Statistics 231B SAS Practice Lab #3
Spring 2006

This lab is designed to give the students practice in conducting the Breusch-Pagan test for constancy of the error variance and a formal lack of fit test, obtaining joint interval estimates of regression coefficients using Bonferroni procedure, the simultaneous interval estimate of several mean responses and the predictions of several new observations. 
Example: In a small-scale experimental study of the relation between degree of brand liking (Y) and moisture content (X1) and sweetness (X2) of the product, the data were obtained from the experiment based on a completely randomized design, see CH06PR05.txt. 
(1) In lab 2, we have fitted the multiple linear regression model and obtained residual plots. The plots of residuals versus predicted values and predictor variables will suggest whether the variance of the error terms is constant. In fact, we can use Breusch-Pagan Test to formally test the constancy of error variance. 

The Breusch-Pagan test is a large-sample test for constancy of error variance. It assumes that error terms are independent and normally distributed and that the variance of the error term (i, denoted by
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Note that above equation implies that 
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 either increases or decreases with the level of the q predictor variables, depending on the sign of (s. Constancy of error variance corresponds to
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. Therefore a test of H0: 
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 can be carried out by 
(1) fitting the following regression model :
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where (i is the  error term for this regression model. The regression sum of squares can then be obtained and denoted by SSR*. 
(2) obtain SSE, the error sum of squares from the following regression model:
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(3) calculate the test statistic 
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 , which follows approximately the chi-square distribution with q degree of freedom when 
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 holds and n is reasonably large
(4)
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SAS CODE:
data Brandpreference;

 infile 'Z:\ch06pr05.txt';

 input y x1 x2;

proc reg data=Brandpreference;

 model y=x1 x2/r p;

 output out=results r=residual p=yhat;

run;

 data results;

 set results;

 e2 = residual*residual;

proc reg data=results;

   model e2 = x1 x2;

run;

quit;

SAS OUTPUT

                              Analysis of Variance

                                     Sum of           Mean

 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     2     1872.70000      936.35000     129.08    <.0001

 Error                    13       94.30000        7.25385
 Corrected Total          15     1967.00000

              Root MSE              2.69330    R-Square     0.9521

              Dependent Mean       81.75000    Adj R-Sq     0.9447

              Coeff Var             3.29455

                              Parameter Estimates

                           Parameter       Standard

      Variable     DF       Estimate          Error    t Value    Pr > |t|

      Intercept     1       37.65000        2.99610      12.57      <.0001

      x1            1        4.42500        0.30112      14.70      <.0001

      x2            1        4.37500        0.67332       6.50      <.0001

The REG Procedure

                                 Model: MODEL1

                            Dependent Variable: e2

                    Number of Observations Read          16

                    Number of Observations Used          16

                              Analysis of Variance

                                     Sum of           Mean

 Source                   DF        Squares         Square    F Value    Pr > F

 Model                     2       72.40700       36.20350       0.95    0.4113

 Error                    13      494.34723       38.02671

 Corrected Total          15      566.75423

              Root MSE              6.16658    R-Square     0.1278

              Dependent Mean        5.89375    Adj R-Sq    -0.0064

              Coeff Var           104.62914

                              Parameter Estimates

                           Parameter       Standard

      Variable     DF       Estimate          Error    t Value    Pr > |t|

      Intercept     1        1.15875        6.85989       0.17      0.8685

      x1            1        0.91750        0.68944       1.33      0.2061

      x2            1       -0.56250        1.54165      -0.36      0.7211

For this example, please conduct the Breusch-Pagan test for constancy of the error variance, assuming 
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; use (=0.01. State the alternatives, decision rule and conclusion.
(2) To ascertain whether a linear regression function is a good fit for the data, we can carry out a formal test called lack of fit F-test. The lack of fit test assumes that the observations Y for given predictor variables X1, X2, …, Xp-1 are (1) independent and (2) normally distributed, and that (3) the distribution of Y have the same variance (2. The lack of fit test requires repeat observations at one or more Xs levels. Lack of fit F-test is a general linear test approach which compares the full model and reduced model:
Full model: 
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The full model stating that each response Y is made up of two components: the mean response when X1=X1j,  X2=X2j,… , Xp-1=Xp-1j  and a random error term. 
Reduced Model: 
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Note that here i refers to ith replicate observations, j refers to jth level of predictor variable X1,  X2, … Xp-1.

