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ABSTRACT
Building upon recent research on the applications of the density information matrix, we develop a tool for
sufficient dimension reduction (SDR) in regression problems called covariate information matrix (CIM). CIM
exhaustively identifies the central subspace (CS) and provides a rank ordering of the reduced covariates in
terms of their regression information. Compared to other popular SDR methods, CIM does not require distri-
butional assumptions on the covariates, or estimation of the mean regression function. CIM is implemented
via eigen-decomposition of a matrix estimated with a previously developed efficient nonparametric density
estimation technique. We also propose a bootstrap-based diagnostic plot for estimating the dimension of
the CS. Results of simulations and real data applications demonstrate superior or competitive performance
of CIM compared to that of some other SDR methods. Supplementary materials for this article are available
online.
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1. Introduction

Contemporary applications of regression, such as those in biol-
ogy, medicine, public health, sociology, and economics, almost
always involve a multiplicity of predictor variables. Whether
the covariate vector comprises tens, hundreds or thousands of
variables, methods to reduce its dimension are critical; after
reduction, parametric and nonparametric regression modeling
techniques, as well as graphical diagnostics, are more effective
and easier to handle. The literature on dimension reduction
in regression includes several approaches, such as projection
pursuit regression (Friedman and Stuetzle 1981), principal com-
ponent regression (Hotelling 1957; Kendall 1957), and sufficient
dimension reduction (SDR) (see Li 1991 and additional refer-
ences). This article introduces a novel approach to SDR based
on the newly introduced covariate information matrix (CIM).

Let Y ∈ R denote the response and X ∈ Rp the covariate
vector. Intuitively, the CIM corresponds to the (expected) Fisher
information matrix for the regression density f (y | x), treating
the observed X = x as the “parameter.” Its eigen-decomposition
identifies linear combinations of the covariates that are most
informative on the response; the eigen-vectors capture the cen-
tral subspace (CS; Cook 1994, 1996, 1998), that is, the smallest
covariate-subspace preserving full regression information. The
eigenvalues rank the reduced covariates in terms of such infor-
mation, providing guidance on how many to use for subsequent
analysis. The CIM can also be written as the difference between
two density information matrices (DIMs) (see Hui and Lindsay
2010; Lindsay and Yao 2012): the DIM for the inverse regression
density f (x | y) (see Li 1991; Cook and Weisberg 1991; Wang
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and Xia 2008), and that for the marginal covariate density f (x).
We use the f 2 method of computation, a reliable and compu-
tationally efficient nonparametric density estimation technique
(Hui and Lindsay 2010), to estimate the DIMs, and hence, the
CIM.

In the last 25 years, several methods have been proposed
to perform SDR, for example, sliced inverse regression (SIR;
Li 1991), sliced average variance estimation (SAVE; Cook and
Weisberg 1991), principal Hessian directions (PHD; Li 1992),
minimum average variance estimation (MAVE; Xia et al. 2002),
inverse regression (Cook and Ni 2005), simple contour regression
(Li, Zha, and Chiaromonte 2005), Fourier estimation (Fourier,
hereafter; Zhu and Zeng 2006), and sliced regression (SR; Wang
and Xia 2008). Many of these methods require assumptions on
the distribution of X. For example, SIR requires the so-called lin-
earity condition and SAVE requires both the linearity condition
and the constant conditional variance condition (see Section 2.1).
In addition, some SDR methods do not guarantee an exhaustive
estimation of the CS (Zhu and Zeng 2006; Wang and Xia 2008).
For example, SIR cannot capture directions in the covariate
space along which Y varies symmetrically, and PHD and MAVE
focus on linear combinations of X that are sufficient solely for
the mean regression function E[Y|X]—ignoring potential het-
eroscedasticity of Y . Importantly, there exist SDR developments
that address these limitations. For instance, Xia (2007) extended
MAVE to dMAVE, which considers conditional density func-
tions and thus targets the whole CS. Also, Ma and Zhu (2012)
proposed a semiparametric method for efficient estimation of
the CS based on the complete family of influence functions,

© 2018 American Statistical Association
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which does not require assumptions on the distribution of X and
unveils interesting connections among many SDR approaches
that use inverse regression. Other recent developments in SDR
include Li and Wang (2007), Li and Dong (2009), Luo, Wang,
and Tsai (2009), Dong and Li (2010), Zhu et al. (2010), Yin and
Li (2011), Ma and Zhu (2013a, 2014), Wang, Yin, and Critchley
(2015), and Xue, Wang, and Yin (2018). See Ma and Zhu (2013b)
for a review and further references.

Our CIM approach does not require strong assumptions
on the distribution of X, such as the linearity condition or
the constant conditional variance condition. It recovers the CS
exhaustively based on an eigen-decomposition, and it ranks
the projected covariates based on the magnitude of the corre-
sponding eigenvalues. Interestingly, for CIM this order reflects
a rigorously defined Fisher information as contained in the
conditional regression density. The remainder of the article is
organized as follows. Section 2 provides background on the DIM
and SDR. Section 3 presents the CIM, its application to SDR,
and its implementation. Section 4 describes a bootstrap-based
diagnostic for estimating the dimension of the CS, built upon
ideas in Ye and Weiss (2003). Section 5 contains simulation
results on the performance of CIM in comparison to some
popular SDR methods and on our diagnostic for dimension
estimation. Section 6 presents real data analyses, and Section 7
some concluding remarks. Proofs and additional details are
given in the supplementary materials.

2. Relevant Background

In this section, we describe the density information matrix
(DIM), which has close connections to the methods proposed in
Section 3, and list some of its prior applications. We also review
some key concepts in SDR.

Let X ∈ Rp be a random vector with density f (x) satisfying
standard regularity conditions. Assume finite first and second
order moments; E[X] = 0 (without loss of generality) and
var[X] = �X. Following Hui and Lindsay (2010) and Lindsay
and Yao (2012), we define the sample space score vector for f at
x as Uf (x) = ∇xlogf (x) and the DIM for f as

Jf =
∫

Uf (x)Uf (x)Tf (x)dx =
∫ ∇xf (x)∇xf (x)T

f (x)
dx. (1)

In what follows, we often use the notations Jf and JX
interchangeably. Note that Papaioannou and Ferentinos (2005)
already introduced Jf for a univariate density, calling it the
Fisher information number. The DIM is a matrix characterizing
f (x) or X. Much like the covariance matrix, it conveys useful
information about the random vector and has important
applications. For instance, let Z = �

−1/2
X X with �Z = Ip

(the identity matrix of order p). The eigen-decomposition of JZ
identifies directions of strongest departure from normality—
thus efficiently solving the otherwise computationally bur-
densome problem of projection pursuit (Friedman and Tukey
1974); see Hui and Lindsay (2010) for more details. Lindsay
and Yao (2012) further extended the applications of the DIM
to independent component analysis (Jutten and Herault 1991;
Comon 1994; Hyv́’arinen and Oja 2000), the assessment of
spherical symmetry of densities (Bartlett 1934; Hartman and

Wintner 1940), and Markov networks used in graphical models
(Jordan 1998; Lauritzen 1996). Here, we extend the use of the
DIM for SDR in a regression setting.

2.1. Basic Notions on SDR

Back to a regression problem with response Y and covariate vec-
tor X ∈ Rp, a subspace S of Rp is called a dimension reduction
subspace of the regression, that is, of the conditional distribution
of Y|X, if Y X|PSX ( indicates independence and P(·) the
orthogonal projection operator in the standard inner product).
When the intersection of all dimension reduction subspaces
also satisfies this requirement, it is called the CS (Cook 1994,
1996, 1998) and denoted by SY|X. By construction, the CS is
the smallest dimension reduction subspace. d = dim(SY|X),
the minimal dimension necessary to capture Y|X, is called the
structural dimension of the regression.

