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Abstract: The performance of nonparametric function estimates often depends on the choice of design

points. Based on the mean integrated squared error criterion, we propose a sequential design procedure that

updates the model knowledge and optimal design density sequentially. The methodology is developed under

a general framework covering a wide range of nonparametric inference problems, such as conditional mean

and variance functions, the conditional distribution function, the conditional quantile function in quantile

regression, functional coefficients in varying coefficient models and semiparametric inferences. Based on

our empirical studies, nonparametric inference based on the proposed sequential design is more efficient

than the uniform design and its performance is close to the true but unknown optimal design. The Canadian
Journal of Statistics 40: 362–377; 2012 © 2012 Statistical Society of Canada

Résumé: La performance de l’estimation non paramétrique d’une fonction dépend souvent du choix des

points dans le plan d’expérience. En nous basant sur le critère de l’erreur quadratique moyenne intégrée,

nous proposons un plan d’expérience séquentiel qui met à jour la connaissance sur le modèle et la densité du

devis optimal de façon séquentielle. Cetteméthodologie est développée dans un cadre général regroupant une

grande variété de problèmes d’inférence non paramétrique tels que : les fonctions moyennes et de variance

conditionnelles, la fonction de répartition conditionnelle, la fonction quantile conditionnelle en régression

quantile, les coefficients fonctionnels en modèles de coefficients variables et l’inférence semi-paramétrique.

Basé sur nos études empiriques, l’inférence non paramétrique, basée sur le plan d’expérience séquentiel

proposé, est plus efficace que celle faite en utilisant un devis uniforme et sa performance est proche de celle du

plan d’expérience optimal inconnu. La revue canadienne de statistique 40: 362–377; 2012 © 2012 Société

statistique du Canada

1. INTRODUCTION

In many applications, researchers want to draw inferences about an unknown model M based on

available data. For a given input signal Xi to model M, we observe the output Yi. Based on the

inputs and outputs (Xi, Yi), i = 1, . . . , n, we use statistical methods to draw inferences about M.

This procedure can be best described using the diagram:

Input Xi → Model M → Output Yi → Draw inference about M. (1)

In the above diagram, we have control of the inputs {Xi}, also known as the design points, and

the statistical methods used to draw inferences.

To draw inferences about M, two popular classes of methods are the parametric and nonpara-

metric approaches. In the literature on nonlinear experimental design, a great deal of research has
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been done on sequential design for parametric inference. It is assumed that the model dynamics

has a parametric form with unknown finite dimensional parameters, and the goal is to construct

optimal design procedures based on certain criteria, for instance the Fisher information matrix.

For a partial list, see Kiefer (1959), Ford & Silvey (1980), Abdelbasit & Plackett (1983), Wu

(1985), Ford, Titterington, & Wu (1985), Chaudhuri & Mykland (1993), Dette, Melas, & Pe-

pelyshev (2004), and the review paper by Ford, Titterington, & Kitsos (1989). Here we consider

the nonparametric approach, which, by imposing no specific parametric model structure, allows

model flexibility while reducing the risk of model mis-specification in parametric approaches;

see the monograph by Li & Racine (2007) for nonparametric inferences based on uncontrolled

experiments.

To understand the effect of design points on nonparametric inference, consider a simple case in

which we want to estimate a piecewise constant function based on noisy observations. If we have

no prior knowledge of how the underlying model responds to the design point or input, then one

reasonable approach is to assign design points uniformly over the design interval. However, the

uniform design strategy may not be the best choice when some model knowledge is available. For

example, we may assign fewer points to regions where the model dynamics has a low noise level

and more points to regions with large variations. As shown in Section 2.2, in some cases there

could be a substantial loss of efficiency when one blindly uses the uniform design. Similarly,

in Equation (1), if we have some knowledge about model M, then certain desirable statistical

properties may be achieved by choosing proper design points {Xi}. In practice, however, we often
have no prior model knowledge, and any knowledge has to be learned from the inputs and outputs.

Therefore, it is important to study design strategy that is adaptive to unknown model dynamics.

Despite the vast literature on parametric experimental design, there are few references in

the literature on experimental design in nonparametric inference. For nonparametric regression

models, Müller (1984) was among the first to study optimal design for the derivatives of the

mean regression function; however, his method was not adaptive and we must assume a priori

the known conditional variance function of the errors. For nonparametric regression models with

homoscedastic errors, Cheng, Hall, & Titterington (1998) considered sequential design for a local

linear estimate of the mean function. More recently, Efromovich (2008) studied optimal design

for nonparametric regression models with conditional heteroscedasticity using the Fourier series

approach. For other contributions see Faraway (1990), Müller (1996), Park & Faraway (1998) and

Biedermann & Dette (2001).

Our main purpose is to study adaptive optimal design strategies for a wide range of nonpara-

metric inference problems. While most existing works deal with nonparametric mean regression

function estimation, we proceed under a unified framework that covers several popular nonpara-

metric inference problems, including the nonparametric mean regression function, the condi-

tional variance function, the conditional distribution function, the conditional quantile function

in quantile regression, functional coefficients in varying coefficient models and semiparametric

inferences, among others. Under a general setting, we propose a sequential design procedure that

updatesmodel knowledge and design-point assignment sequentially. To implement the procedure,

we obtain the optimal design density as an explicit function of a model dynamics related quantity.