The difference between the full model and the reduced model is that in the full model there are no restrictions on the mean (I, whereas in the reduced model the mean responses are linearly related to Xs. A test statistic was then developed to compare the error sum of squares from the full model and the reduced model as follows:
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SAS CODE:
data Brandpreference;

infile 'c:\stat231B06\ch06pr05.txt';

input y x1 x2;

if x1=4 and x2=2 then j=1;  /* create a new variable J*/
if x1=4 and x2=4 then j=2;

if x1=6 and x2=2 then j=3;

if x1=6 and x2=4 then j=4;

if x1=8 and x2=2 then j=5;

if x1=8 and x2=4 then j=6;

if x1=10 and x2=2 then j=7;

if x1=10 and x2=4 then j=8;

run;

 proc glm data=Brandpreference;

 class j;

 model y= x1 x2 j;

 run;
SAS OUTPUT:

                                       The GLM Procedure

                                    Class Level Information

                            Class         Levels    Values

                            j                  8    1 2 3 4 5 6 7 8

                            Number of Observations Read          16

                            Number of Observations Used          16

                                       The GLM Procedure

Dependent Variable: y

                                              Sum of

      Source                      DF         Squares     Mean Square    F Value    Pr > F

      Model                        7     1910.000000      272.857143      38.30    <.0001

      Error                        8       57.000000        7.125000

      Corrected Total             15     1967.000000

                       R-Square     Coeff Var      Root MSE        y Mean

                       0.971022      3.265162      2.669270      81.75000

      Source                      DF       Type I SS     Mean Square    F Value    Pr > F

      x1                           1     1566.450000     1566.450000     219.85    <.0001

      x2                           1      306.250000      306.250000      42.98    0.0002

      j                            5       37.300000        7.460000       1.05    0.4530

      Source                      DF     Type III SS     Mean Square    F Value    Pr > F

      x1                           0      0.00000000       .                .       .

      x2                           0      0.00000000       .                .       .

      j                            5     37.30000000      7.46000000       1.05    0.4530

To compute the Lack of fit F* in SAS, we switch to the proc glm procedure. We begin by fitting the full model to the data. This requires creating a new variable, J. Using the class j statement in proc glm , we specify that J is a classification variable. Thus, J identifies 8 discrete classifications based on the values of Xs. The SAS output shows that SSE(F)=57, SSE(R)-SSE(F)=37.3. 
For this example, conduct a formal test for lack of fit of the first-order regression function; use (=0.01. State the alternatives, decision rule and conclusion.
(3) Joint Inference of several regression coefficientf.

The Bonferroni joint confidence intervals can be used to estimate several regression coefficients simultaneously. If g parameters are to be estimated jointly (where g(p)), the confidence limits with family confidence coefficient 1-( are
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proc reg data=Brandference;
model y=x1 x2;

run;
We obtain the following estimates for regression coefficients and their corresponding standard deviation.
                       Parameter Estimates

                           Parameter       Standard

      Variable     DF       Estimate          Error    t Value    Pr > |t|

      Intercept     1       37.65000        2.99610      12.57      <.0001

      x1            1        4.42500        0.30112      14.70      <.0001

      x2            1        4.37500        0.67332       6.50      <.0001

Then use the code below, we can estimate (1 and (2 jointly by the Bonferroni procedure, using a 99 percent family confidence coefficient. 
SAS CODE:

data intervals;

tvalue = tinv(.9975,13);

b1lo=4.425-(tvalue*0.30112); /*lower bound for b1*/

b1hi=4.425+(tvalue*0.30112); /*upper bound for b1*/

b2lo=4.375-(tvalue*0.67332); /*lower bound for b2*/

b2hi=4.375+(tvalue*0.67332); /*upper bound for b2*/

proc print;

var b1lo b1hi b2lo b2hi;

run;
SAS OUTPUT:
                Obs      b1lo       b1hi       b2lo       b2hi

                 1     3.40948    5.44052    2.10425    6.64575

For this example, estimate (1 and (2 jointly by the Bonferroni procedure, using a 95 percent family confidence coefficient. Interpret your results.

(4) Estimation of Mean Response and Prediction of New Observation
A common objective in regression analysis is to estimate the mean for one or more probability distribution of Y. Let 
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 denote the level of Xs for which we wish to estimate the mean response 
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 maybe a value which occurred in the sample, or it may be some other value of the predictor variables within the scope of the model. 
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Prediction of New Observation
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SAS CODE for obtaining an interval estimate of 
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 Xh1=5 and Xh2=4, using a 99 percent confidence coefficient. 