Some regression applications focus exclusively on the
mean regression function E[Y|X]. A subspace S is called a
mean dimension reduction subspace (Cook and Li 2002), if
Y E[Y|X]|PSX. When the intersection of all mean dimension
reduction subspaces also satisfies this requirement, we call it
the central mean subspace (CMS; Cook and Li 2002), denoted
by SE[Y|X]. Again, by construction, the CMS is the smallest
mean dimension reduction subspace. d̃ = dim(SE[Y|X]) is the
minimal dimension necessary to capture E[Y|X]. As shown
in Cook (1998) and Yin, Li, and Cook (2008), under mild
assumptions, the CS and the CMS exist—in the sense that
intersecting subspaces do preserve the above requirements. We
assume this existence throughout this article. Also note that
SE[Y|X] ⊆ SY|X, that is, the space capturing the mean regression
function is contained in the space capturing Y|X in its entirety.
Consequently, d̃ ≤ d.

Next, we list two conditions on the distribution of X that are
used by popular SDR methods, such as SIR, SAVE, and PHD.
For notational simplicity, we assume var[X] = Ip. The linearity
condition imposes that

E[X | BTX] = PBX, (2)

and the constant conditional variance condition that

var[X | BTX] = QB, (3)

where B is any p × d basis matrix of SY|X, PB = B(BTB)−1BT

and QB = Ip −PB. If X has an elliptically contoured multivariate
distribution, (2) holds for any projection space (Eaton 1986).
If X is multivariate Gaussian, both (2) and (3) hold for any
projection space (Ma and Zhu 2013b).

3. The CIM

In this section, we introduce the CIM of a regression as an
expected Fisher information matrix, where the observed covari-
ate vector X = x plays the role of “parameter.” We show that its
eigen-decomposition can be used to identify the CS and prove
some important properties. Crucially, we rewrite the CIM as the
difference between two DIMs and, based on this formulation,
describe the implementation of our SDR approach.
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3.1. Definition of the CIM

To capture covariate information in the regression of Y ∈ R

on X ∈ Rp, we adopt a formulation similar to the Fisher
information for a parameter. Consider the regression density
f (y | x), assume it satisfies the standard regularity conditions
in likelihood analysis, and think of X = x as its “parameter.”
The score vector for x at Y = y will be Ux(y) = ∇xlogf (y | x)

and the Fisher information matrix for x will be

Fx =
∫

Ux(y)Ux(y)Tf (y | x)dy. (4)

Fx tells us how much Fisher information about X = x is con-
tained in f (y|x). This represents a local measure, as it depends
on x, and is unconventional in that the “parameter” is observed,
not unknown. Nevertheless, it provides a natural way of assess-
ing how sensitive the distribution of Y|X is to changes in X. Now,
let f (x) be the marginal covariate density. We define the CIM as
the expected value of (4) with respect to f (x):

CX = E[FX] =
∫

Fxf (x)dx. (5)

This is akin to introducing a prior distribution on our “parame-
ter” x and computing a “Bayesian version” of the Fisher infor-
mation matrix. Next, we provide two examples to clarify the
concept of CIM.

Example 3.1. Let Y ∈ {0, 1} be a binary response and X ∈ Rp a
vector of continuous covariates. Consider the logistic regression
model:

Pr(Y = 1|x) = px = exp(βTx)

1 + exp(βTx)
, β ∈ R

p.

The traditional parametric Fisher information matrix for β at a
fixed X = x is xxT ·px(1−px). However, the Fisher information
matrix for observed “parameter” x is Fx = ββT · px(1 − px).
This matrix tells us about the Fisher information on the (fixed)
x contained within f (y|x) at x. The CIM in this case is CX =
E[FX] = ββT ·E[pX(1−pX)], which is of rank 1 with the nonnull
eigen-vector proportional to β . Therefore, the CIM indicates
that there is just one linear combination of X, namely βTX,
containing information about Y .

Example 3.2. Let f (y|x) be the density of a normal distribution
with mean βTx and variance σ 2. Then the Fisher information
matrix for “parameter” x in f (y|x) is given by

Fx =
∫

[y − xTβ]ββT[y − xTβ]/σ 4 f (y|x)dy = ββT/σ 2.

Since Fx does not depend on x, the CIM is CX = Fx, which is
again of rank 1 with the nonnull eigen-vector proportional to β .
This means there is just one linear combination, βTX, carrying
information about Y . In the next section, we show that the
eigen-decomposition of CX can recover all informative linear
combinations of X and can be used to perform SDR. Also note
that, in accordance with our intuition for the Fisher information
about a parameter in a density, Fx is inversely proportional to
σ 2—which is the variance of Y | x.

3.2. Properties of the CIM

Here, we describe important properties of the CIM through
some propositions (proofs are provided in Section 1 of the sup-
plementary materials). First, we link its eigen-decomposition
to the CS. Note that, by construction, the CIM is nonnegative
definite.

Proposition 3.1. Let CX = �X�X�T
X be the eigen-

decomposition of the CIM, with eigenvalues λ1 ≥ λ2 · · · ≥
λp ≥ 0. Exactly d = dim(SY|X) of the eigenvalues are > 0,
and the space spanned by the d corresponding eigenvectors,
γ1, . . . , γd, coincides with SY|X.

This means that the eigen-decomposition of the CIM recovers
the CS exhaustively, identifying the minimal sufficient set of
projected covariates as the first d coordinates of the vector X̃ =
�T

XX. Many other SDR methods, while guaranteed to recover
directions inside the CS, are not guaranteed to exhaust it. In
addition, the ordered directions produced by the CIM based on
eigenvalues reflect their average Fisher information content, and
thus, a rigorously defined notion of regression information; the
magnitude of λj captures the informational contribution of X̃j
to the regression; that is, to Y|X. Our next result describes the
effects of full-rank affine transformations on the CIM.

Proposition 3.2. Let A be a full-rank p × p matrix and a ∈
Rp. Then CAX+a = A−T CX A−1, where A−T indicates the
transpose of A−1.

Because of this proposition, we can work with any convenient
affine transformation of the covariate vector. For instance, X̃
has a diagonal CIM; CX̃ = �T

X(�X�X�T
X)�X = �X. We can

go further and implement two stages of “whitening” to X as in
Hui and Lindsay (2010): first standardize X to Z = �

−1/2
X X

(recall we assume E[X] = 0 without loss of generality), then
take the eigen-decomposition of CZ and form Z̃ = �T

Z Z. This
has a diagonal CIM CZ̃ = �Z and also a diagonal covariance
var[Z̃] = �T

Z var[Z]�Z = �T
Z Ip�Z = Ip. This is appealing

because it means that the projected covariates in Z̃ provide
uncorrelated informational contributions to the regression with
a diagonal CIM. In summary, performing SDR translates into
taking the first d coordinates of the transformed vector Z̃ =
�T

Z Z = �T
�

−1/2
X X

�
−1/2
X X. In principle, this requires the inverse

square root of the matrix �X and the eigen-decomposition
of the matrix C

�
−1/2
X X. However, our next result shows that

our target transformation �T
�

−1/2
X X

�
−1/2
X , or in other words

the directions �
−1/2
X �

�
−1/2
X X, can be obtained by-passing the

standardization stage, and thus the computation of �
−1/2
X .

Proposition 3.3. The directions G = �
−1/2
X �

�
−1/2
X X correspond

to the right-side eigenvectors of the matrix CX�X in nonin-
creasing order of eigenvalues.

In practice, this allows us to form Z̃ also when the sample size is
not large enough to reliably estimate the precision matrix �−1

X ,
and to avoid computation of the matrix square root. We need
reliable estimates of �X, CX, and of course d. For �X, a natural
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choice is the sample covariance matrix. Estimation of CX and
its practical implementation are discussed in Sections 3.3–3.5.
Estimation of d is discussed in Section 4. Before moving on,
notice that, even if the structural dimension of the regression
were not selected accurately, the first few coordinates of Z̃ do
represent the most informative projected covariates and those
that carry the largest portion of explanatory power with respect
to the response.