The proposed algorithm then works such that at each step the design points are drawn from the

sequentially estimated optimal design density. As demonstrated through simulation studies, the

proposed sequential design performs much better than the uniform design and is comparable to

the optimal design.

The rest of this article is organized as follows. In Section 2 we study the efficiency loss of

uniform design and present sequential design under a general framework. Section 3 concerns

applications in several nonparametric inference problems. Simulation studies are carried out in

Section 4 to illustrate the empirical performance of the proposed method.
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2. METHODOLOGY

2.1. Optimal Design
We consider nonparametric inference under a general framework. For model M in Equation (1),

denote bym(x) a generic nonparametric function of interest; see Section 3 for examples. The kernel

regression based nonparametric estimate often involves a kernel function K(·) and a bandwidth

bn > 0. Let m̂(x) be a nonparametric estimate of m(x) using bandwidth bn based on indepen-

dent and identically distributed samples (Xi, Yi), 1 ≤ i ≤ n, from the population (X, Y ). Popular

choices of nonparametric estimation methods include the Nadaraya-Watson kernel smoother, lo-

cal linear method, quantile regression and local M-estimation among others. For simplicity we

assume that the design interval is X ∈ [0, 1].

Assumption 1. Let m̂(x) be a nonparametric estimate of m(x) using bandwidth bn such that

bn + (nbn)
−1 → 0. Denote by f (x) the density function of X. Assume that there exist some

functions ρ(·) ≥ 0 and W(·) ≥ 0 such that the mean squared error, abbreviated hereafter as MSE,

of m̂(x) has the asymptotic expansion

MSE{m̂(x)} = E
{
[m̂(x) − m(x)]2

} = b4nρ(x) + W(x)

nbnf (x)
+ o

{
b4n + (nbn)

−1
}
, (2)

uniformly over x ∈ [0, 1]. Further assume that ρ(x) andW(x) depend only on the model dynamics

and do not depend on the design density f (x).

Equation (2) is the well-known bias and variance decomposition of the mean squared error

of the nonparametric estimates, with b2n
√

ρ(x) and W(x)/{nbnf (x)} being the bias and variance,

respectively, and o{b4n + (nbn)
−1} the negligible error term. In Section 3we show thatAssumption

1holds formany local linear nonparametric function estimates. Formanynonparametric estimates,

Equation (2) holds on a compact set [ε, 1 − ε] for any ε > 0 and may not hold at the boundaries.

For simplicity we do not distinguish this.

Note that MSE{m̂(x)} measures the performance of m̂(·) at x. To evaluate the overall perfor-

mance over the interval [0, 1], consider the mean integrated squared error

MISE{m̂} =
1∫

0

MSE{m̂(x)}dx = MISE{m̂|bn, f } + o
{
b4n + (nbn)

−1
}
, (3)

where the leading term is

MISE{m̂|bn, f } = b4n

1∫
0

ρ(x)dx + 1

nbn

1∫
0

W(x)

f (x)
dx,

which depends on both the bandwidth bn and the design density f . In an uncontrolled experiment,

we choose the optimal bandwidth by minimizing MISE{m̂|bn, f }. Let

b∗
n = argmin

bn

MISE{m̂|bn, f } and MISE∗{m̂|f } = MISE{m̂|b∗
n, f }. (4)

After inserting the optimal bandwidth b∗
n, the goal of the controlled experiment is to find the

optimal design density minimizing MISE∗{m̂|f }.
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Theorem 1. The optimal design density f ∗ minimizing MISE∗{m̂|f } in Equation (4) is

f ∗(x) = argmin
f

MISE∗{m̂|f } =
√

W(x)∫ 1
0

√
W(x)dx

, x ∈ [0, 1]. (5)

By Theorem 1, the optimal design density f ∗(x) is proportional to W1/2(x) or, equivalently,

the asymptotic standard deviation of m̂(x), which agrees with the intuition that more design points

are needed for areas where the model dynamics has a higher noise level. In particular, if W(x) is

a constant function, then f ∗(x) is the uniform density. In the special case of the mean regression

function in conditional heteroscedastic models, Efromovich (2008) obtained the same optimal

design density using the Fourier series approach. Here our framework is more general.

2.2. Relative Efficiency Loss of Uniform Design
By the definition of f ∗ in Equation (5), f ∗ is themost efficient design based on theMISE criterion.

For any sub-optimal design f , there is a loss of efficiency.

Definition 1. Let f be any design density. We define its relative efficiency loss, compared to the
optimal design density f ∗ in Equation (5), as

REL(f ) =
[
1 − MISE∗{m̂|f ∗}

MISE∗{m̂|f }

]
× 100%.

Clearly, 0 ≤ REL(f ) ≤ 1. If REL(f ) ≈ 0, f is close to the optimal design. If REL(f ) ≈ 1,

there is almost a complete loss of efficiency. Throughout the rest of this article, denote by fU (x) =
1x∈[0,1] the uniform density on [0, 1], where and hereafter 1 is the indicator function. In many

applications, we have no prior model knowledge and the uniform design is a reasonable choice.

Proposition 1 below studies the relative efficiency loss of the uniform design in comparison with

the optimal design.

