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Abstract Label switching is one of the fundamental prob-
lems for Bayesian mixture model analysis. Due to the per-
mutation invariance of the mixture posterior, we can con-
sider that the posterior of a m-component mixture model is
a mixture distribution with m! symmetric components and
therefore the object of labeling is to recover one of the com-
ponents. In order to do labeling, we propose to first fit a sym-
metric m!-component mixture model to the Markov chain
Monte Carlo (MCMC) samples and then choose the label for
each sample by maximizing the corresponding classification
probabilities, which are the probabilities of all possible la-
bels for each sample. Both parametric and semi-parametric
ways are proposed to fit the symmetric mixture model for the
posterior. Compared to the existing labeling methods, our
proposed method aims to approximate the posterior directly
and provides the labeling probabilities for all possible labels
and thus has a model explanation and theoretical support. In
addition, we introduce a situation in which the “ideally” la-
beled samples are available and thus can be used to compare
different labeling methods. We demonstrate the success of
our new method in dealing with the label switching problem
using two examples.
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1 Introduction

Suppose x = (x1, . . . , xn) are independent observations
from an m-component mixture density

p(x; θ) = π1f (x;λ1) + π2f (x;λ2) + · · · + πmf (x;λm),

where θ = (π1, . . . , πm,λ1, . . . , λm)T , f (·) is some para-
metric component density or mass function, λj is the com-
ponent specific parameter, and πj is the proportion of j th

component with
∑m

j=1 πj = 1. The likelihood for x is

L(θ;x) =
n∏

i=1

{π1f (xi;λ1) + π2f (xi;λ2) + · · ·

+ πmf (xi;λm)}. (1)

For a general introduction to mixture models, see Lindsay
(1995), Böhning (1999), McLachlan and Peel (2000), and
Frühwirth-Schnatter (2006).

For any permutation ω = (ω(1), . . . ,ω(m)) of the iden-
tity permutation (1, . . . ,m), define the corresponding per-
mutation of the parameter vector θ by

θω = (πω(1), . . . , πω(m), λω(1), . . . , λω(m))
T .

Noticing that L(θω;x) is numerically the same as L(θ;x)

for any permutation ω, hence if θ̂ is the maximum likeli-
hood estimator (MLE), θ̂

ω
is the MLE for any permutation

ω. This is so-called label switching problem.
The label switching problem also occurs in Bayesian

mixtures. Let π(θ) be the prior for mixture model, the poste-
rior distribution of θ is equal to p(θ | x) = π(θ)L(θ;x)/p(x),
where p(x) is the marginal density for x = (x1, . . . , xn) and
L(θ;x) is defined in (1). If we do not have prior informa-
tion that distinguishes between the components of a mix-
ture model, i.e., π(θ) = π(θω) for any permutation ω, then
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p(θ | x) = p(θω | x) for any permutation ω and thus the
posterior p(θ | x) has m! permutation symmetric maximal
modes, with each of them associated with a modal region
such that each modal region is a permutation image of the
other and thus can be considered as one well labeled para-
meter space. Among each modal region there is a well de-
fined highest poster density region such that their posterior
is greater or equal to a fixed value c, say. Therefore, we also
have m! permutation symmetric highest poster density re-
gions for any fixed cut point c. See Yao and Lindsay (2009)
for more detail about the modal region and highest posterior
density region for mixture model. Due to the permutation
symmetry, the marginal posterior distributions for the para-
meters are identical for each mixture component. Hence, it
is meaningless to draw inference, relating to individual com-
ponents, directly from Markov chain Monte Carlo (MCMC)
samples using ergodic averaging before solving the label
switching problem.