data Brandpreference;

 infile 'Z:\ch06pr05.txt';

 input y x1 x2;

 tvalue = tinv(.995,13);/*find t-value for a t(13) with alpha=0.01*/
 x0 = 1;

 proc iml;

 use Brandpreference;

 read all var {'y'} into y;

 read all var {'x1'} into a;

 read all var {'x2'} into b;

 read all var {'x0'} into con;

 read all var {'tvalue'} into tvalue;

 x=(con||a||b);   /*create X matrix*/
 print x;

 xtx=t(x)*x;     /*create X’X matrix*/
 print xtx;

 xty=t(x)*y;     /*create X’Y matrix*/
 print xty;

 b=inv(t(x)*x)*t(x)*y;/*create (X’X)^(-1)X’Y matrix*/
 print b;

 xtxinv=inv(t(x)*x);  /*create (X’X)(-1) matrix*/
 print xtxinv;

 xh={1,5,4};

 sxh=sqrt(7.25385*((t(xh))*(xtxinv)*xh)); /*7.25385 is MSE from*/                     

                                            /*regression analysis*/
print sxh;

yhath = t(xh)*b; 
print yhath;
yhathlo=yhath-(tvalue*sxh);

yhathhi=yhath+(tvalue*sxh);

low = yhathlo[1,1];

high=yhathhi[1,1];

print low high;

run;

quit;

SAS OUTPUT:

  LOW      HIGH

                                      73.881108 80.668892

For this example, obtain an interval estimate of 
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 Xh1=5 and Xh2=4, using a 95 percent confidence coefficient. Interpret your interval estimate
SAS CODE for obtain a prediction interval for a new observation Yh(new) when Xh1=5 and Xh2=4. Use a 99 percent confidence coefficient. 
data Brandpreference;

 infile 'Z:\ch06pr05.txt';

 input y x1 x2;

b = tinv(.995,13);

x0 = 1;

proc iml;

use dwaine;

read all var {'y'} into y;

read all var {'x1'} into a;

read all var {'x2'} into b;

read all var {'x0'} into con;

read all var {'b'} into bon;

x=(con||a||b);

xtx=t(x)*x;

xty=t(x)*y;

b=inv(t(x)*x)*t(x)*y;

xtxinv=inv(t(x)*x);

xh={1,5,4};

spre=sqrt(7.25385+(7.25385*((t(xh))*(xtxinv)*xh)));

yhath = t(xh)*b;

yhathlo=yhath-(bon*spre);

yhathhi=yhath+(bon*spre);

low = yhathlo[1,1];

high=yhathhi[1,1];

print low high;

run;

quit;

SAS OUTPUT
                                            LOW      HIGH

                                      68.480767 86.069233

For this example, obtain an prediction interval of for a new observation Yh(new)  when Xh1=5 and Xh2=4, using a 95 percent confidence coefficient. 
Chi-Square Distribution Function (used for calculating pvalue based on Chi-square distribution)



probchi(x,df,nc) returns the value of the distribution function of the chi-square distribution with df degrees of freedom and optional non-centrality parameter nc. If not specified, nc=0. nc is the sum of the squares of the means. Examples: 

y=probchi(3,17);

z=probchi(3,17,5);

Chi-Square Quantiles used for calculating Chi-square critical value based on Chi-square distribution)



cinv(p,df,nc) returns the pth quantile, 0<p<1, of the chi-square distribution with degrees of freedom df. If the optional non-centrality parameter nc is not specified, nc=0. nc is the sum of the squares of the means. Examples: 

y=cinv(0.95,5);

z=cinv(0.95,5,3);

F Distribution Function (used for calculating pvalue based on F distribution)



probf(x,ndf,ddf,nc) returns the value of the distribution function of the F distribution with ndf numerator degrees of freedom, ddf denominator degrees of freedom, and optional non-centrality parameter nc. If not specified, nc=0. nc is the sum of the squares of the means. Examples: 

y=probf(3.57,4,12);

z=probf(3.57,4,12,2);

F Distribution Quantiles (used for calculating F critical value based on F distribution)


finv(p,ndf,ddf,nc) returns the pth quantile, 0<p<1, of the F distribution with ndf numerator degrees of freedom, ddf denominator degrees of freedom, and optional nc as the non-centrality parameter. If not specified, nc=0. nc is the sum of the squares of the means. Examples: 

y=finv(.95,3,12);

z=finv(.95,3,12,4);

T Distribution Function (used for calculating pvalue based on T distribution)



probt(x,df,nc) returns the value of the distribution function of the t distribution with df degrees of freedom and optional non-centrality parameter nc. If not specified, nc=0. nc is the value of the mean. Examples: 

y=probt(1.96,10);

z=probt(1.96,10,3);

T Distribution Quantiles (used for calculating T critical value based on T distribution)

tinv(p,df,nc) returns the pth quantile, 0<p<1, of the t distribution with df degrees of freedom and optional non-centrality nc. If not specified nc=0. nc is the value of the mean. Examples: 

y=tinv(.95,10);

z=tinv(.95,10,5);
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