Proposition 1. For the uniform design fU , its relative efficiency loss is

REL(fU ) = 1 −
[{ ∫ 1

0

√
W(x)dx

}2∫ 1
0 W(x)dx

]4/5

. (6)

In the examples below we calculate the relative efficiency loss for some choices of W(·). We

denote by c > 0 a generic constant that may vary from place to place.

Example 1. In Equation (5), let W(x) = cxr, x ∈ [0, 1], for r ≥ 0. Then f ∗(x) = (r/2 + 1)xr/2

and REL(fU ) = 1 − {4(r + 1)/(r + 2)2}4/5. If r → ∞, REL(fU ) → 1 and there is almost 100%

loss of efficiency. For r = 1, 2, . . . , 6, REL(fU ) ≈ 9%, 20%, 30%, 38%, 44%, 48%.

Example 2. In Equation (5), let W(x) = c cos2(kπx), x ∈ [0, 1], for k ∈ Z. Then f ∗(x) =
0.5π| cos(kπx)| and REL(fU ) = 1 − (8/π2)4/5 ≈ 15% for all k 	= 0.

Example 3. In Equation (5), let W(x) = cρx, x ∈ [0, 1], for ρ > 0. Then

f ∗(x) = ρx/2 log(ρ)

2(
√

ρ − 1)
and REL(fU ) = 1 −

{
4(

√
ρ − 1)

(
√

ρ + 1) log(ρ)

}4/5

.

Clearly, REL(fU ) → 1 as ρ → 0 or ρ → ∞. If ρ = 0.001, REL(fU ) ≈ 39%.
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Example 4. In Equation (5), let W(x) = 1x<0.5 + c1x≥0.5, x ∈ [0, 1]. Then the noise level is

different over the two intervals [0, 0.5) and [0.5, 1]. We have

f ∗(x) = 2

1 + c
{1x<0.5 + c1x≥0.5} and REL(fU ) = 1 −

{
1 + c + 2

√
c

2(1 + c)

}4/5

.

Then REL(fU ) → 1 − 0.54/5 ≈ 43% as c → 0 or ∞.

As demonstrated by the above examples, under certain conditions, the uniform design may

suffer from a substantial loss of efficiency. In Section 2.3 we propose a batch-sequential design

procedure and prove that its efficiency loss goes to zero.

2.3. Batch-Sequential Design
If W(x) is known, we can draw design points X1, . . . , Xn from the optimal design density f ∗(x)
in Equation (5). In practice, W(x) is often unknown and Equation (5) is not directly applicable.

To overcome this issue, we propose a batch-sequential design procedure.

First, we introduce the basic idea. If we have a consistent estimate Ŵ(x) of W(x), then we

can use the plug-in estimator by replacing W(x) in Equation (5) with Ŵ(x). In the initial step, we

have no knowledge about W(x) and use the uniform design density fU (x). Based on the initial

observations, we can obtain the estimate Ŵ(x) and the plug-in design density estimator f̂
∗
(x). In

the second step, we draw design points from f̂
∗
(x) and update estimates Ŵ(x) and f̂

∗
(x), taking

into account the new observations. The above procedure is repeated until the desired sample size

n is achieved. We summarize this using the diagram

Input Xi → Model M → Output Yi → Draw inference about M → Input Xi → · · ·

To implement the above procedure, let kn be a positive integer representing the batch size. For

notational simplicity, we assume �n = n/kn is an integer. Define the batches Ij = {(j − 1)kn +
1, . . . , jkn}, j = 1, . . . , �n. We propose the following algorithm:

(P1) Let the initial design density f̂
∗
(x) = fU (x) be the uniform density on [0, 1].

(P2) For each step j = 1, . . . , �n, repeat the following procedure:

(S1) draw kn random design points Xi, i ∈ Ij, from the estimated optimal design density

f̂
∗
(x) and record the corresponding observed outputs Yi, i ∈ Ij .

(S2) based on (Xi, Yi), i ∈ I1 ∪ · · · ∪ Ij , obtain updated estimates m̂(x) and Ŵ(x).

(S3) update the design density

f̂
∗
(x) = Ŵ1/2(x)∫ 1

0 Ŵ1/2(x)dx
. (7)

(S4) update j to j + 1 and go to step S1.

(P3) After completing all iterations, we record the final estimates m̂(x), Ŵ(x), f̂
∗
(x).

We make some comments about the proposed algorithm.

First, for parametric models, batch-sequential designs have been studied in, for instance,

Draper & Hunter (1967), Hohmann & Jung (1975), Ford & Silvey (1980), Abdelbasit & Plackett

(1983), and references in Ford, Titterington, &Kitsos (1989). Our sequential design can be viewed

as a nonparametric version of the parametric sequential design. Cheng, Hall, & Titterington

(1998) and Efromovich (2008) studied sequential design for nonparametricmodels under different

contexts.
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Second, in step P2, if Ŵ(x) is a consistent estimate of W(x) at each step j, then f̂
∗
(x) will be

a consistent estimate of the optimal design density f ∗(x). Therefore, the design points are drawn
from the asymptotically optimal design density at each step. Methods for constructing consistent

estimates Ŵ(x) are discussed in Section 3.