Given the MCMC samples (θ1, . . . , θN), the latent “true”
labels (ω1, . . . ,ωN) are defined such that θ

ω1
1 , . . . , θ

ωN

N are
all in the same modal region and therefore have the same
label meaning. The aim of labeling is to recover the latent
labels (ω1, . . . ,ωN). Since each modal region defines a set
of latent labels, there are essentially m! sets of latent “true”
labels and they are identifiable up to the same permutation.
Therefore, one only needs to find one of the modal regions
and the corresponding set of latent “true” labels. Note that,
in fact, there is no unique way to write the posterior as a
mixture of distributions with m! components and each com-
ponent is a permutation version of the other (Papastamoulis
and Iliopoulos 2010). However, as Papastamoulis and Il-
iopoulos (2010) stated, an efficient solution to label switch-
ing is to make each of these components correspond to one
of the m! symmetric modal regions (highest posterior den-
sity areas). Here, we also use such modal regions to define
the latent “true” labels. Most of the existing labeling meth-
ods try to directly find the labels such that the labeled sam-
ples are as similar as possible based on some clustering cri-
teria. Usually, different clustering criteria will give different
labeling results and there is lack of widely accepted criteria.

In this article, we propose a novel model based labeling
method by approximating the posterior using a symmetric
mixture model. In our labeling procedure, we propose to first
fit a symmetric m!-component mixture model to the MCMC
samples and estimate the classification probabilities of all
m! possible labels for each sample. Then, the labels for each
sample are chosen by maximizing the corresponding label-
ing/classification probabilities. Considering the label ωt as
a missing modal region indicator for θ t , one knows that the
posterior distribution can be considered as a mixture distri-
bution with m! components, each component correspond-
ing to one of the m! symmetric modal regions. Therefore,
to solve the label switching, one only needs to find one

of the m! components/modal regions (all other components
can be derived by permutations), i.e., determine which com-
ponent/modal region each sample belongs to. Compared to
the existing labeling methods, our proposed method aims to
approximate the posterior directly and provide the labeling
probabilities for all possible labels. In addition, our labeling
method has model explanation and some theoretical support.
We propose both parametric and semi-parametric ways to fit
the symmetric mixture model to the MCMC samples.

Comparing different labeling methods is always a diffi-
cult issue since practically one never knows the true labels.
In this article, we introduce a situation in which the “ide-
ally” labeled samples are available in some sense and thus
can be used to compare different labeling methods. Using
two examples, we demonstrate the effectiveness of our pro-
posed model based labeling method in removing the label
switching in the raw MCMC samples.

Many methods have been proposed to deal with the la-
bel switching problem in Bayesian analysis. The easiest way
to solve the label switching is to use an explicit parame-
ter constraint so that only one permutation can satisfy it.
See Diebolt and Robert (1994) and Richardson and Green
(1997). Another popular labeling method is relabeling al-
gorithm (Celeux 1998; Stephens 2000), which is based on
minimizing a Monte Carlo risk. Stephens (2000) suggested
a particular choice of loss function based on the Kullback-
Liebler (KL) divergence. We will refer to this particular re-
labeling algorithm as KL algorithm. Yao and Lindsay (2009)
proposed the PM(ALG) method to label the samples based
on the posterior modes they are associated with when they
are used as the starting points for an ascending algorithm
of the posterior. The PM(ALG) method is an online algo-
rithm and does not require one to compare m! permuta-
tions when doing labeling, which makes it much faster than
some other relabeling algorithms. Sperrin et al. (2010) de-
veloped several probabilistic relabeling algorithms by ex-
tending the probabilistic relabeling of Jasra (2005). Simi-
lar to our method, Sperrin et al. (2010) assigned labeling
probabilities for all possible labels to account for the un-
certainty in the relabeling process. However, their method
assigns the labels to the allocation vectors directly instead
of the MCMC samples, which makes the method depend on
the assumption that there is no label switching between the
allocation vectors and the corresponding MCMC samples,
which is not necessarily true for all the samples. Papasta-
moulis and Iliopoulos (2010) proposed an artificial alloca-
tions based solution to the label switching problem. One of
the advantages of their method is that it requires small com-
putational effort compared to many other sophisticated solu-
tions. However, similar to Sperrin et al. (2010), their method
also assigns the labels to the allocation vectors directly. Our
proposed methods deal with the MCMC samples directly
and come from different statistical perspective.
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Other labeling methods include, for example, Celeux et
al. (2000), Frühwirth-Schnatter (2001), Hurn et al. (2003),
Chung et al. (2004), Marin et al. (2005), Geweke (2007),
and Grun and Leisch (2009). Jasra et al. (2005) provided a
good review about the existing methods to solve the label
switching problem in Bayesian mixture modelling.

