Multiple Regression - II

Extra Sum of Squares

An extra sum of squares measures the marginal reduction in the error sum of squares when one or more predictor variables are added to the regression model, given that other predictor variables are already in the model. Equivalently, one can view an extra sum of squares as measuring the marginal increase in the regression sum of squares when one or several predictor variables are added to the regression model.
Example:  Body fat (Y) to be explained by possibly three predictors and their combinations: Triceps skinfold thickness (X1), thigh circumference (X2) and midarm circumference (X3).
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Body fat is hard to measure, but the predictor variables are easy to obtain.

	
Model (X1) Fit and ANOVA
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Model (X2) Fit and ANOVA
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Model (X1, X2) Fit and ANOVA
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Model (X1, X2, X3) Fit and ANOVA
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Extra Sum of Squares
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Decomposition of SSR into Extra Sum of Squares
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What are other possible decompositions?
Note that the order of the X variables is arbitrary. 
ANOVA Table Containing Decomposition of SSR

	Source of Variation
	SS
	df
	MS

	Regression
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	Error
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ANOVA Table with Decomposition of SSR - Body Fat Example with Three Predictor Variables.

	Source of Variation
	SS
	df
	MS

	Regression
	396.98
	3
	132.27
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	11.54
	1
	11.54

	Error
	98.41
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	6.15

	Total
	495.39
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Computer Packages

SAS use the term “Type I” to refer to the extra sum of squares.  

[image: image34.wmf]Example in SAS Using Body Fat Data
                                       The GLM Procedure

Dependent Variable: y

                                              Sum of

      Source                      DF         Squares     Mean Square    F Value    Pr > F

      Model                        3     396.9846118     132.3282039      21.52    <.0001

      Error                       16      98.4048882       6.1503055

      Corrected Total             19     495.3895000

                       R-Square     Coeff Var      Root MSE        y Mean

                       0.801359      12.28017      2.479981      20.19500

      Source                      DF       Type I SS     Mean Square    F Value    Pr > F

      x1                           1     352.2697968     352.2697968      57.28    <.0001

      x2                           1      33.1689128      33.1689128       5.39    0.0337

      x3                           1      11.5459022      11.5459022       1.88    0.1896

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F

      x1                           1     12.70489278     12.70489278       2.07    0.1699

      x2                           1      7.52927788      7.52927788       1.22    0.2849

      x3                           1     11.54590217     11.54590217       1.88    0.1896

                                                 Standard

               Parameter         Estimate           Error    t Value    Pr > |t|

               Intercept      117.0846948     99.78240295       1.17      0.2578

               x1               4.3340920      3.01551136       1.44      0.1699

               x2              -2.8568479      2.58201527      -1.11      0.2849

               x3              -2.1860603      1.59549900      -1.37      0.189

For more details on the decomposition of the SSR into extra sums of squares, please see the Schematic Representation in Figure 7.1 on page 261
	 Mean Squares 
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Note that each extra sum of squares involving a single extra X variable has associated with it one degree of freedom.

	Extra Sum of Squares from Several Variables
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Extra sums of squares involving two extra X variables, such as SSR(X2, X3| X1), have two degrees of freedom associated with them. This follows because we can express such an extra sum of squares as a sum of two extra sums of squares, each associated with one degree of freedom.


Uses of Extra Sums of Squares in Tests for Regression Coefficients
Test Whether a Single Beta Coefficient is Zero (two tests are available). 

(1) t-test (6.51b) discussed in chapter 6
(2) General Linear Test Approach

	Full Model
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	Hypotheses
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	Reduced Model when H0 holds
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	General Form of Test Statistic
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	Form of Test Statistic for Testing a Single Beta Coefficient Equal Zero
	[image: image42.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

3

2

1

2

1

3

3

2

1

2

1

3

3

2

1

2

1

*

X

,

X

,

X

MSE

X

,

X

|

X

MSR

4

n

X

,

X

,

X

SSE

1

X

,

X

|

X

SSR

4

n

F

SSE

4

n

3

n

X

,

X

,

X

SSE

X

,

X

SSE

F

=

-

¸

=

-

¸

-

-

-

-

=


We don’t need to fit both the full model and the reduced model. Only fitting a full model in SAS will provide the MSR(X3| X1 , X2) and MSE(X1,X2,X3). See the SAS output


Note: 
(1) here the t-test and F-test are equivalent test.



(2) the F test to test whether or not (3=0 is called a partial F test


(3) the F test to test whether or not all (k=0 is called the overall F test.
Test Whether Several Beta Coefficients Are Zero (only one test available). 