3.3. The CIM in Terms of Covariates-related DIMs

Here, we rewrite the CIM as a difference between two DIMs.
One is the DIM for the marginal density f (x) of the covariate
vector X, JX, which is defined as in (1). The other is associated
with the inverse regression of X on Y ; that is, X|Y captured by
the conditional densities f (y)(x) = f (x|y) as Y = y varies in its
range. The logic of inverse regression has been extensively used
in SDR, for example, in Li (1991), Cook and Weisberg (1991),
and Wang and Xia (2008), among others; for any given y, we
consider the sample space score vector of f (y)(x), Uf (y) (x) =
∇xlogf (y)(x), form JX|Y=y = ∫

Uf (y) (x)Uf (y) (x)Tf (y)(x)dx, and
take its expectation with respect to the marginal response den-
sity f (y) to obtain

JX|Y =
∫

JX|Y=yf (y)dy. (6)

Note that this definition is easily adapted to the case of
a discrete or a categorical Y , replacing integration with the
appropriate sum. The next result states that the CIM for the
regression of Y on X is in fact the difference between the density
information on X in the conditional density f (y)(x) averaged
over y and that in the marginal density f (x). As we will see in
Section 3.5, this is key for the practical implementation of our
approach.

Proposition 3.4. The CIM can be written as CX = JX|Y − JX.

This proposition highlights one way in which our approach dif-
fers from many others: existing inverse regression SDR methods
use only X | Y , while we use both X | Y and the marginal
distribution of X. If we assume that the distribution of X is
spherically symmetric, then JX is equidiagonal (Lindsay and
Yao 2012) and the eigen-decompositions of CX and JX|Y are
equivalent. However, if the marginal distribution of X is more
complex, the two eigen-decompositions differ. This remark con-
nects with the conditions required by some SDR methods: SIR
(Li 1991) and PHD (Li 1992) rely on the linearity condition (2),
which holds if X is elliptically contoured. SAVE relies on both
the linearity and the constant conditional variance condition
(3), both of which hold if X is Gaussian. The CIM does not
rely on such assumptions and accounts for the marginal of
X, whichever its nature, through Proposition 3.4. Thus, our
approach is fundamentally different and more general.

3.4. The CIM When the Response is Discrete or Categorical

As noted near Equation (6), the CIM can be easily adapted to the
case of a discrete or a categorical Y . Broadly speaking, in these
cases the CIM approach can be viewed as a form of discriminant

analysis among the subpopulations defined by the levels of Y . In
terms of Proposition 3.4, if Y ∈ {y1, . . . , ym} with Pr(Y = yj) =
πj, j = 1, . . . , m, we rewrite

JX|Y =
m∑

j=1
πjJX|Y=yj , (7)

and use the eigen-decomposition of CX = JX|Y − JX to
identify the projected covariates that are most informative in
discriminating the m subpopulations. In the supplementary
materials, we provide some insights on the CIM approach in
terms of discrimination between two densities corresponding
to a binary Y . In the next section, we will see that even when
Y is continuous, in practice we discretize slicing its range as to
create subpopulations. This strategy of slicing is used by most
SDR methods based on inverse regression, such as SIR (Li 1991),
SAVE (Cook and Weisberg 1991), and SR (Wang and Xia 2008).
The number of slices represents a tuning parameter (see next
section).

3.5. Implementation of the CIM Approach

So far our discussion has been at the population level. Based
on Proposition 3.3, to implement our approach we need to
estimate CX and �X. For the latter, it is natural to use the
sample covariance matrix �̂X, whereas the main hurdle lies
in estimating CX. Based on Proposition 3.4, this issue can be
turned into estimation of JX and JX|Y .
Estimation of JX: Because of the second equality in (1), we need
to estimate JX = ∫ ∇xf (x)·∇T

x f (x)

f (x)
dx. Even using a kernel density

estimate, this integral will not have an explicit form due to the
density in the denominator. As an alternative to computing the
integral numerically with a simulation-based technique, Hui
and Lindsay (2010) proposed the fast and explicit f2 method
of computation, which slightly alters the information problem
replacing JX by JS, the DIM for a surrogate S with density
f(2)(s) = f 2(s)∫

f 2(x)dx . While very similar to JX in practice, JS

has an explicit form when f (x) is estimated using f̂H(x) =
n∑

i=1

1
n|H|φp(x − xi ; 0, H2), where φp(· ; 0, H2) is the p-variate

Gaussian density with mean 0 and covariance matrix H2. See
Section 4 of the supplementary materials for more details on
the computation of JS. Hui and Lindsay (2010) argued that
f(2) preserves topological features of f , such as the locations
of “peaks” and “valleys.” An extended discussion of this surro-
gate approach, which also proved satisfactory in our simulation
study, is provided in Lindsay and Yao (2012).
Estimation of JX|Y : If Y is discrete or categorical, we use (7)
to estimate JX|Y=yj and πj for each j = 1, 2, . . . , m. As π̂j, we
take the sample proportion of observations with Y = yj. To
estimate JX|Y=yj , we use the f2 method of computation applied
only to X observations with Y = yj. If Y is continuous, we
discretize it slicing its range; slices are usually formed as to have
π̂j ≈ 1

L for each j, where L is the number of slices, and we
proceed with the f2 method of computation within each slice.
Notably, in this fashion, we do not use the actual observed values
of the continuous Y ; rather, we use their order to partition the
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X-observations. Thus, likewise other SDR methods that employ
slicing, such as SIR (Li 1991) and SR (Wang and Xia 2008), the
CIM approach is not affected by response outliers. Therefore,
CIM is more robust in this regard compared to SDR methods
like MAVE (Xia et al. 2002) and PHD (Li 1992) that use the
actual Y values.
Tuning parameters: Choosing the number of slices L in inverse
regression SDR methods is recognized as a challenge (Wang
and Xia 2008). Our simulations show that for moderate sample
size (n = 200 and 400), the performance of the CIM approach
does vary with the number of slices used. In homoscedastic
settings (i.e., regressions with additive homoscedastic errors),
CIM performs better with smaller L (thus more observations per
slice) and L becomes less relevant as the sample size increases.
In heteroscedastic settings (i.e., regressions with additive het-
eroscedastic errors), performance is best with moderate L at all
sample sizes considered (see Section 5 and supplementary mate-
rials). Based on our empirical experience, L = 3 − 5 slices work
well for most applications. Another important tuning parameter
is the bandwidth matrix H of the Gaussian kernel density used
in the f 2 method. Hui and Lindsay (2010) argued that, for suffi-
ciently large sample sizes, the quest for informative projections
using the f 2 method is not very sensitive to the choice of H. They
recommended the rule of thumb proposed in Bowman and
Foster (1993), which sets H = (

4/(p + 2)
)1/(p+4)

�̂
1/2
X n−1/p+4.

This is what we used in our implementation.
Computational burden: SDR techniques like SIR (Li 1991),
SAVE (Cook and Weisberg 1991), and PHD (Li 1992) identify
projective covariates through the computationally light eigen-
decomposition of kernel matrices. The Fourier method (Zhu
and Zeng 2006) is also computationally light; it combines
kernel matrices obtained using a family of transformations
of the response Y and Fourier transforms of the gradients
of their conditional mean functions. MAVE (Xia et al. 2002)
estimates the conditional mean function with an expensive local
linear smoothing. dMAVE (Xia 2007) estimates the conditional
density using a similarly heavy approach, with “double kernel”
local linear smoothing. SR (Wang and Xia 2008) slices the range
of Y and then utilizes nonparametric local linear smoothing
similar to MAVE within each slice. Finally, the semiparametric
method (Ma and Zhu 2013a) exploits a family of influence
functions with geometrical techniques described in Bickel
et al. (1998) and Tsiatis (2007). The implementation relies on
an initial

√
n-consistent estimator and uses nonparametric

estimation of a conditional density, its derivative, and a
conditional mean function—eventually solving an estimating
equation. Notably, the semiparametric procedure involves the
tuning of several bandwidths (see also Sections 5 and 7).