The rest of the paper is organized as follows. Section 2 in-
troduces our new model based labeling method. Both para-
metric and semi-parametric ways are introduced to fit the
mixture model to the MCMC samples. In Sect. 3, we use a
simulation example and a real data set to compare our new
labeling method with some of other existing methods. We
summarize our proposed labeling method and discuss some
future research work in Sect. 4.

2 Introduction of model based labeling

For simplicity of explanation of our new model based label-
ing method, let us first consider the situation when m = 2.
When m = 2, there will be two symmetric modal regions of
the posterior density. We can consider each of them as the
region for the “true” labeled parameter space and having the
labeled posterior. The aim of labeling is to recover one of the
modal regions, which will be called reference modal region.

Suppose that the reference modal region has the well la-
beled posterior density g(θ | x). Then, if any θ comes from
the reference modal region (i.e., θ has identical label (1,2)),
it has the density g(θ | x); if θ comes from the other model
region, i.e., θω∗

comes from the reference modal region,
where ω∗ = (2,1), then θ has the density g(θω∗ | x). Note
that marginally the probabilities for the two possible labels
are equal and both are 1/2. Hence, we have

p{θ t | x,ωt = (1,2)} = g(θ t | x);
p{θ t | x,ωt = (2,1)} = g(θω∗

t | x);
P {ωt = (1,2)} = P {ωt = (2,1)} = 1/2,

where (θ1, . . . , θN) are all MCMC samples. So, the original
full posterior density for θ t , without knowing its true label
ωt , has a mixture form

p(θ t | x) = 1

2
g(θ t | x) + 1

2
g(θω∗

t | x), (2)

where ω∗ = (2,1). The model (2) will be called symmetric
mixture model, due to the permutation symmetry of the mix-
ture components. The ideal way to solve the label switching
is to find g(θ | x) and do Bayesian inference based on it in-
stead of the original unlabeled posterior p(θ | x).

Finding the labels (ω1, . . . ,ωN), corresponding to the
reference model region, is equivalent to determining whether
θ t or θω∗

t is from the first component that has the density

g(θ | x). Let � = {θ t , θ
ω∗
t , t = 1, . . . ,N}, which includes

both of the original samples and their permutations. In or-
der to do labeling, we first fit the mixture model (2) to the
“dataset” � and estimate g(θ | x) by ĝ(θ | x), say. Then,
we find the classification/labeling probabilities (p̂t1, p̂t2) for
each θ t , where

p̂t1 = ĝ(θ t | x)

ĝ(θ t | x) + ĝ(θω∗
t | x)

,

p̂t2 = 1 − p̂t1, t = 1, . . . ,N.

The estimate p̂t1 can be considered as the probability that θ t

comes from the reference modal region (i.e., the label of θ t

is ωt = (1,2)) and p̂t2 can be considered as the probability
that θω∗

t comes from the reference modal region (i.e., ωt =
(2,1)).

We can then choose ωt by maximizing the labeling prob-
abilities {p̂t1, p̂t2}, i.e., assign the identity permutation la-
bel ω̂t = (1,2) if p̂t1 ≥ p̂t2 and assign the permutation label
ω̂t = (2,1) if p̂t1 < p̂t2. The Bayesian inference can then be
done based on the labeled samples {θω̂t

t , t = 1, . . . ,N}.
Next, we will provide both parametric and semi-paramet-

ric ways to fit the symmetric mixture model (2) based on the
MCMC samples (θ1, . . . , θN).

2.1 Parametric labeling

From the asymptotic theory for the posterior distribution,
see Walker (1969) and Frühwirth-Schnatter (2006, Sects.
1.3, 2.4.3, 3.3), one knows that when sample size is large,
the suitably labeled MCMC samples should, approximately,
follow the normal distribution, i.e., there exist permuta-
tions {ω1, . . . ,ωN } such that {θω1

1 , . . . , θ
ωN

N } follows ap-
proximately a normal distribution. Therefore, g(θ | x) in (2)
can be approximated by a normal density and the model (2)
can be approximated by a normal mixture

p(θ | x) ≈ 1

2
N(θ;μ,�) + 1

2
N(θω∗;μ,�), (3)

where ω∗ = (2,1), μ and � are the center and covariance
matrix for the reference modal region, and N(θ;μ,�) is
the density function for N(μ,�). The following paragraph
describes how to fit the symmetric normal mixture model (3)
using an EM algorithm.