Third, the proposed sequential design has appealing features of both the uniform design and

the optimal design. When W(·) ≈ 0 at some regionA, it is difficult to draw design points nearA
from the optimal design density. In contrast, for the sequential design, the first batch of uniform

design points copes well with this issue. On the other hand, after the first batch, the sequential

design becomes asymptotically the optimal design and can adapt to unknown model dynamics.

Thus, the sequential design has the appealing sampling property of the uniform design and the

adaptiveness of the unknown optimal design.

When kn → ∞, excluding the first batch, all subsequent design points are drawn from the

asymptotically consistent optimal design density. More formally, for each j = 1, . . . , �n, denote

by (Xj,s, Yj,s), s = 1, . . . , kn, the design points and outputs in batch j, then Xj,1, . . . , Xj,�n are

random samples from a common density, denoted by fj . In general, it is difficult to study the

asymptotic properties of the sequential design procedure due to the dependence in the inputs,

and here we shall consider a slightly simplified problem. Notice that, conditioning on the design

points, the outputs are conditionally independent. Intuitively, at the end of the sequential design

procedure, all pooled inputs X1,1, . . . , X1,kn , . . . , X�n,1, . . . , X�n,kn can be viewed as samples

from the mixture density f̄ = (f1 + · · · + f�n )/�n with f1 = fU . In Theorems 2–3 below, we

assume that infx∈[0,1] W(x) > 0 and supx∈[0,1] W(x) < ∞.

Theorem 2. Suppose that there exists some θ ∈ (0, 1) such that fj = f ∗ + O{(jkn)
−θ} uni-

formly. Assume that n IID design points are drawn from the mixture density f̄ = (fU + f2 +
· · · + f�n )/�n. As kn → ∞ and �n → ∞, REL(f̄ ) = O(1/�n + n−θ).

For all the nonparametric estimates in Section 3 below, the optimal rate corresponds to θ =
2/5. Thus, when �n � n2/5,REL(f̄ ) = O(n−2/5), which can not be further improved using larger

�n. Our empirical studies show that �n = 3, 4 works well for many applications with sample sizes

n ≤ 1,200. A similar phenomenon has also been observed in the batch-sequential design for

parametric models (Ford, Titterington, & Kitsos, 1989); also see the discussion in Section 4.5.

To understand this phenomenon, Theorem 3 studies the ideal case where fj = f ∗, j ≥ 2, are

the exact optimal design density so that f̄ = fU/�n + (1 − 1/�n)f
∗ ≡ f̃ .

Theorem 3. Assume that n IID design points are drawn from the mixture density f̃ = λnfU +
(1 − λn)f

∗, where λn = 1/�n. As λn → 0,

lim
λn→0

REL(f̃ )

λ2n
= 4

5

[ 1∫
0

√
W(x)dx

1∫
0

1√
W(x)

dx − 1

]
. (8)

By Theorem 3, REL(f̃ ) converges to zero at rate O(�2n). Consider W(x) = 0.01 + xr, x ∈
[0, 1]. In Table 1 below we tabulate REL(fU ) using Equation (6) and REL(f̃ ) using Equation

(8) with �n = 4. We see that �n = 4 provides reasonably good performance and a full sequential

procedure (Efromovich, 2008) with a higher cost may be unnecessary.
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Table 1: Relative efficiency loss in percentages for fU and f̃ with �n = 4.

r 1 2 3 4 5 6 7 8 9 10

REL(f̃ ) 1.1 2.8 3.6 4.0 4.0 3.9 3.8 3.6 3.5 3.3

REL(fU ) 8.4 18.0 24.9 29.8 33.3 35.8 37.7 39.2 40.3 41.2

3. APPLICATIONS IN NONPARAMETRIC INFERENCE

In this section denote byK(·) a symmetric kernel function with bounded support. For a bandwidth

bn, write Kbn (u) = K(u/bn). For ease of presentation, we introduce the notation

CK =
∫

u2K(u)du, DK =
∫

K2(u)du.

Throughout the rest of this section we write Kb(u) = K(u/b).

3.1. Inference for Mean Regression Function
For a given input X = x, we are interested in the mean regression function µ(x) = E(Y |X = x).

Given samples (Xi, Yi) from (X, Y ), where X has density function f (x), consider the local linear

estimate µ̂(x) of µ(x):

[
µ̂(x), β̂(x)

] = argmin
(α,β)

n∑
i=1

{Yi − α − β(Xi − x)}2Kbn (x − Xi).

By Section 2.4 in Li & Racine (2007), Equation (2) holds with ρ(x) = C2
Kµ′′(x)2/4 and W(x) =

DKσ2(x), where σ2(x) = var(Y |X = x) is the conditional variance function. By Theorem 1, the

optimal design density is f ∗(x) = σ(x)/
∫ 1
0 σ(x)dx. To estimate σ2(x), we can apply the local

linear estimate to the squared residuals:

[
σ̂2(x), γ̂(x)

] = argmin
(α,γ)

n∑
i=1

[{Yi − µ̂(Xi)}2 − α − γ(Xi − x)
]2

Khn (x − Xi), (9)

where hn is another bandwidth. For the consistency and other properties of µ̂(x) and σ̂2(x), we

refer the reader to Fan & Yao (1998) and Li & Racine (2007) for more details.