The computational burden of CIM lies somewhere in
between those for the comparatively “lighter” (SIR, SAVE, PHD,
and Fourier) and the “heavier” methods (SR, MAVE, dMAVE,
and semiparametric)—CIM uses an eigen-decomposition and
nonparametric estimation of marginal and conditional (inverse
regression) covariate densities. However, the density estimation
in CIM is performed quite efficiently with the f2 method
described in Hui and Lindsay (2010). Table 2 in Section 5
illustrates the computational burden of several methods on
simulated data.

4. Estimating the Structural Dimension d

To date, several methods have been proposed in SDR literature
to estimate the dimension d of the CS (or the CMS). For inverse
regression methods, such as SIR (Li 1991) and SAVE (Cook and
Weisberg 1991), as well as for our CIM, one needs to estimate the
number of positive eigenvalues of a particular nonnegative def-
inite matrix. As reviewed in Ma and Zhu (2013b), this task has
been tackled with a variety of approaches including sequential
tests (e.g., Bura and Yang 2011), information criteria (e.g., Zhu,
Miao, and Peng 2012), sparse eigen-decomposition techniques
(e.g., Zhu, Yu, and Zhu 2010), and bootstrap-based techniques
(e.g., Ye and Weiss 2003). For methods, such as MAVE (Xia et al.
2002), which employ nonparametric estimation of the mean
regression function, d is estimated by minimizing leave-one-out
cross-validation prediction error. Sequential tests do not pro-
vide a consistent estimate of d due to the Type I error and pose
other theoretical and implementation-related concerns. Infor-
mation criteria require an appropriate choice of penalty. Sparse
eigen-decomposition techniques estimate d and the CS simul-
taneously, converting the eigen-decomposition of an inverse
regression method into a least-squares problem and impos-
ing an adaptive LASSO penalty (Tibshirani 1996; Zou 2006).
Bootstrap-based techniques, though computationally expensive
(Zeng 2008), are entirely data-driven and intuitively appealing.
In our article, expanding on ideas in Ye and Weiss (2003), we
use the bootstrap to quantify stability in estimating the CS with
various “working” structural dimensions and propose a diag-
nostic plot that allows one to easily estimate d. We document
the performance of this diagnostic plot, along with that of the
CIM as a means to estimate the CS, via simulations and data
applications in Sections 5 and 6.

4.1. Squared Trace Correlation and Its Properties

Let S1 and S2 be two subspaces of Rp, both of dimension q ≤ p.
The squared trace correlation between them is R2(S1,S2) =
1
q tr(PS1 PS2), where P(·) indicates the orthogonal projection
onto the argument space. This measures similarity between
the two subspaces, reaching its maximum 1 if they coincide,
and its minimum 0 if they are orthogonal. We also propose
a complementary measure, the squared null trace correlation
R2

o(S1,S2) = R2(S⊥
1 ,S⊥

2 ) = 1
p−q tr(QS1 QS2), where Q(·)

indicates the orthogonal projection onto the orthogonal com-
plement of the argument space. This too reaches 1 if the orthog-
onal complements, and thus the subspaces, coincide, and 0 in
the case of orthogonality. The next result establishes a rigorous
relationship between the two quantities.

Proposition 4.1. R2
o(S1,S2) = 1 − q

p−q (1 − R2(S1,S2)).

R2(S1,S2) and R2
o(S1,S2) are positively and linearly related, and

we have R2(S1,S2) = R2
o(S1,S2) if q = p

2 . Proposition 4.1 also
leads to two lower bounds, namely

R2(S1,S2) ≥ q − (p − q)

q
= 2q − p

q
,

and

R2
o(S1,S2) ≥ (p − q) − q

p − q
= p − 2q

p − q
.
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The first bound is meaningful when q ≥ p
2 , and the second when

q ≤ p
2 . Intuitively, they capture the fact that if q is large (small)

enough, the two subspaces (their orthogonal complements) can-
not be orthogonal and the squared correlation (null correlation)
cannot reach 0. The bounds also show us that R2(S1,S2) must
go to 1 if q approaches p from the left, and R2

o(S1,S2) must go
to 1 if q approaches 0 from the right—proving the conjecture
regarding the trace correlation in Ye and Weiss (2003). The
next result quantifies the expected similarity of two random
subspaces within a given space.

Proposition 4.2. Let S be a subspace of Rp of dimension d ≤ p,
and S1 and S2 be two subspaces of S , each comprising q ≤ d
random directions within S . Then E[R2(S1,S2)] = q

d .

The expected similarity increases linearly with q, reaching 1
when q reaches d and S1 = S2 = S . Using Proposition 4.1, we
have E[R2

o(S1,S2)] = 1− q
p−q (1−E[R2(S1,S2)]) = 1− q

p−q
d−q

d ,
which also reaches 1 when q reaches d.

4.2. Bootstrap Scheme and a Novel Diagnostic Plot

Based on the above discussion, for each “working” structural
dimension q = 1, . . . , p − 1 (omitting the uninteresting q = 0
and p), we:

• Estimate a q-dimensional informative subspace Ŝq as the
span of the right eigen-vectors of (ĴX|Y − ĴX)�̂X with the
q largest eigenvalues.

• Draw j = 1, . . . , B bootstrap samples using each of which
we estimate Ŝ(j)

q and compute R2(j)
q = R2(Ŝq, Ŝ(j)

q ), R2(j)
o,q =

R2
o(Ŝq, Ŝ(j)

q ) and their product R2(j)
q R2(j)

o,q .

• Average over bootstrap samples to form R̄2
q = 1

B

B∑
j=1

R2(j)
q ,

R̄2
o,q = 1

B

B∑
j=1

R2(j)
o,q and R2

qR2
o,q = 1

B

B∑
j=1

R2(j)
q R2(j)

o,q .

R̄2
q, R̄2

o,q and R2
qR2

o,q all measure “stability” of the estimation of
Sq. As argued in Ye and Weiss (2003) and Zhu and Zeng (2006),
when q < d we estimate one among infinitely many subspaces
within SY|X, resulting in low stability. Therefore, R̄2

q, R̄2
o,q, and

R̄2
qR̄2

o,q are small. When q is close to d, stability increases and the
three quantities grow; in particular, for q = d, Ŝq and Ŝ(j)

q , j =
1, . . . , B, all estimate the sameSY|X and the three quantities peak
with values close to 1. When q > d, stability is low again as we
estimate one among infinitely many subspaces formed adding
irrelevant direction(s) to SY|X. This translates again in small
values for the three quantities. However, the curve described
by R̄2

q must grow again to approach 1 when q moves right of d
and toward p from the left. Similarly, the curve described by R̄2

o,q
must grow again to approach 1 as q moves left of d and toward
0 from the right. In contrast, the proposed measure R2

qR2
o,q is

not bound to grow again moving away from d on either side
and peaks exclusively at q = d. Our proposal is to plot all three
curves on the same display and identify q = d̂ as the dimension

where R2
qR2

o,q has its highest value, and R̄2
q and R̄2

o,q reach values
similar to the ones they approach near p and 0, respectively
(where they have their “technical” maxima). Examples of such
dimension estimation plots are in Sections 5 and 6. In the sup-
plementary materials, we also include alternative versions in
which, for each q, we draw boxplots of bootstrap values instead
of averages. Note that, similar to what is argued in Ye and Weiss
(2003), if (ĴX|Y − ĴX)�̂X has a few very dominant eigenvalues,
R̄2

q may be high (close to 1) also for q < d; however, this quantity
is still expected to have a notable drop at the transition from
q = d to q = d + 1. Some plots in Sections 5 and 6 do in fact
illustrate this behavior.