Algorithm 1 (Model based labeling by normal mixture
model (MBLNM)) Starting with the initial value μ(0) and
�(0), in the (k + 1)th step,

E step: compute the labeling probabilities

p
(k+1)
t1 = N(θ t ;μ(k),�(k))

N(θ t ;μ(k),�(k)) + N(θω∗
t ;μ(k),�(k))

, (4)

p
(k+1)
t2 = 1 − p

(k+1)
t1 , t = 1, . . . ,N;
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M step: update μ and �

μ(k+1) = 1

N

N∑

t=1

{
p

(k+1)
t1 θ t + p

(k+1)
t2 θω∗

t

}
,

�(k+1) = 1

N

N∑

t=1

{
p

(k+1)
t1 (θ t − μ(k+1))(θ t − μ(k+1))T

+ p
(k+1)
t2 (θω∗

t − μ(k+1))(θω∗
t − μ(k+1))T

}
.

In the E step of Algorithm 1, if we use the hard la-
bel for θ t , i.e., p

(k+1)
t1 = 0 or 1, t = 1, . . . ,N, depending

on whether the original classification probability is less or
greater than 0.5, then the Algorithm 1 provides the same
labeling results as the NORMLH method proposed by Yao
and Lindsay (2009), which minimizes the following nega-
tive log-normal likelihood over (μ,�) along with the miss-
ing labels ω = (ω1, . . . ,ωN),

L(μ,�,ω)

= N log(|�|) +
N∑

t=1

(θ
ωt
t − μ)T �−1(θ

ωt
t − μ). (5)

The NORMLH method is computationally easy and fast and
will be used to create the initial labels for other methods in
our examples in Sect. 3.

Denote by {p̂t1, p̂t2} the converged labeling probabilities
from the last E-step of Algorithm 1. Based on the above
labeling probabilities, we can then choose the label ωt by
maximizing the labeling probabilities {p̂t1, p̂t2}.

In practice, sometimes, one might need to do some trans-
formation of the original samples to make the labeled sam-
ples more close to the normal distribution before fitting the
symmetric normal mixture model (3). For example, for the
standard error parameters, one might take the log transfor-
mation. For the mixing proportion parameters, one might
take log odds transformation.

2.2 Semi-parametric labeling

In many cases, especially when sample size is small, the la-
beled samples may not be approximated by normal distrib-
ution very well. In this section, we propose a way to fit the
mixture model (2) without any parametric assumption about
g(θ | x). We will call such mixture model a semi-parametric
mixture model due to the symmetric restriction (equal mix-
ing proportions and permutation symmetric component den-
sity functions). By extending the semi-parametric EM algo-
rithm proposed by Bordes et al. (2007) and Benaglia et al.
(2009), we propose the following EM-like algorithm to fit
the model (2).

Algorithm 2 (Model based labeling by semi-parametric
mixture model (MBLSP)) Starting with the initial density
estimate g(0)(θ | x), in the (k + 1)th step,

E step: compute the labeling probabilities

p
(k+1)
t1 = g(k)(θ t | x)

g(k)(θ t | x) + g(k)(θω∗
t | x)

, (6)

p
(k+1)
t2 = 1 − p

(k+1)
t1 , t = 1, . . . ,N.

Nonparametric step: update g(θ | x)

g(k+1)(θ | x) = 1

N

N∑

t=1

{
p

(k+1)
t1 KH(θ t − θ)

+ p
(k+1)
t2 KH(θω∗

t − θ)
}

, (7)

where KH(θ) = det(H)−1K(H−1θ), H is a bandwidth ma-
trix (nonsingular), and K(θ) is a multivariate kernel den-
sity.

It is well known that the choice of the multivariate ker-
nel K(·) is not very critical for kernel density estimate (see,
for example, (Scott 1992)). In this article, we will simply
use multivariate Gaussian kernel for K(·). The choice of the
bandwidth H will be discussed in Sect. 3.

