Random and Mixed-Effects Model
Model II (Random Factor Levels) for Two-factor Studies
What we have considered:
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What if a factor has a large number of possible levels and interest centers on the effects of all possible levels? Keep in mind that measuring responses at every level may be difficult, impossible, or prohibitively expensive. 

Solution: 

(1) Regard the set of all levels under consideration as a statistical population 

(2) Draw conclusions about this population on the basis of the observed responses to a random sample of levels selected from this population.
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Example: A company owns several hundred retail stores, seven of these stores were selected at random, and a sample of employees in each store was asked to evaluate the management of the store. 

1. The seven stores chosen for the study constitute the seven levels of the random factor, retail stores.

2. Management was not just interested in the management of the seven stores chosen, but wanted to generalize the results to the entire population of stores.

One-way random effects model
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(1)     (cell means model)
           i=1 ,r ;    j=1 ,n  
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(2)     (factor effect model)
           i=1 ,r ;   j=1 ,n

where:
ui = the effect of the i-th randomly selected treatment, are independent N(0, 
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(ij =random error,   are independent N(0, 
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(= the overall mean expected response.  

(i = the effect of the i-th randomly selected treatment, are independent N(0, 
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The responses observed in such experiments can be
regarded as random samples selected in two stages

Stage 1: a random sample of a particular size - say, a-
is selected from population of levels of the
experimental factor

Stage 2: a random sample of n responses is observed
for the i-th treatment selected in the first stage




Questions of Interest

(1) estimation of (
(2) estimation of (2
(3) estimation of 
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Table 10.1  ANOVA Table: one-way random effect model with equal replication

	Source of Variation   Degree of                Sum of                               Mean

                                  Freedom                 Squares                               Square                   Fo

	Treatments                    a-1          
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The expected values of these mean squares are known as
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	Example: Apex enterprises studied personnel officer evaluation ratings of potential employees. Five of the company’s personnel officers were randomly selected, and four job applicants were randomly assigned to each of the five officers. Thus each officer rated four job applicants.
	Obs

y

officer

Candidate

1
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	SAS CODE:

data apex;

infile 'c:\stat231B06\ch25ta01.txt';

input y officer candidate;

run;

proc glm;

class officer;

model y=officer;

/*because the five officers are perceived as a random sample from a */

/*very large "population" of officers, we refer to the factor officers*/
/*as a random factor*/
random officer;

run;

/*To construct confidence intervals for functions of sigma^2,etc.,*/

/*and carry out additional analyses, we use SAS proc mixed. Note that*/ /*the 'method'option can be used to specify the estimation method */

/*[ml=maximum likelihood, reml=residul(restricted)maximum likelihood),*/
/*miqvue0=minimum variance quadratic unbiased estimates. for the */

/*covariance parameters*/
proc mixed method =reml asycov cl covtest

alpha=.1;

class officer;

/*estimate the mean rating of all personnel officers with a 90% *

/*confidence interval*/
model y= / cl alpha=.1;

random officer;

run;

data ratio;

/*use text equation 25.18*/
n=4;

r=5;

mstr=394.925;

mse=73.28333;

fl=finv(1-0.1, r-1, r*(n-1));

fu=finv(0.1, r-1, r*(n-1));

l=1/n*((mstr/mse)*(1/fl)-1);

u=1/n*((mstr/mse)*(1/fu)-1);

lstar=l/(l+1);

ustar=u/(u+1);

proc print data=ratio;

var l u lstar ustar;

run;

SAS OUTPUT:

The GLM Procedure

Dependent Variable: y

                                              Sum of

      Source                      DF         Squares     Mean Square    F Value    Pr > F

      Model                        4     1579.700000      394.925000       5.39    0.0068

      Error                       15     1099.250000       73.283333
      Corrected Total             19     2678.950000

                       R-Square     Coeff Var      Root MSE        y Mean

                       0.589671      11.98120      8.560569      71.45000

      Source                      DF       Type I SS     Mean Square    F Value    Pr > F

      officer                      4     1579.700000      394.925000       5.39    0.0068

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F

      officer                      4     1579.700000      394.925000       5.39    0.006


We conclude that the means for officers in the population (of officers) are not all equal because p-value=0.006.
   Solution for Fixed Effects

                          Standard

   Effect      Estimate      Error     DF   t Value   Pr > |t|    Alpha      Lower      Upper

   Intercept    71.4500     4.4437      4     16.08     <.0001      0.1    61.9768    80.9232
We estimate the mean rating ((..) of all personnel officers with a 90% confidence intervals. This is accomplished by the “method y=/cl alpha=.1;” statement. From the Solution for Fixed effects table, the estimate is 
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and the confidence limit is between 61.98 and 80.92

The Mixed Procedure

                                Covariance Parameter Estimates

                            Standard         Z

   Cov Parm     Estimate       Error     Value        Pr Z     Alpha       Lower       Upper

   officer       80.4104     70.1333      1.15      0.1258       0.1     29.5215      865.42
   Residual      73.2833     26.7593      2.74      0.0031       0.1     43.9774      151.39
                           Asymptotic Covariance Matrix of Estimates

                            Row    Cov Parm        CovP1       CovP2

                              1    officer       4918.68     -179.01

                              2    Residual      -179.01      716.06
to estimate sigma^2 with a 90% confidence interval, we use proc mixed and requested that the asymptotic covariance matrix of the covariance parameters be displayed and that 90% confidence limits be computed to estimate the parameters (asycov, cl, covtest alpha=.1;). The covtest option produces asymptotic standard errors and Wald Z-test for the covariance parameter estimates. The 90% confidence interval is calculated between 43.98 and 151.39.
Obs       l          u        lstar      ustar

1     0.32052    4.96436    0.24272    0.83234
An estimate of (2 is given by MSE=73.28 (see the first output). The lower and upper limits for 
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 is between 24.272 and 0.83234

Two or more random effects (Model II)
Suppose both factors A and B are random factors, the two-way complete model with random effects is 
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          i=1 ,a 

          j=1 ,b 
          k=1,2 . . . n
(..= the overall mean expected response.  

(i = the effect of the i-th randomly selected treatment, are independent N(0, 
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(j = the effect of the j-th randomly selected treatment, are independent N(0, 
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 ((ij = the effect of the ij-th randomly selected interaction, are independent N(0, 
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(i , (j , ((ij and (ijk are pairwise independent   
As in a two-way complete model with fixed effects, SSTotal= SSA +SSB +SSAB +SSE
and the calculation for each term is the same. 

Model II ANOVA table
	Source of   Degree of  Sum of     Mean                 Expected 

Variation    Freedom   Squares    Square               MS                                   Fo

	Factor A     a-1             SSA         MSA
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Hypothesis testing:
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When there is no interaction, we can test
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 (Note the denominator is not MSE)
We can also test
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Mixed Models (Model III)
When a model has both fixed effects and random effects, it is called a mixed model. If a factor is random, its interactions with any other factor will be regarded as random effects.
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(..= the overall mean expected response.  

(i = the effect of the i-th fixed effect , 
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(j = the effect of the j-th randomly selected treatment, are independent N(0, 
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	Source of   Degree of     Sum of       Mean                    Expected 

Variation    Freedom      Squares      Square                  MS                                       Fo

	Factor A     a-1               SSA           MSA
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Hypothesis testing:
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When there is no interaction, we can test
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We can also test
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