterm compared to full term are 19.24 times the estimated odds for women 20-30 years of age; the 95% confidence interval for this odds ratio has a lower limit of 3.43 and an upper limit of 98.91
Polytomous Logistic Regression for Ordinal Response:

The model that is usually employed is called the proportional odds model. The proportional odds model for ordinal logistic regression models the cumulative probabilities P(Yi(j) rather than the specific category probabilities P(Yi=j)as was the case for nominal logistic regression.
For category j:

Proportional odds model:
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 for j=1,2,…, J-1

cumulative logits:
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        for j=1,2,…, J-1
As we can see, in the nominal case, each of the J-1 parameter vectors (j is unique. For ordinal responses, the slope coefficient vectors ( are identical for each of the J-1 cumulative logits, but the intercepts differ. For the ordinal responses, the slope coefficient vectors ( can be interpreted as the change in the logarithm of an odds ratio – this time the cumulative odds ratio- for a unit change in its associated predictor. 
We use maximum likelihood method to estimate parameter vectors (1,…, (J-1 and (. 
The idea:

Step 1:  P(Yi(j)=
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Step 2:   P(Y1,… Yn)= 
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Step 3:   loge P(Y1,… Yn)
Step 4:   Find a1, …, aJ-1 and b that will maximize loge P(Y1,… Yn) by using standard statistical software.

SAS CODE:

data pregnancy;

infile 'c:\stat231B06\ch14ta13.txt';

input case y rc1 rc2 rc3 x1 x2 x3 x4 x5;

x2=1-x2;

x3=1-x3;

x4=1-x4;

x5=1-x5;

run;

/*Since there are 3 levels of Y, SAS will assume that the variable is */

/*ordinal and perform ordinal logistic regression*/
proc logistic data=pregnancy;

class x2 x3 x4 x5;

model y=x1 x2 x3 x4 x5;

run;

SAS OUTPUT:

                           Analysis of Maximum Likelihood Estimates

                                              Standard          Wald

             Parameter      DF    Estimate       Error    Chi-Square    Pr > ChiSq

             Intercept 1     1      6.2303      1.5826       15.4982        <.0001

             Intercept 2     1      8.3251      1.6838       24.4446        <.0001

             x1              1     -0.0489      0.0117       17.4958        <.0001

             x2        0     1      0.9880      0.2937       11.3137        0.0008

             x3        0     1      0.6817      0.2773        6.0426        0.0140

             x4        0     1      0.8349      0.2364       12.4767        0.0004

             x5        0     1      0.7958      0.2263       12.3683        0.0004


                      The LOGISTIC Procedure

                                     Odds Ratio Estimates

                                         Point          95% Wald

                         Effect       Estimate      Confidence Limits

                         x1              0.952       0.931       0.974

                         x2 0 vs 1       7.214       2.281      22.815

                         x3 0 vs 1       3.910       1.318      11.595

                         x4 0 vs 1       5.311       2.103      13.415

                         x5 0 vs 1       4.911       2.023      11.924
For example, the results indicate that the logarithm of the odds of a pre- or

Intermediate-term delivery (Yi(2) for smokers (X5=1) is estimated to be 

1.5915 times the logarithm of the odds for nonsmokers (X5=0). The 
estimated cumulative odds ratio is given by exp(1.519)=4.91 and a 
95% confidence interval for the true cumulative odds ratio has a 
lower limit of 2.02 and an upper limit of 11.92)
Poisson Regression Model:
Poisson regression is useful when the outcome is a count, with large-count outcomes being rare events.
Poisson Regression Model: 

Yi are independent Poisson random variables with expected values (i, where: (i=exp(X’()
The maximum likelihood estimation can be used again to estimate (. 
Example: The Miller Lumber Company conducted an in-store customer survey. The researcher counted the number of customers who visited the store from each nearby census tract. The researcher also collected and subsequently retained five (quantitative) predictor variables for use in the Poisson Regression.  

SAS CODE:
data Miller;

infile 'c:\stat231B06\ch14ta14.txt';

input y x1 x2 x3 x4 x5;

run;

/*Poisson regression is available in the proc genmod procedure.*/
/*Proc genmod fits a generalized linear model to the data*/
/*There are a number of link functions and probabilites*/
/*distributions that can be specified by the user. We complete*/
/*the Miller Lumber analysis by specifying the Poisson*/
/*distribution on the model statement. */
proc genmod;

model y=x1 x2 x3 x4 x5/dist=poisson;

run;

SAS OUTPUT:
                                Analysis Of Parameter Estimates

                                   Standard     Wald 95% Confidence       Chi-

    Parameter    DF    Estimate       Error           Limits            Square    Pr > ChiSq

    Intercept     1      2.9424      0.2072      2.5362      3.3486     201.57        <.0001

    x1            1      0.0006      0.0001      0.0003      0.0009      18.17        <.0001

    x2            1     -0.0000      0.0000     -0.0000     -0.0000      30.63        <.0001

    x3            1     -0.0037      0.0018     -0.0072     -0.0002       4.37        0.0365

    x4            1      0.1684      0.0258      0.1179      0.2189      42.70        <.0001

    x5            1     -0.1288      0.0162     -0.1605     -0.0970      63.17        <.0001

    Scale         0      1.0000      0.0000      1.0000      1.0000

NOTE: The scale parameter was held fixed.
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