The initial density estimate for g(θ | x) can be kernel den-
sity estimate based on some initial labels (such as order con-
straint labels or NORMLH labels (Yao and Lindsay 2009))
or the density estimate by the MBLNM method using Algo-
rithm 1. The stopping rule for this algorithm can be based on
the difference of labeling probabilities for two consecutive
EM iterations.

2.3 More than two components

More generally, when there are m components, there will be
m! symmetric modal regions. Suppose g(θ | x) is the poste-
rior density for the reference modal region. Then, the poste-
rior distribution p(θ | x) is a mixture with m! components

p(θ | x) = 1

m!
m!∑

j=1

g(θω(j) | x), (8)

where {ω(1), . . . ,ω(m!)} are the m! permutations of (1, . . . ,m)

with ω(1) = (1,2, . . . ,m), the identity permutation. Note
that we only need to estimate one component density, say
g(θ | x) of the first component, for model (8) since all others
are just its permuted versions.

The model based labeling algorithms introduced in
Sect. 2.1 and 2.2 can be easily extended to the situation
when the number of components is larger than two. For ex-
ample, for the symmetric normal mixture model, the E step
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of Algorithm 1 is now

p
(k+1)
tj = N(θ

ω(j)

t ;μ(k),�(k))
∑m!

l=1 N(θ
ω(l)

t ;μ(k),�(k))
,

t = 1, . . . ,N, j = 1, . . . ,m!,
and the M step is now

μ(k+1) = 1

N

N∑

t=1

m!∑

j=1

p
(k+1)
tj θ

ω(j)

t ,

�(k+1) = 1

N

N∑

t=1

m!∑

j=1

p
(k+1)
tj (θ

ω(j)

t − μ(k+1))

× (θ
ω(j)

t − μ(k+1))T . (9)

In addition, for the symmetric semi-parametric mixture
model, the E step in Algorithm 2 is now

p
(k+1)
tj = g(k)(θ

ω(j)

t | x)
∑m!

l=1 g(k)(θ
ω(l)

t | x)
,

t = 1, . . . ,N, j = 1, . . . ,m!,
and the Nonparametric step is

g(k+1)(θ | x) = 1

N

N∑

t=1

m!∑

j=1

p
(k+1)
tj KH(θ

ω(j)

t − θ).

Let � = {θω(j)

t , t = 1, . . . ,N, j = 1, . . . ,m!}. The above
two EM algorithms are equivalent to fitting the symmetric
mixture model (8) to the data set �. The estimate p̂tj , de-
rived from the converged E step, can be considered as the
probability that θ t has the label ω(j), i.e., the probability
that θ

ω(j)

t is from the reference modal region.
Based on the labeling probabilities {p̂tj , t = 1, . . . ,N ,

j = 1, . . . ,m!}, we can choose the label ωt for θ t by
maximizing {p̂t1, . . . , p̂tm!}. For example, if p̂tk maxi-
mizes {p̂t1, . . . , p̂tm!} for some k, then ω̂t = ω(k), where
{ω(1), . . . ,ω(m!)} are the m! possible permutations
of (1, . . . ,m).

3 Examples

In this section, we use a simulation example and a real data
set to illustrate the effectiveness of our proposed two model
based labeling methods (MBLNM and MBLSP) and com-
pare them with order constraint labeling (OC) and Stephens’
KL algorithm (KL). The OC method refers to the order-
ing constraint labeling on the mean parameters. For KL al-
gorithm, we used the transportation algorithm to maximize
over the permutations. We used the NORMLH labels as the

initial labels for KL, MBLNM, and MBLSP. For compar-
ison, we reported the number of different labels for each
method that differed from MBLSP. In addition, we also in-
troduce a situation in which the “ideally” labeled samples
are available and thus can be used to compare different la-
beling methods.