General Linear Test Approach
	Full Model
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	Hypotheses
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	Reduced Model when H0 holds
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	General Form of Test Statistic
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	Form of Test Statistic for Testing Several Beta Coefficients Equal Zero
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	Example:  Body Fat
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Other Tests When Extra Sum of Squares Cannot be Used, therefore both full model and reduced model have to be fitted.
Example
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	Full Model
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	Hypotheses
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	Reduced Model when H0 holds
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	General Test Statistic



Coefficients of Partial Determination

Descriptive Measures of relation ships, uses extra sum of squares.  Useful in describing causal relationships. 
	Two Predictor Variables

The coefficient of multiple determination measures the proportionate reduction in the variation of Y achieved by the introduction of the entire set of X variables.
Coefficient of Partial Determination uses Y and X1 both “adjusted for X2” and measure the proportionate reduction in the variation of the “adjusted Y” by including the “adjusted X1.” (comments 2 on page 270)
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	General Case
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	Example

· When X2 is added to model containing X1, SSE is reduced by 23.2%

· When X3 is added to model containing X1 and X2, SSE is reduced by 10.5%

· When X1 is added to model containing X2, SSE is reduced by only 3.1%
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Multicollinearity and Its Effects

Some questions frequently asked are:

1. What is the relative importance of the effects of the different predictor variables?

2. What is the magnitude of the effect of a given predictor variable on the response variable?

3. Can any predictor variable be dropped from the model because it has little or no effect on the response variable?

4. Should any predictor variable not yet included in the model be considered for possible inclusion? 

If the predictor variables included in the model are 

· uncorrelated among themselves and

· uncorrelated with any other predictor variables that are related to the response variable but are omitted from the model

then relative simple answers can be given.  Unfortunately, in many nonexperimental situations in business economics, and social and biological sciences, the predictor variables are correlated.

For example:

· Family food expenditures (Y).

· Correlated predictors in model:  Family income (X1), Family savings (X2), Age of head of household (X3).

· Correlated with predictors outside model:  Family size (X4).

When the predictor variables are correlated among themselves, intercorrelation or multicollinearity among them is said to exist.


Example of Perfectly Uncorrelated Predictor Variables (Table 7.6)
	Models:
	
	X1 and X2 are uncorrelated.
(the regression coefficient for X1 is the same for both model (1) and (2). The same holds for regression coefficient for X2.

(conduct controlled experiments since the levels of the predictor variables can be chosen to ensure they are uncorrelated
(SSR(X1|X2)=SSR(X1)

    SSR(X2|X1)=SSR(X2)
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Example of Perfectly Correlated Predictor Variables

	Case
i
	
Xi1
	
Xi2
	
Y
	
Pred-Y (Model 1)
	
Pred-Y (Model 2)

	1
	2
	6
	23
	23
	23

	2
	8
	9
	83
	83
	83

	3
	6
	8
	63
	63
	63

	4
	10
	10
	103
	103
	103


	Models:
	
	

	(1)
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	Perfect Relation between predictors:

X2=5+0.5 X1

	(2)
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Two Key Implications

1. The perfect relation between X1 and X2 do not inhibit our ability to obtain a good fit to the data.

2. Since many different response functions provide the same good fit, we cannot interpret any one set of regression coefficients as reflecting the effect of different predictor variables.

Effects of Multicollinearity

We seldom find variables that are perfectly correlated.  However, the implication just noted in our idealized example still have relevance.

1. The fact that some or all predictor variables are correlated among themselves does not, in general, inhibit our ability to obtain a good fit.

2. The counterpart in real life to many different regression functions providing equally good fits to the data in our idealized example is that the estimated regression coefficients tend to have large sampling variability when the predictor variables are highly correlated.

3. The common interpretation of a regression coefficient as measuring the change in the expected value of the response variable when the given predictor variable is increased by one unit while all the other predictors are held constant is not fully applicable when multicollinearity exits.

Example: Body Fat
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	Effects on Regression Coefficients

1. Estimates of coefficients change a lot as each variable is entered in the model.

2. In Model (3) although the F-test is significant, none of the t-tests for individuals coefficients is significant.

3. In Model (3) the variances of the coefficients are inflated.
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	4. The standard error of estimate is not substantially improved as more variables are entered in the model.  Thus fitted values and predictions are neither more nor less precise.
	[image: image64.wmf]Triceps

Skinfold

Thickne

ss

c,d

.

.843

.711

.695

2.8198

Thigh

Circumf

erence

e,d

.

.882

.778

.752

2.5432

Midarm

Circumf

erence

f,d

.

.895

.801

.764

2.4800

Model

1

2

3

Entered

Removed

Variables

R

R Square

Adjusted

R Square

Std. Error

of the

Estimate

Model Summary

a,b

Dependent Variable: Body Fat

a. 

Method: Enter

b. 

Independent Variables: (Constant), Triceps Skinfold Thickness

c. 

All requested variables entered.

d. 

Independent Variables: (Constant), Triceps Skinfold Thickness, Thigh

Circumference

e. 

Independent Variables: (Constant), Triceps Skinfold Thickness, Thigh

Circumference, Midarm Circumference

f. 



	Theoretical reason for inflated variance:  As the correlation between the predictors increases to one, the variance increases to infinity.

1. The primed variables Y’, X1’, X2’ are called the “correlation transformation.”

2. The X’X matrix of the primed variables is the correlation matrix rXX.

3. As (r12)2 approaches 1 the variances march off to infinity.
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For more details, please read page 272-278 of ALSM
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