We can build different models by specifying different structures for e = Y − µ(X). For ex-

ample, if e = σ(X)ε for an unknown function σ(x) ≥ 0, x ∈ [0, 1], and independent error ε with

E(ε2) = 1, then we have the conditional heteroscedastic model:

Y = µ(X) + σ(X)ε. (10)

3.2. Inference for Conditional Variance Function
Suppose that researchers are interested in the conditional variance function σ2(x) in Equation (10).

Then we can use Equation (9) to estimate σ2(x). By Fan & Yao (1998), σ2(x) can be estimated

as well as if µ(x) were known and Equation (2) holds with ρ(x) = C2
Kσ′′(x)2/4 and W(x) =

DKσ4(x)var(ε2). By Theorem 1, the optimal design density is f ∗(x) = σ2(x)/
∫ 1
0 σ2(x)dx, which
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can be estimated by replacing σ2(x) with σ̂2(x). We see that, for model (10), the optimal de-

sign density for µ(x) is proportional to σ(x), whereas the optimal design density for σ2(x) is

proportional to σ2(x).

3.3. Inference for Conditional Distribution Function
Denote by F (y|x) = P(Y ≤ y|X = x) the conditional distribution function of Y given X = x.

Clearly,F (y|x) offersmore information than the conditionalmean regression function.To estimate

F (y|x), consider the local linear estimator

[
F̂ (y|x), β̂(x, y)

] = argmin
(α,β)

n∑
i=1

[
1Yi≤y − α − β(Xi − x)

]2
Kbn (x − Xi). (11)

By Section 6.1 in Li & Racine (2007), Equation (2) holds with

ρ(x, y) = 1

4
C2

KF ′′(y|x)2 and W(x, y) = DK[F (y|x) − F2(y|x)].

For double-integrated mean squared error, as in Equation (3), we have the leading term

∫ ∫
MISE{F̂ (y|x)}dxdy � b4n

∫ ∫
ρ(x, y)dxdy + 1

nbn

∫ ∫
W(x, y)

f (x)
dxdy.

By Theorem 1, the optimal design density is

f ∗(x) = c−1

[∫
W(x, y)dy

]1/2
, where c =

∫ [∫
W(x, y)dy

]1/2
dx.

We can estimate f ∗(x) by replacing W(x, y) with Ŵ(x, y) = F̂ (y|x) − F̂
2
(y|x).

3.4. Inference for Quantile Regression
Quantile regression has become an active area of research over the past three decades; seeKoenker

(2005) for an extensive exposition. Unlike the ordinary regression that studies the conditional

mean function of Y given X as in Section 3.1, quantile regression studies the conditional quantile

function of Y given X and hence is robust against outliers. As a measure of how response Y

depends on covariate X, the conditional quantile can offer a full picture of the local structure of

Y and X by specifying different quantiles.

For τ ∈ (0, 1), denote byµτ(x) the conditional τ-th quantile of Y givenX = x. By Yu& Jones

(1998), we can estimate µτ(x) by the local linear quantile regression

[
µ̂τ(x), β̂(x)

] = argmin
(µ,β)

n∑
i=1

Lτ{Yi − µ − β(x − Xi)}Kbn (x − Xi), (12)

where Lτ(t) = |t| + (2τ − 1)t is the check function. Equation (2) holds with

ρ(x) = 1

4
C2

Kσ′′(x)2 and W(x) = τ(1 − τ)DK

f 2
Y |X{µτ(x)|x} ,
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where fY |X(y|x) is the conditional density function of Y given X = x. Therefore, by Theorem 1,

the optimal design density is

f ∗(x) = 1

cfY |X{µτ(x)|x} , where c =
1∫

0

1

fY |X{µτ(x)|x}dx. (13)

To estimate f ∗(x), we can estimate the conditional density fY |X(y|x) by the nonparametric con-

ditional density estimator

f̂ Y |X(y|x) = (nbxby)
−1

∑n
i=1 Kbx (x − Xi)Kby (y − Yi)

(nbx)−1
∑n

i=1 Kbx (x − Xi)
, (14)

where bx and by are two bandwidths. We then estimate f ∗(x) by plugging µ̂τ(·) and f̂ Y |X(·|·) into
Equation (13). See Section 4.4 for a discussion on the selection of bx and by.

3.5. Inference for Varying Coefficient Models
Since the introduction by Cleveland, Grosse, & Shyu (1991), varying coefficient models have

received considerable attention in many scientific areas, including economics, epidemiology,

medical science and ecology among others; see Fan & Zhang (2008) for a survey. Let X ∈ [0, 1]

be random design point with density f (x), Z ∈ Rp a column random vector independent of X,

and α(·) a p dimensional vector of functions on [0, 1]. Given independent samples (Zi, Xi, Yi)

from

Y = ZT α(X) + σ(X)ε,

we are interested in thep dimensional vector α(·) of functional coefficients. For a given x ∈ [0, 1],

consider the local linear estimator α̂(x) of α(x):

[
α̂(x), β̂(x)

] = argmin
(α,β)

n∑
i=1

{
Yi − ZT

i α − ZT
i β(Xi − x)

}2
Kbn (x − Xi).