To use the semi-parametric labeling MBLSP, we need
to choose the bandwidth matrix H first. A good rule of

thumb is to use a bandwidth matrix proportional to �̂
1/2

,

i.e., H = h�̂
1/2

, where �̂ is the estimated covariance ma-
trix based on the initial labeled samples. Using such a band-
width corresponds to a transformation of the initial labeled
samples, so that they have an identity covariance matrix. By
assuming a multivariate normal distribution for the labeled
samples, we can get the rule of thumb for the bandwidth
matrix H

Ĥ = N−1/(d+4)�̂
1/2

, (10)

where d is the dimension of θ (see Scott 1992, p. 152). As
suggested by Benaglia et al. (2009), one might also use an
iterative procedure in which the value of H is modified after
the new labels. For simplicity, in all of our examples in this
section, we used the bandwidth (10) for the MBLSP method.
(We also tried some other bandwidths such as 0.5Ĥ and
1.5Ĥ and the labeling results were almost the same. Hence,
empirically, the labeling results by MBLSP are not very sen-
sitive to the choice of bandwidth Ĥ, which is sensible since
our objective is the classification probabilities instead of the
component density function itself.)

All the computations were done in Matlab 7.0 using a
personal desktop with Intel Core 2 Quad CPU 2.40 GHz. It
is known that the OC method is the fastest one and it takes
no more than several seconds in our examples. Hence, we
only reported the runtime for KL, MBLNM, and MBLSP.

Example 3.1 We generated 400 data points from
0.3N(0,1) + 0.7N(0.5,22). Based on this data set, we
generated 5,000 MCMC samples (after initial burn-in) of
component means, component proportions, and the unequal
component variance. The MCMC samples were generated
by Gibbs sampler with the priors given by Richardson and
Green (1997). That is to assume

π ∼ D(δ, δ), μj ∼ N(ξ, κ−1),

σ−2
j ∼ �(α,β), β ∼ �(g,h), j = 1,2,

where D(·) is Dirichlet distribution and �(α,β) is gamma
distribution with mean α/β and variance α/β2. Following
the suggestion of Richardson and Green (1997), we let δ =
1, ξ equal the sample mean of the observations, κ = 1/R2,
α = 2, g = 0.2, and h = 10/R2, where R is the range of the
observations. Similar priors are used for the other example.
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Fig. 1 Plots of σ1 − σ2 vs.
μ1 − μ2 for different labeling
methods in Example 3.1. The
black points represent one set of
labels and the gray points are
the permuted samples. The star
points are the posterior modes

Fig. 2 Plots of σ1 − σ2 vs. π1
for different labeling methods in
Example 3.1

The total numbers of different labels between (OC, KL,
MBLNM) and MBLSP were: 212, 76, and 0, respectively.
Hence, in this example, MBLNM and MBLSP provided
the same labeling results, and KL had closer labeling re-
sults to the MBLSP method than OC. The runtime for KL,
MBLNM, and MBLSP were 10.2, 0.5, and 63.4 seconds, re-
spectively. Hence, MBLNM was much quicker than the KL
method. However, MBLSP was slower than the other three
methods due to the nonparametric multivariate density esti-

mation. (In fact, MBLNM can be computed much faster if
one has a computer with a larger memory. When using our
personal computer for calculation, we did not store the ker-
nel function calculations between the samples and their per-
mutations in (7), and instead, we recalculated them in every
iteration, due to the large memory storage requirement.)

Since there are only two components and the two sym-
metric modal regions are separate (see Figs. 1 and 2), we can
easily make use of some parameter plots to check where the
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labeling differences occurred. Figure 1 is the plot of σ1 − σ2

vs. μ1 − μ2. Figure 2 is the plot of σ1 − σ2 vs. π1. For bet-
ter visual results, we also added the permuted samples to the
plots. The star points are the posterior modes. From Figs.1
and 2, one knows that OC and KL did not cluster the para-
meter points in a natural manner. The MBLNM and MBLSP
methods clustered the two groups more naturally.

In this example, the labeled samples provided by the
MBLNM and MBLSP methods in fact were the same as the
original raw samples. Hence, it is highly likely that the la-
bel switching did not happen in the raw samples. This can
also be seen by noting that if there is label switching in the
raw samples, the sampled modal regions will most likely
be connected together, which is not the case in Figs. 1 and
2. Note, however, since there is no label switching in the
raw samples, they have not yet explored the whole posterior
region, and the label switching would happen if we were
to continue to run the sampler. It can be seen from Figs. 1
and 2 that the raw samples are around the posterior modes
and thus are from the separate highest posterior density re-
gions. Note that for any converged samples, we can always
pick part of them (usually in highest posterior density re-
gion) such that there is no label switching among them (so
they must have the same labels). Similar techniques of us-
ing part of the MCMC samples without label switching have
also been used by many other researchers to get some initial
estimates for labeling.