5. Simulation Study

To assess the performance of the CIM approach and compare
it to other SDR methods, we create simulation scenarios com-
bining different covariate distributions, models to generate the
response, signal-to-noise ratios (SNRs) and sample sizes. These
expand upon scenarios used already in the SDR literature, such
as Li (1992), Li, Zha, and Chiaromonte (2005), Zhu and Zeng
(2006), Zhu et al. (2010), and Wang, Yin, and Critchley (2015).
Even though CIM and other methods can be used on much
larger problems, for simplicity, here we consider a p = 10-
dimensional X. We provide three specifications for its distribu-
tion:

a. Independent: X ∼ Np(0p, Ip),
b. Correlated: X ∼ Np(0p, �X), where the (i, j)th element of

�X is 0.5|i−j|, and
c. Non-linear: Generate X ∼ Np(0p, �X), then replace the

third and fourth coordinates with X3 = |X1 + X2| + |X1|ε1
and X4 = (X1 + X2)

2 + |X2|ε2, where ε1 and ε2 are
independently drawn from N (0, 1).

Note that (a) and (b) satisfy both the linearity (2) and the con-
stant conditional variance (3) conditions. However, in (c), both
conditions are violated—potentially hindering the performance
of methods, such as SIR, SAVE, and PHD. We form the response
based on eight model specifications, each one with a d = 2
dimensional CS:

1. Y = cos(2βT
1 X) − cos(βT

2 X) + σε; β1 = (1, 0, . . . , 0)T ,
β2 = (0, 1, 0, . . . , 0)T .

2. Y = (βT
1 X)2 + βT

2 X + σε; β1, β2 as in (1).
3. Y = βT

1 X + (βT
2 X)σε; β1 = (1, 1, 1, 1, 0, . . . , 0)T , β2 =

(0, . . . , 0, 1, 1, 1, 1)T .
4. Y = βT

1 X + 0.1 βT
2 X + (βT

2 X) σε; β1, β2 as in (3).
5. Y = 3 sin2(βT

1 X/4) + (1 + (βT
2 X)2) σε;

β1 = (1, 1, 1, 0, . . . , 0)T , β2 = (1, 0, 0, 0, 1, 3, 0, 0, 0, 0)T .
6. Y ∈ {0, 1, 2, 3} formed as Y = I(βT

1 X+σε > 1)+2 I(βT
2 X ·

σε > 1);
β1 = (1, 1, 1, 1, 0, . . . , 0)T , β2 = (0, . . . , 0, 1, 1, 1, 1)T .

7. Y ∈ {0, 1, 2} formed as Y = I(−2 < Y0 < 2)+2 I(Y0 ≥ 2),
where Y0 = 2(βT

1 X) + 2 exp(βT
2 X) σε;

β1 = (1, 2, 0, . . . , 0, 2)T/3, β2 = (0, 0, 3, 4, 0, . . . , 0)T/5.
8. Y ∈ {0, 1, 2} formed as Y = I(−2 < Y0 < 2)+2 I(Y0 ≥ 2),

where Y0 = 2(βT
1 X)2 + 2 exp(βT

2 X)σε;
β1, β2 as in (7).



1758 W. YAO ET AL.

In all cases ε X and ε ∼ N (0, 1). Note that Y is a continuous
variable in models (1)–(5) and a discrete variable in models
(6)–(8). Among the models with continuous Y , models (1)
and (2) have a simple homoscedastic error term added to the
mean function, whereas models (3)–(5) have a more complex,
heteroscedastic structure—the error term is still additive with
mean 0, but its variance depends on a linear combination of
the covariates. Models (6)–(8) also belong to the heteroscedastic
case in the sense that var(Y|x) depends on x (through βT

j x, j =
1, 2). The CS and the CMS coincide in models (1), (2), (4),
and (6)–(8). The CS has one more direction than the CMS in
models (3) and (5), which will be missed by methods targeting
the CMS. Finally, the mean function of model (1) has two Y-
symmetric terms, that of model (2) has one, and both the mean
and the variance functions of model (5) are Y-symmetric. These
symmetries are expected to impede the performance of SIR.

We consider the ratio SNR = var(E(Y|X))
E(var(Y|X))

. For homoscedastic
models with continuous response (models (1) and (2)), this pro-
duces a traditional signal-to-noise ratio: SNR(σ ) = var(E(Y|X))

σ 2 ,
where σ 2 is the variance of the error term. However, we compute
SNR also for heteroscedastic models with both continuous and
discrete response (models (3)–(5) and (6)–(8), respectively).
Here, both the numerator and the denominator comprise a
signal (also the denominator depends on βTX), and the ratio
benchmarks the signal in the mean to that in the variance—
a kind of “mean signal”-to-“variance signal” ratio. In all cases,
including the heteroscedastic ones, the parameter σ is used to
modulate SNR values. For homoscedastic models, we consider
σ ’s generating SNRs around 10, 5, 2.5, and 1. For heteroscedastic
ones, we consider SNRs both above and below 1 (see Tables S3–
S8 in the supplementary materials). For all simulation scenarios,
we consider sample sizes between n = 200 and 400.

We compared our CIM approach to SIR (Li 1991), SAVE
(Cook and Weisberg 1991), SR (Wang and Xia 2008), PHD
(Li 1992; residual-based), MAVE (Xia et al. 2002; “refined”
MAVE), dMAVE (Xia 2007), Fourier (Zhu and Zeng 2006) and
the semiparametric method (Ma and Zhu 2013a). Methods that
require slicing, including CIM, were run with different number
of slices L. We also added to the comparison a benchmark, where
instead of estimating the CS with a given method, we generated
random subspaces of prescribed dimensions.

About the semiparametric method, estimation of a two-
dimensional CS requires tuning four bandwidth parameters on
a case-by-case basis, without any general tuning guidelines. A
poor choice of bandwidths can cause the algorithm to reach
unsatisfactory local optima, producing unreliable results and
performance comparisons. Among the models with continuous
Y (i.e., (1)–(5)), we were able to implement good tuning and
obtain reliable results only for a small subset of the simulation
scenarios relative to models (1) and (2)—we omit these from
the main text, and report them in the supplementary materials
(Tables S9 and S10). For models with discrete Y (i.e., (6)–(8)) we
did not run the semiparametric method because available code
does not readily generalize to these cases.

Table 1 displays selected results. These concern performance
of the methods for models (2) and (5) with all three covariate
distribution settings and L = 5, and model (8) with Independent
X only. Only a few σ values (SNRs) are shown, with sample sizes
n = 200 and 400. Complete results are reported in the supple-
mentary materials (Tables S1–S10). Entries in the tables repre-
sent trace correlations (the square-root of the quantity defined
in Section 4.1) between the estimated and the true CS, averaged
over 200 independently simulated datasets; the closer the values
are to 1, the better the performance.

Table 1. Mean (std. deviation) of trace correlation (R) in 200 repetitions for n = 200 and 400 in models (2), (5), and (8) with Independent (Ind.), Correlated (Corr.), and
Nonlinear (NonL) X.