By Theorem 1 in Fan & Zhang (2008), the asymptotic bias of α̂(x) does not depend on the design

density and the asymptotic covariance matrix is

cov{α̂(x)} � DK{E(ZZT )}−1

nbn

σ2(x)

f (x)
.

Thus, by Theorem 1, the optimal design density is σ(x)/
∫ 1
0 σ(x)dx. To estimate σ(x), one can

apply local linear regression to {Yi − ZT
i α̂(Xi)}2; see Fan & Zhang (2008).

3.6. Inference for Semiparametric Varying Coefficient Partially Linear Models
The varying coefficient partially linearmodel (Fan&Huang, 2005) is a very useful semiparametric

model that models the key covariates linearly and models the rest of the covariates nonparamet-

rically. The model assumes the form

Y = ZT α(X) + UT β + σ(X)ε, (15)

where Y is the response variable,Z ∈ Rp andU ∈ Rq are random covariate vectors,X ∈ [0, 1] is

the design point and α(·) is a p dimensional vector of nonparametric functions on [0, 1]. Note that
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the varying coefficient model in Section 3.5 and the partially linear model (Green & Silverman,

1994) are two special cases of (15). Let β̂ be a
√

n-consistent estimate of β. Then α(·) can be

estimated as well as if β were known using the varying coefficient models in Section 3.5, and

the optimal design density is f ∗(x) = σ(x)/
∫ 1
0 σ(x)dx. Here, σ2(x) can be estimated by applying

local linear regression to the squared residuals [Yi − ZT
i α̂(Xi) − UT

i β̂]2. See Fan&Huang (2005)

for methods to obtain β̂.

4. SIMULATION STUDY

In this section we examine the performance of the proposed sequential design procedure through

Monte Carlo studies. For an estimate m̂(x) of m(x), its MISE is computed as the average of 1,000

realizations of
∫ 1
0 [m̂(x) − m(x)]2dx. Recall Definition 1. We denote by REL(f̂

∗
) and REL(fU )

the relative efficiency loss of the sequential design and the uniform design in comparison to

the optimal design f ∗ in Equation (5). Here, REL(f̂
∗
) can be interpreted as the percentage of

efficiency loss by replacing the unknown optimal design density Equation (5) with its sequential

estimator in Equation (7).

4.1. Conditional Mean Function
Consider µ(·) from the model

Y = µ(X) + σ(X)ε, σ(x) = √
0.01 + xr, (16)

where ε is the standard normal error and X ∈ [0, 1] is the design point. We use µ(x) = sin(2πx).

To see the effect of σ(·), we consider five choices of r = 1, 2, . . . , 5. The local linear fit is

implemented using the command locpoly in R package KernSmooth, with the optimal plug-

in bandwidth selection using command dpill. To estimate σ2(·), we use (9) with the plug-

in bandwidth based on (Xi, [Yi − µ̂(Xi)]
2), i = 1, . . . , n. The result is summarized in Table 2

for sample size n = 600 and 1,200, with the last two columns being the REL for the uniform

design. We see that the empirical results agree with the theoretical derivation in Table 1. Clearly,

the uniform design suffers from substantial efficiency loss for almost all choices of r except

r = 1, and this loss widens as r increases. In contrast, the sequential design has a performance

comparable to that of the optimal design. In Equation (16), we have also tried other choices of σ(·),
including

σ(x) = 0.5 + 0.4 cos(2πx), 1x≤0.5 + c11x>0.5, φ{(x − 0.5)/c2},

for various values of c1, c2 > 0, where φ is the standard normal density. Our conclusion is that,

as σ(·) becomes further from the constant function, the performance of the sequential design

improves in comparison to the uniform design.

In Table 2, we note that in some cases the sequential design performs even better than the

optimal design. As explained in Section 2.3, this is because the optimal design contains few

observations at regionswhereσ(·) is very small, leading to poor estimation. The latter phenomenon

becomes evenmore remarkable if we drop the small number 0.01 and use σ(x) = √
xr in Equation

(16). For example, if r = 3, the estimate from the optimal design occasionally exhibits a volatile

pattern near zero, producing unusually large values of the MISE. Figure 1 presents boxplots

for 1,000 realizations of MISEs from the optimal, sequential and uniform designs, respectively.

For better presentation, the seven largest MISEs are dropped from the optimal design. There are

relatively more outliers in the boxplots for the optimal and uniform designs than the sequential

design. For the optimal design, these outliers are caused by sparse observations near zero. For

the uniform design, due to a high noise level at x ≈ 1, the uniform sampling does not sample
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Table 2: REL(f̂
∗
) and REL(fU ) for µ(x) in Equation (16): units are percentages.

REL(f̂
∗
) (n = 600) REL(f̂

∗
) (n = 1,200) REL(fU ) (n=)

r\�n 6 4 3 2 8 6 4 3 2 600 1,200

1 0.4 −0.4 0.3 2.5 1.5 −0.5 0.0 −0.8 3.7 11.5 10.6

2 1.6 2.4 4.0 7.7 −5.3 −4.2 −0.4 −0.4 4.2 23.0 19.9

3 2.1 1.3 1.6 9.1 1.4 −0.5 −0.5 1.9 8.3 28.1 27.9

4 0.9 0.6 3.1 8.8 1.8 0.0 1.8 4.6 6.7 33.1 31.1

5 0.4 2.2 3.7 6.7 −0.7 1.4 0.0 2.8 11.4 34.9 34.6

Optimal Sequential Uniform

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Boxplot for MISE

Figure 1: Boxplots for MISEs for estimates of µ(·) based on n = 1,200 observations from Y = µ(X) +√
X3εwith trueµ(x) = sin(2πx) using optimal design (left), sequential design (middle) with �n = 4 batches

and uniform design (right). Boxplots for sequential and uniform designs are based on 1,000 realizations of
MISEs, whereas, for better visualization, boxplot for optimal design is based on all 1,000 minus the 7 largest

realizations.

enough observations from that region. In contrast, the sequential design performs much better by

adapting to the unknown model dynamics.