The above finding further demonstrated that MBLNM
and MBLSP provided the right labels but OC and KL did
not, since the raw samples themselves are the ideally la-
beled samples. In addition, it can be seen that the raw sam-
ples without label switching provide an ideal situation to
compare different labeling methods, since only in such sit-
uation one knows the ideally labeled samples, which are
the raw samples. Note also that in practice one will apply
their favorite labeling method to the MCMC samples with-
out checking whether the label switching has happened yet
or not in the raw samples. (Theoretically, if the sequence is
long enough, the label switching must happen in the con-
verged raw samples.)

Using the above strategy, we also tried several other
cases when the ideally labeled samples were available and
found similar results to this example. That is MBLNM and
MBLSP had similar labeling results, and usually had closer
labeled samples to the ideally labeled samples (the raw sam-
ples in those situations) than the OC and KL methods. In
addition, KL usually also had closer labeled samples to the
ideally labeled samples than OC.

Example 3.2 We consider the acidity data set (Crawford et
al. 1992; Crawford 1994). The data are shown in Fig. 3.
The observations are the logarithms of an acidity index mea-
sured in a sample of 155 lakes in north-central Wisconsin.

Fig. 3 Histogram of acidity data. The number of bins used is 20

This data set has been analyzed as a mixture of Gaussian
distributions by Crawford et al. (1992), Crawford (1994),
and Richardson and Green (1997). Based on the result of
Richardson and Green (1997), the posterior for 3 compo-
nents is largest. Hence, we fit this data set by a 3-component
normal mixture. We post processed the 5,000 Gibbs samples
by different labeling methods.

The total numbers of different labels between (OC, KL,
MBLNM) and MBLSP were: 470, 325, and 53, respec-
tively. Hence, MBLNM had much closer labeling results to
MBLSP than OC and KL. The runtime for KL, MBLNM,
and MBLSP were 8.9, 2.8, and 397.1 seconds, respectively.
Similar to Example 3.1, one sees that MBLNM is faster than
KL, but MBLSP is slower than KL.

In this example, the number of components is larger than
two and the modal regions are not separated. Hence, it is dif-
ficult to use the parameter plots used in Example 3.1 to com-
pare different labeling methods. Here, we mainly provided
the trace plots and the marginal density plots of component
means, shown in Figs. 4 and 5, respectively, to illustrate the
success of the MBLSP method and compare it with the OC
method. The KL and MBLNM methods had similar visual
results as MBLSP for the above two plots. From Figs. 4 and
5, it can be seen that the MBLSP method successfully re-
moved the label switching in the raw output of the Gibbs
sampler. Based on Fig. 5, one sees that the multi-modality
of the marginal posterior densities of the component means
in the raw output has been removed by MBLSP, however the
OC method did not remove the multi-modality very well for
the second component mean μ2.

4 Discussion

Due to the label switching, the posterior of an m-component
mixture can be considered as a symmetric mixture distrib-
ution with m! components. In this article, we proposed to
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Fig. 4 Trace plots of the Gibbs samples of component means for acidity data: (a) original Gibbs samples; (b) labeled samples by OC; (c) labeled
samples by MBLSP
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Fig. 5 Plots of estimated marginal posterior densities of component means for acidity data based on: (a) original Gibbs samples; (b) labeled
samples by MBLSP (line) and labeled samples by OC (dash-dot)

solve the label switching by fitting an m!-component mix-
ture model to the MCMC samples. The label for each sample
can then be chosen by maximizing the corresponding label-
ing probabilities from the fitted mixture model. We proposed
both parametric and semi-parametric mixture models to ap-
proximate the posterior. In the examples in Sect. 3, we can
see that such defined labels worked quite well. In addition, it
can be seen that MBLNM is much faster than MBLSP (and
KL), but provides close results to MBLSP. Therefore, in
practice, we prefer MBLNM method except when the sam-
ple size is too small (in such cases, the asymptotic normality
might not hold).