σ (Sample Size) X SIR SAVE SR PHD MAVE dMAVE Fourier CIM Random

Model (2)—Homoscedastic, Continuous Y

σ = 0.55
(n = 200)

Ind. 0.722 (0.044) 0.802 (0.091) 0.860 (0.132) 0.729 (0.048) 0.995 (0.002) 0.990 (0.004) 0.959 (0.022) 0.956 (0.021) 0.429 (0.126)
Corr. 0.766 (0.073) 0.765 (0.089) 0.901 (0.113) 0.720 (0.043) 0.991 (0.004) 0.982 (0.008) 0.927 (0.038) 0.930 (0.038) 0.424 (0.136)
NonL 0.788 (0.062) 0.692 (0.042) 0.763 (0.079) 0.776 (0.105) 0.987 (0.029) 0.947 (0.072) 0.820 (0.055) 0.753 (0.090) 0.437 (0.129)

σ = 0.55
(n = 400)

Ind. 0.733 (0.048) 0.964 (0.029) 0.943 (0.108) 0.733 (0.042) 0.998 (0.001) 0.995 (0.002) 0.984 (0.007) 0.984 (0.006) 0.437 (0.128)
Corr. 0.818 (0.077) 0.926 (0.056) 0.980 (0.046) 0.731 (0.045) 0.996 (0.002) 0.992 (0.003) 0.966 (0.015) 0.977 (0.010) 0.439 (0.116)
NonL 0.837 (0.053) 0.701 (0.029) 0.780 (0.089) 0.789 (0.118) 0.996 (0.002) 0.986 (0.022) 0.847 (0.044) 0.785 (0.096) 0.423 (0.115)

Model (5)—Heteroscedastic, Continuous Y

σ = 0.2
(n = 200)

Ind. 0.427 (0.130) 0.882 (0.073) 0.642 (0.189) 0.645 (0.099) 0.675 (0.086) 0.893 (0.099) 0.741 (0.073) 0.870 (0.078) 0.422 (0.134)
Corr. 0.351 (0.119) 0.804 (0.075) 0.603 (0.199) 0.543 (0.108) 0.617 (0.101) 0.863 (0.100) 0.670 (0.068) 0.796 (0.089) 0.432 (0.135)
NonL 0.595 (0.091) 0.728 (0.088) 0.730 (0.136) 0.560 (0.113) 0.649 (0.100) 0.904 (0.060) 0.657 (0.075) 0.794 (0.094) 0.441 (0.127)

σ = 0.2
(n = 400)

Ind. 0.415 (0.134) 0.957 (0.030) 0.796 (0.134) 0.700 (0.088) 0.698 (0.084) 0.980 (0.041) 0.798 (0.081) 0.957 (0.034) 0.440 (0.140)
Corr. 0.355 (0.132) 0.918 (0.035) 0.783 (0.156) 0.589 (0.111) 0.626 (0.085) 0.974 (0.017) 0.740 (0.081) 0.927 (0.029) 0.426 (0.130)
NonL 0.648 (0.068) 0.787 (0.087) 0.867 (0.118) 0.573 (0.110) 0.665 (0.103) 0.952 (0.035) 0.690 (0.047) 0.893 (0.070) 0.418 (0.123)

Model (8)—Heteroscedastic, Discrete Y

σ = 3 (n = 200) Ind. 0.699 (0.055) 0.643 (0.101) 0.726 (0.105) 0.619 (0.108) 0.576 (0.152) 0.766 (0.121) 0.736 (0.081) 0.823 (0.090) 0.439 (0.129)
σ = 3 (n = 400) Ind. 0.718 (0.049) 0.762 (0.095) 0.786 (0.125) 0.681 (0.048) 0.681 (0.119) 0.894 (0.088) 0.821 (0.093) 0.924 (0.045) 0.429 (0.122)

σ = 4 (n = 200) Ind. 0.686 (0.047) 0.594 (0.130) 0.686 (0.088) 0.598 (0.095) 0.541 (0.146) 0.660 (0.145) 0.710 (0.070) 0.776 (0.102) 0.426 (0.134)
σ = 4 (n = 400) Ind. 0.718 (0.045) 0.723 (0.100) 0.760 (0.103) 0.658 (0.066) 0.633 (0.136) 0.819 (0.113) 0.783 (0.085) 0.896 (0.065) 0.432 (0.119)

σ = 5 (n = 200) Ind. 0.689 (0.056) 0.556 (0.133) 0.676 (0.075) 0.542 (0.128) 0.520 (0.144) 0.599 (0.148) 0.702 (0.069) 0.727 (0.096) 0.440 (0.121)
σ = 5 (n = 400) Ind. 0.713 (0.047) 0.685 (0.095) 0.736 (0.090) 0.622 (0.078) 0.579 (0.140) 0.741 (0.132) 0.767 (0.082) 0.856 (0.076) 0.436 (0.126)

NOTE: Number of slices L = 5 for SIR, SAVE, SR, and CIM in models (2) and (5), and L = 3 naturally for model (8) with discrete Y . Highest R in each row is boldfaced.
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Table 2. Computation time in seconds (average of 200 runs; SD in parentheses) to generate d = 2 output directions for models (2), (5), and (8) with n = 400, Independent
X, and specified σ .

SIR SAVE SR PHD MAVE dMAVE Fourier Semiparametric CIM

Model (2): Homoscedastic, Continuous Y(σ = 0.55)

5e−04
(3e-04)

6e−04
(2e-04)

0.8499
(0.0433)

0.0026
(4e-04)

1.1625
(0.0944)

12.1979
(0.9517)

0.0127
(0.00889)

1.1711
(0.07786)

0.5253
(0.0351)

Model (5): Heteroscedastic, Continuous Y(σ = 0.20)

5e−04
(4e−04)

6e−04
(2e−04)

0.8358
(0.0141)

0.0026
(3e-04)

2.0753
(0.0534)

12.8684
(2.0811)

0.0131
(0.0082)

6.7422
(1.8080)

0.5290
(0.0096)

Model (8): Heteroscedastic, Discrete Y(σ = 4)

6e−04
(5e−04)

8e−04
(3e−04)

0.8202
(0.0149)

0.0026
(5e-04)

2.0446
(0.0229)

17.5507
(0.1781)

0.0132
(0.0088) XX 0.5906

(0.0084)

NOTE: Number of slices L = 5 for SIR, SAVE, SR, and CIM in models (2) and (5), and L = 3 naturally for model (8) with discrete Y .

For model (2), the best performer is MAVE closely followed
by dMAVE—the extended version of MAVE that can estimate
the full CS (recall that the CS and the CMS coincide here).
However, CIM is quite competitive, similar in performance
to the Fourier method, and better than all other methods in
most scenarios. For the more complex model (5), SIR has very
poor performance due to symmetries, and MAVE and PHD do
not do well because they target the CMS only. Here, the best
performer is clearly dMAVE. But CIM is again competitive,
similar in performance to SAVE, and substantially better than
all other methods. Notably, CIM performs especially well for
n = 400; while all methods improve with larger samples,
the gain is particularly marked for SR and CIM—likely due
to improved local linear smoothing and kernel density estima-
tion, respectively. For model (8) with discrete Y , CIM performs
best in all scenarios. In particular, CIM performs substantially
better than MAVE and dMAVE, for large values of σ . Other
models with discrete Y ((6) and (7); see Tables S6–S7 in the
supplementary materials) confirmed these findings. We note
that, to implement the Fourier method on these models, we used
adjustments similar to those in the discrete response example of
Zhu and Zeng (2006). For PHD and MAVE, we simply treated
the response as an ordinal variable.

Next, we demonstrate the performance of the dimension
estimation plots using our CIM approach (Section 4.2). Again
due to space limitations, we show results for selected scenar-
ios relative to models (2) and (5). Specifically, Figure 1 shows
dimension estimation plots using CIM with L = 5, applied
to model (2) with σ = 0.55 (SNR ≈ 9.9; panel (a)), and to
model (5) with σ = 0.2 (SNR ≈ 0.02; panel (b)). In both cases,
we consider Independent X and n = 400. The dimensions are
correctly identified; R̄2

q, R̄2
o,q, and R2

qR2
o,q have peaks at q = 2.