4.2. Conditional Variance Function
Consider σ2(·) from the model

Y = σ(X)ε, σ(x) = √
0.01 + xr, (17)
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Table 3: REL(f̂
∗
) and REL(fU ) for σ2(x) in Equation (17): units are percentages.

REL(f̂
∗
) (n = 600) REL(f̂

∗
) (n = 1,200) REL(fU ) (n=)

r\�n 6 4 3 2 8 6 4 3 2 600 1,200

0.5 −6.9 −5.6 −3.8 −8.9 2.6 0.0 0.8 −0.6 0.2 3.0 8.3

1.0 −0.7 7.9 4.4 6.3 −5.4 −3.5 −3.1 −5.0 6.9 23.7 26.8

1.5 −5.3 −3.8 −0.2 7.6 −2.8 0.5 2.7 2.2 11.3 30.6 32.3

2.0 −7.2 −8.9 −2.1 4.9 −7.0 −4.6 6.1 5.4 9.4 36.0 36.2

2.5 3.1 1.4 8.3 20.7 0.7 0.0 2.7 11.5 20.1 45.5 51.7

where we use the same setting for X and ε as in Equation (16). Again, we apply local linear

regression to (X, Y2) and report the results in Table 3 for sample size n = 600, 1,200 and r =
0.5, 1.0, . . . , 2.5. Again, the sequential design performs much better than the uniform design and

is comparable to the optimal design.

4.3. Conditional Distribution Function
Consider the conditional distribution function FY |X(y|x) for model (16). Let � be the standard

normal distribution function. Then FY |X(y|x) = �{[y − µ(x)]/σ(x)}. We use Equation (11) to

estimate FY |X(y|x). The MISE is computed as a double-integral over x ∈ [0, 1], y ∈ [q0.1, q0.9],

andµ(x) − 2σ(x) ≤ y ≤ µ(x) + 2σ(x), where q0.1 and q0.9 are the 10th and 90th percentiles of Y .

For computational reasons, the latter integral is approximated using 51 × 31 = 1,581 uniformly

spaced grid points on the two coordinates. For each fixed grid point y, we can use the command

dpill to choose the optimal bandwidth, denoted by bn(y). The final optimal bandwidth is taken

as the average of those bn(y)’s. Another bandwidth selection method is the more computationally

expensive cross-validation method; see Li & Racine (2007). The result of the simulation study

is summarized in Table 4. We see that the sequential design is comparable to the optimal design

and much better than the uniform design.

4.4. Conditional Quantile Function
Consider the conditional τ-th quantile of Y given X = x, denoted by µτ(x), for model (16). To

choose the bandwidth bn in Equation (12), we follow Yu & Jones (1998) and use bn = {τ(1 −
τ)/[φ(�−1(τ))]2}1/5bLSn , where bLSn is the optimal local linear least-squares plug-in bandwidth

Table 4: REL(f̂
∗
) and REL(fU ) for FY |X in Equation (16): units are percentages.

REL(f̂
∗
) (n = 600) REL(f̂

∗
) (n = 1,200) REL(fU ) (n=)

r\�n 6 4 3 2 8 6 4 3 2 600 1,200

1 −0.4 1.4 0.8 0.9 −2.1 −1.8 −1.1 −1.8 −1.1 14.8 12.5

2 −0.2 −0.2 0.8 1.1 −1.9 −1.1 −1.5 −0.7 0.4 18.0 16.5

3 1.2 2.1 1.6 3.6 0.8 0.4 1.2 1.2 2.7 22.6 20.6

4 3.2 2.0 1.0 2.9 3.4 0.4 3.0 2.6 5.4 27.4 25.9

5 2.3 2.8 3.5 4.7 2.2 1.3 1.7 2.6 4.2 28.7 26.7
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Table 5: REL(f̂
∗
) and REL(fU ) for µ0.5(x) in Equation (16): units are percentages.