However, as one referee pointed out that the proposed
two algorithms can solve successfully the problem in or-
dinary cases but not when the probability of empty com-

ponents existence is nonnegligible, since in such situations
the generated MCMC samples from the empty components
have large variations and tend to be outliers in many cases.
Therefore, it will be desirable to come out some robust esti-
mation method/algorithm, which is not sensitive to the out-
liers in the MCMC samples. This will be the future research.

Note that usually the posterior density has explicit form,
for example when there is no hyper prior, or it can be eval-
uated approximately by some numerical method. Therefore,
one alternative way to estimate μ and � in (3) is to directly
minimize the distance between the posterior and the sym-
metric normal mixture model (3). The distance can be L2

loss or Kullback-Liebler divergence.
For the semi-parametric model, similar to Bordes et al.

(2007) and Benaglia et al. (2009), the convergence property



346 Stat Comput (2012) 22:337–347

of the Algorithm 2 has not been established and needs fur-
ther research, although empirically, the Algorithm 2 worked
quite well and did converge for all the data sets we tried.
One might also use one-step of Algorithm 2 to speed up the
MBLSP method if one starts the Algorithm 2 from some
good labels (such as NORMLH labels (Yao and Lindsay
2009)). In addition, the selection of an appropriate band-
width is another area in which further work needs to be done.

Given the labeling probabilities, one might also use them
to do weighted averaging when doing Bayesian inference.
Let G be the cumulative distribution function (CDF) corre-
sponding to g(· | x), the labeled posterior density. Usually,
the quantity of interest can be expressed as

T (G) =
∫

T (θ)dG(θ), (11)

where T (θ) is any integrable function with respect to G(θ)

and T (θω(j) ) �= T (θω(k) ), j �= k (T (θ) = θ , for example).
The traditional labeling methods, given the found labels
(ω̂1, . . . , ω̂N), estimate G by

Ĝ(θ) = 1

N

N∑

t=1

I (θ
ω̂t
t ≤ θ)

and T (G) by

T (Ĝ) = 1

N

N∑

t=1

T (θ
ω̂t
t ), (12)

where I (·) is the index function and θ t ≤ θ is evaluated ele-
ment wise. For our model based labeling method, one might
also estimate G by

Ĝ(θ) = 1

N

N∑

t=1

m!∑

j=1

{p̂tj I (θ
ω(j)

t ≤ θ)}, (13)

which is the distribution function that puts the point mass
p̂tj /N on θ

ω(j)

t , t = 1, . . . ,N, j = 1, . . . ,m!. Then the quan-
tity T (G) can be estimated by

T (Ĝ) = 1

N

N∑

t=1

m!∑

j=1

p̂tj T (θ
ω(j)

t ). (14)

Note that the weighted average (14) mimics the idea of the
M step in (9).

One might expect that the weighted average (14) could
reduce the bias of Bayesian inference compared to the tra-
ditional method (12), which uses the single best label for
each sample. (Note that, in finite mixture model theory, es-
timating the missing component-indicator variables directly
as unknown parameters could lead to inconsistent inference
(McLachlan and Peel 2000, Sect. 2.21)). However, it is very

difficult to verify this even using the simulation study. In
fact, the bias or mean square errors are even undefined for
the labeling problems in simulation study. For example, sup-
posing one wants to estimate the bias or mean square errors
of T (Ĝ) with T (θ) = θ for a certain labeling method, one
needs to find T (Ĝ) for many replicates. For each replicate,
one uses certain labeling method to label the samples and
then uses the labeled samples to estimate T (G). Although
T (Ĝ)’s are well defined for each replicate, they might have
different label meaning for different replicates, because the
labeled samples across different replicates need not have the
same label meaning, i.e., the modal regions recovered might
not be the same for different replicates. Hence, there is an
issue about how to align/label the T (Ĝ)’s across different
replicates when comparing the bias or mean square errors of
T (Ĝ)’s for different labeling methods. Without knowing the
true alignment of T (Ĝ)’s, some arbitrary alignment might
even give misleading comparison results. This requires fur-
ther research.
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