Note that R2
qR2

o,q (dashed line) peaks only at q = 2, while R̄2
q and

R̄2
o,q must grow again to approach 1 as q goes toward q = 10

and q = 0, respectively. Plots for additional scenarios, and
corresponding alternative boxplot versions which give a sense
of the variability associated with these curves, are provided in
the supplementary materials (Figures S1–S15). As expected, the
“peaking” behavior of R2

qR2
o,q at q = 2 is more pronounced for

larger SNRs and is maintained across varying L’s used in CIM.
Finally, we compare methods in terms of computational bur-

den. Table 2 reports computation time (in seconds) required to
generate d = 2 output directions for models (2), (5), and (8), all

with Independent X, n = 400, and σ = 0.55, 0.2, and 4, respec-
tively (see also Table S11 in the supplementary materials). SIR,
SAVE, SR, PHD, MAVE, dMAVE, and CIM were implemented
in MATLAB R2017a (version 9.2.0.556344) and run on a laptop
with 2.70–2.90 GHz Intel(R) Core(TM) i7-7500U CPU, 31.8
GB usable RAM, and Windows 10 Education OS. The Fourier
method was implemented in R version 3.4.2 with platform x86
64-w64-mingw32/x64 (64-bit) using C functions, and run on
the same laptop. The semiparametric method was implemented
in FORTRAN 90 and run on a Penn State cluster. As expected
(see Section 3.5), CIM is slower than SIR, SAVE, PHD, and
the Fourier method (which uses only eigen-decompositions and
other inexpensive steps) and faster than MAVE, dMAVE, SR,
and the semiparametric method (which involve nonparametric
estimation of one or more among conditional mean functions,
conditional densities and their gradients).

In summary, we find that CIM competes closely with the
best performing SDR methods in both homoscedastic and het-
eroscedastic scenarios with continuous Y and can outperform
all methods considered in our simulation study in scenarios with
discrete Y . Notably, it does so with a substantially lower com-
putational cost compared to that of the existing best methods.
Our dimension estimation plots also appear effective in both
homoscedastic and heteroscedastic scenarios.

6. Applications to Real Data

In this section, we apply the CIM approach and other SDR
methods to two real datasets. Similar to the simulated data
considered in Section 5, and to many real data applications used
in prior literature, these comprise an order of 10 covariates.

6.1. Wine Recognition Data

This UCI machine learning repository dataset has been widely
used to demonstrate machine learning and statistical methods
(e.g., Coomans, Aeberhard, and de Vel 1992). It comprises a
categorical response with three classes indicating types of wine
cultivars, and p = 13 quantitative covariates representing
wine constituents determined via a chemical analysis. These
are (1) alcohol, (2) malic acid, (3) ash, (4) alkalinity of ash, (5)
magnesium, (6) total phenols, (7) flavonoids, (8) nonflavonoid
phenols, (9) proanthocyanins, (10) color intensity, (11) hue, (12)
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Figure 1. Dimension estimation plots using CIM with L = 5 slices (500 bootstrap replicates). (a) model (2) with σ = 0.55 (SNR ≈ 9.9) and (b) Model (5) with σ = 0.2
(SNR ≈ 0.02). In both cases the covariates in X are Independent and n = 400.

Figure 2. Dimension estimation plots for CIM (500 bootstrap replicates). (a) Wine recognition data (L = 3) and (b) ozone data (L = 5).

OD280/OD315 of diluted wines, and (13) proline. The total
sample size is n = 178, with 59 observations belonging to class
1, 71 to class 2, and 48 to class 3. Our purpose is to find linear
combinations of the covariates which are most informative in
predicting wine cultivars.

After standardizing the covariate vector to have mean
zero and identity covariance matrix, we apply CIM with
L = 3 slices (no. of response-classes). The eigenvalues are
32.76, 9.23, 2.57, 1.73, 1.36, 1.00, 0.79, 0.44, 0.37, 0.36, 0.27, 0.17,
and 0.06. Prominence of the first two, which jointly capture
about 82% of the covariate information on the response,
suggests d̂ = 2. The dimension estimation plot (Figure 2(a))
confirms this choice; the largest drops in R̄2

q and R2
qR2

o,q occur at
the transition from q = 2 to q = 3 (for the boxplot version, see
Figure S16 in the supplementary materials). The two leading
CIM directions are dominated by Flavonoids, Color intensity,
and Proline:
β̂1 = (0.03, 0.16, 0, 0.15, 0.06, −0.19, −0.57, 0.02, −0.11, 0.50,

− 0.10, −0.31, −0.47)T

β̂2 = (−0.24, −0.16, −0.19, −0.04, 0.05, 0.02, −0.02, −0.11,
0.14, −0.53, 0.14, 0.07, −0.74)T .

The projection of the data on their plane (the estimated CS)
is shown in Figure 3(a), along with a random 2D projection
for benchmarking in Figure 3(b). The three response classes are
very nicely separated. In addition to CIM, we run other slice-
based methods, viz. SIR, SAVE, and SR, on this dataset (see
Figure S17 in the supplementary materials). Other methods do
not have readily implementable codes for categorical responses.
Interestingly, SIR and SR give results very similar to CIM on this
data (trace correlations between the CS estimates are ≈ 0.98).
Note that SIR here works rather well even though the covariate
vector is clearly not elliptical. SAVE on the other hand performs
poorly (results not shown).

6.2. Ozone Data

This “mlbench” R-package dataset was used in Breiman and
Friedman (1985) as well as in the SDR literature (see Li 1992).
It comprises a continuous response, the atmospheric ozone
concentration in the Los Angeles Upland basin measured daily
(maximum one-hour average mixing ratio by volume in parts
per hundred million (pphm)), and p = 8 quantitative covari-
ates representing meteorological features; namely: (1) SBTP: the
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Figure 3. 2D projections of the wine recognition data on: (a) the CS estimated via CIM (L = 3) and (b) a random plane.

Figure 4. Scatterplots of ozone concentration against the first (a) and second (b) leading directions estimated via CIM (L = 5). Solid lines are LOESS smooths; dashed lines
around them represent 95% prediction bands obtained using the CRAN package “msir.”

Sandburg (CA) air force base temperature (in ◦F), (2) IBHT: the
inversion base height (in ft.) at the Los Angeles International
Airport (LAX), (3) DGPG: the pressure gradient (in mm Hg)
from Daggett to LAX, (4) VSTY: the visibility (in miles) at
LAX, (5) VDHT: the Vandenburg 500 millibar pressure height
(in m), (6) HMDT: the humidity (in percentage) at LAX, (7)
IBTP: the inversion base temperature (in ◦F) at LAX, and (8)
WDSP: the wind speed (in mph) at LAX. The dataset covers
n = 330 days in 1976 considering only complete observations
(no missing values). Note that, as expected, the response shows
marked autocorrelation (see Figure S18 in the supplementary
materials). However, we follow Li (1992) and perform SDR
without correcting for autocorrelation.

After standardizing the covariate vector to have mean zero
and identity covariance matrix, we apply CIM with L = 5. The
eigenvalues are 3.83, 1.37, 0.50, 0.37, 0.27, 0.21, 0.19, and 0.18.
The first two capture about 75% of the covariate information on
the response, suggesting d̂ = 2. The dimension estimation plot
(Figure 2(b)) confirms this choice; also for this data the largest
drops in R̄2

q and R2
qR2

o,q occur at the transition from q = 2 to q =
3 (for the boxplot version, see Figure S20 in the supplementary
materials). The two leading CIM directions are:

β̂1 = (−0.25, 0.82, −0.34, 0.22, −0.22, −0.24, −0.10, −0.01)T

β̂2 = (0.01, 0.02, −0.27, 0.05, 0.90, −0.33, −0.04, −0.09)T .

The first is driven by IBHT, but with substantial contributions
by several other covariates. The second is strongly driven by
VDHT, with only a couple of other covariates contributing non-
negligibly.