REL(f̂
∗
) (n = 600) REL(f̂

∗
) (n = 1,200) REL(fU ) (n=)

r\�n 6 4 3 2 8 6 4 3 2 600 1,200

1 1.9 −6.1 2.7 4.7 3.0 0.5 3.9 4.3 4.3 12.7 14.3

2 17.2 14.1 14.7 14.3 5.6 1.8 9.0 7.4 7.4 33.2 25.5

3 13.1 5.3 12.7 16.3 4.2 5.9 10.7 9.5 9.5 33.2 35.3

4 12.4 15.4 17.4 21.6 9.2 2.4 11.9 10.4 10.4 39.3 36.6

5 11.7 12.8 8.6 21.7 13.5 12.0 15.5 10.2 10.2 44.3 42.4

using the command dpill. To estimate the optimal design density f ∗ in Equation (13), we adopt
the likelihood cross-validation method (Li & Racine, 2007) to choose bx and by in Equation (14)

as follows:

argmax
bx,by

n∑
i=1

log
[
f̂
(−i)

(Yi|Xi)
]
,

where f̂
(−i)

is the estimator using all but the point (Xi, Yi). We use only 300 realizations because

it is computationally expensive to implement the quantile regression estimation and the cross-

validation bandwidth selection. We summarize the result for τ = 0.5 (the conditional median)

in Table 5. The sequential design significantly outperforms the uniform design for all cases

considered, but the performance in Table 5 is not as impressive as those in Tables 2–4. The latter

phenomenon can be attributed to the difficulty in estimating the two-dimensional conditional

density function in Equation (14). With the larger sample size n = 1,200, the conditional density

estimator is more accurate, leading to better performance.

4.5. Discussions on Sample Size and Block Length
The proposed sequential design method also shows encouraging performance for smaller sample

sizes. For example, for n = 200, the RELs for the uniform design for µ(x) in Equation (16) are

1.95%, 18.8%, 15.4%, 17.4%, 31.3% for r = 1, 2, 3, 4, 5, respectively, compared to 0.50%, 8.45%,

−0.88%, 1.57%, 11.4% for the sequential design with �n = 2. With a smaller sample size, the

sequential design performs less impressively compared to the cases with larger sample sizes. A

similar phenomenon has also been observed in conditional variance, conditional distribution and

conditional quantile cases.

For the number of blocks �n, the asymptotic theory shows that the optimal �n is proportional to

n2/5. Our empirical studies also indicate that a larger �n is preferred as the sample size increases.

Roughly speaking, �n would double when the sample size increases from n to 6n. For n = 200,

it seems that �n = 2 works the best; for �n = 4, 5, 8, due to the small block size, the local linear

estimation procedure is not stable and occasionally produces extreme outputs. Therefore, for

smaller sample sizes n ≤ 200, we recommend using two blocks; for sample size λn with λ > 1,

we can take �n ≈ 2λ2/5.
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APPENDIX

Proof of Theorem 1. In Equation (4), it is easy to see that the optimal bandwidth is b∗
n =

n−1/5{∫ 1
0 W(x)/f (x)dx/[4

∫ 1
0 ρ(x)dx]}1/5. Using the latter optimal bandwidth, we can get

MISE∗{m̂|f } = (4−4/5 + 41/5)n−4/5




1∫
0

ρ(x)dx




1/5 


1∫
0

W(x)

f (x)
dx




4/5

. (18)

So, it suffices to find f (x) to minimize
∫ 1
0 W(x)/f (x)dx. Recall the Cauchy-Schwarz inequality∫

g2
∫

h2 ≥ (
∫

gh)2 for any square-integrable functions g and h. Thus,

1∫
0

W(x)

f (x)
dx =

1∫
0

W(x)

f (x)
dx

1∫
0

f (x)dx ≥



1∫
0

√
W(x)dx




2

.

Here, under the constraint
∫ 1
0 f (x)dx = 1, the equality holds if and only if, for some ω,

W(x)

f (x)
= ωf (x) or equivalently f (x) =

√
W(x)∫ 1

0

√
W(x)dx

,

and ω = {∫ 1
0 W1/2(x)dx}2, completing the proof. �

Proof of Proposition 1. The assertion Equation (6) easily follows by replacing f in Equation

(18) with the optimal density f ∗ and the uniform density fU . �

Proof of Theorems 2–3. We prove only Theorem 3 because Theorem 2 follows similarly.

Write f ∗(x) = √
W(x)/c, where c = ∫ 1

0

√
W(x)dx. Define

ρn = Un − c2

Un

and Un =
1∫

0

W(x)

λn + (1 − λn)f ∗(x)
dx.

Then

Un − c2

c
=

1∫
0

W(x)

cλn + (1 − λn)
√

W(x)
dx −

1∫
0

√
W(x)dx = τn

c

1∫
0

√
W(x) − c

τn/
√

W(x) + 1
dx,
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where τn = cλn/(1 − λn) → 0. By the Taylor expansion (1 + z)−1 = 1 − z + O(z2) as z → 0,

1∫
0

√
W(x) − c

τn/
√

W(x) + 1
dx =

1∫
0

{√
W(x) − c

}{
1 − τn/

√
W(x) + O(τ2n)

}

= τn


c

1∫
0

1√
W(x)

dx − 1


 + O(τ2n).

As λn → 0, we have Un → c2, τn → 0, ρn → 0 and τ2n/λ2n → c2. Therefore,

ρn

λ2n
= Un − c2

cτ2n

c

Un

τ2n

λ2n
→ c

1∫
0

1√
W(x)

dx − 1.

Note the expansion (1 − z)b = 1 − bz + O(z2) for z → 0 and b ∈ R. By Equation (18),

REL(f̃ ) = 1 − MISE∗{m̂|f ∗}
MISE∗{m̂|f̃ } = 1 − (1 − ρn)

4/5 = 4

5
ρn + O(ρ2

n),

which produces the desired result. �
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