Figure 4 shows the association of the response with the two
leading CIM directions using L = 5 slices (see Figure S33 in
the supplementary materials for similar plots with different Ls).
Ozone concentration has a strong, curved but asymmetric mean
relationship with the first projected variable, and a weaker,
curved and symmetric mean relationship with the second—
accompanied by marked heteroscedasticity. CIM estimation
of the CS and the structural dimension using different L’s
in the range 3–10 produces similar results (see Figures S19–
S24 in the supplementary materials). However, other SDR
methods produce less satisfactory and seemingly less robust
results on this data. Using our dimension estimation plots,
SIR leads to d̂ = 1 for L in 3–10, and SAVE to d̂ = 1 for
L = 8 and 10 but decisively to d̂ = 2 for L = 3 and 5 (see
Figures S25–S32 in the supplementary materials). Based on
association measures among subspaces discussed next, MAVE
and PHD also seem to settle on d̂ = 1. Not surprisingly, the
second direction is harder to detect for SIR, which misses
symmetric effects on the mean, as well as for MAVE and PHD,
which target only the CMS and miss effects on the variance.
If we fix d̂ = 2 and use L = 5 for all slice-based methods,
the trace correlations between the CS estimated by CIM and
those estimated by SIR, SAVE, SR, PHD, MAVE, dMAVE,
Fourier, and the semiparametric method are, respectively,
0.744, 0.972, 0.886, 0.664, 0.724, 0.760, 0.944, and 0.772. The
semiparametric method was initialized using the output of
dMAVE, and we were able to tune the bandwidths (see also Sec-
tion 5). CIM results are clearly closer to SAVE, SR, and Fourier
than to the rest. Trace correlations for the first directions only
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are, respectively, 0.971, 0.997, 0.966, 0.843, 0.953, 0.938, 0.974,
and 0.499, suggesting that the first direction is correctly and
similarly identified by all methods except for the semiparametric
one. Those for the second directions only are, respectively,
0.317, 0.943, 0.734, 0.128, 0.288, 0.389, 0.897, and 0.485, sug-
gesting that SAVE, SR, and Fourier also catch the second
direction found by CIM, but SIR, PHD, MAVE, dMAVE and
the semiparametric method do not. Additional results using
CIM with different numbers of slices are presented in Tables
S12–S15 of the supplementary materials.

7. Concluding Remarks

In this article, we described a new tool for SDR; the CIM. Our
proposal builds upon the novel and appealing use of information
matrices in Hui and Lindsay (2010) and Lindsay and Yao (2012),
exhaustively identifies the CS of a regression, and produces
reduced covariates that are uncorrelated with diagonal density
information and are naturally ordered based on their regression
information contributions.

Some popular SDR methods leverage structure in the inverse
regression X | Y and utilize simple eigen-decompositions—
thus being computationally light. Their reduced covariates are
usually ordered by eigenvalue size, but such ordering is not as
meaningful as the one produced by CIM. In addition, many
of these methods require distributional assumptions on the
covariates. Other SDR methods avoid such assumptions, often at
the price of much heavier computation—for example, requiring
local nonparametric estimation of mean regression functions.
Furthermore, with techniques such as SR, MAVE, dMAVE,
and the semiparametric method, the subspace of interest needs
to be reestimated for any specification of its dimension d—
imposing an additional computational burden in applications,
where d itself is to be estimated on the data. On a different note,
based on our personal communication with Dr. Yingcun Xia,
Dr. Xia’s group is developing a new SDR method based on the
modification over SR and dMAVE. Please see Dr. Xia’s personal
website for more information.

The CIM does not require “linearity” or the “constant
conditional variance” condition for the covariate vector X;
in fact, in addition to leveraging the structure in X | Y , it
explicitly accounts for structure in the distribution of X. At
the same time, CIM is computationally light. In addition to an
eigen-decomposition, it does involve kernel density estimation
(marginal and inverse) for X—but this is accomplished with the
fast, explicit and robust f 2 method of computation introduced
in Hui and Lindsay (2010). Also, CIM does not need to be re-run
for different d’s. In terms of tuning parameters, CIM relies on the
number of slices used to reconstruct the structure of X | Y when
the response is continuous, and the bandwidth used for kernel
density estimation in the f 2 method. For the latter, we employ
a rule of thumb recommended in Hui and Lindsay (2010). For
the former, our simulations suggest choices of L between 3 and
5 for sample sizes n = 200 − 400. The underlying structural
dimension in our simulations is d = 2, but we note that in
CIM (like in SR and unlike in SIR) the choice of L does not
constrain the rank of the matrix and, thus, the “reconstructable”
structural dimension. Finding a data-driven, optimal number

of slices is admittedly a delicate issue for all SDR methods that
employ slicing, and more exploration is warranted on the role
of both tuning parameters in CIM. However, our approach
remains operational and performs satisfactorily under a range
of reasonable tuning parameter choices.

Building upon ideas in Ye and Weiss (2003), we also proposed
a bootstrap-based diagnostic tool for estimating the dimension
d of the CS. We quantify stability in estimating both the CS
and the corresponding null space; the product of these two
measurements provides a diagnostic with an easier to interpret
“peaking” behavior.

We used simulations and real data to show the competi-
tive performance of CIM compared to other SDR methods,
and the effectiveness of our structural dimension diagnostics.
Interestingly, in discrete response scenarios, CIM outperformed
popular methods such as MAVE (Xia et al. 2002) and dMAVE
(Xia 2007) whose performance was excellent with a continuous
response. We are also in the process of investigating both
computational burden and quality of CS estimation using the
f2 method for larger p’s (say, several tens or hundreds) than the
ones in our current simulation study and real data applications.

Relatedly, an important extension of our work would
concerns very high dimensional, under-sampled data. Propo-
sition 3.3 theoretically allows one to avoid inverting and taking
the square root of �X. However, the quality of estimation of
�X deteriorates if n is not large relative to p, and is very poor if
p � n (Ledoit and Wolf 2004). Moreover, because of our choice
of H along with the use of the surrogate JS, the current CIM
implementation does still require inversion of �̂X—though this
may be circumvented with an appropriate alternative bandwidth
matrix H. In light of these considerations, it would be interesting
to develop screening techniques rooted in the same information
framework underlying DIMs (Hui and Lindsay 2010; Lindsay
and Yao 2012) and the CIM itself. In addition to screening, very
high dimensional settings may warrant the use of penalization
to implement sparse estimation of the CIM and of the CS. These
ideas have already been introduced for other SDR methods, for
example, in Li (2007), Li and Yin (2008), Wang and Yin (2008),
Li and Nachtsheim (2006), and Wang and Zhu (2013), to name
a few.

Another interesting extension of our work would be an
adaptive CIM, which would exploit local structure in the data
building different reduced covariates in different regions of the
covariate space. Technically, a local weighting density w(x)

(e.g., a kernel) can be used in place of the overall covariate
density f (x) in Equation (5) to define a local version of the
matrix.

Finally, while CIM, like other SDR methods based on slicing,
is applicable regardless of the nature of the response, the
covariates are always assumed to be continuous. Projections
and linear combinations are meaningful only for such variables,
but methods have been developed to perform SDR in regression
that comprise also categorical covariates (see, e.g., Chiaromonte,
Cook, and Li 2002; Wen and Cook 2007). Using the CIM
approach on regressions with a mix of continuous and
categorical covariates is outside the scope of this article, but an
extension along the lines of the partial SDR of Chiaromonte,
Cook, and Li (2002) is certainly conceivable and worth
pursuing.
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Supplementary Material and Codes

A supplementary material file for this article is available online, containing
proofs and more details on our analyses. CIM was implemented in MAT-
LAB and plots were produced in R; codes are available from the authors
upon request. We also intend to publish a CRAN package in near future.
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