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a b s t r a c t

Finite mixture of regression (FMR) models can be reformulated as incomplete data
problems and they can be estimated via the expectation–maximization (EM) algorithm.
The main drawback is the strong parametric assumption such as FMRmodels with normal
distributed residuals. The estimation might be biased if the model is misspecified. To relax
the parametric assumption about the component error densities, a newmethod is proposed
to estimate themixture regression parameters by only assuming that the components have
log-concave error densities but the specific parametric family is unknown.

Two EM-type algorithms for the mixtures of regression models with log-concave error
densities are proposed. Numerical studies are made to compare the performance of our
algorithms with the normal mixture EM algorithms. When the component error densities
are not normal, the new methods have much smaller MSEs when compared with the
standard normal mixture EM algorithms. When the underlying component error densities
are normal, the newmethods have comparable performance to the normal EM algorithm.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Suppose we have n subjects where the measurement of observation i is a d-dimensional vector xi = (xi1, . . . , xid)T for
i = 1, . . . , n. Additionally, for a fixed finite integer k, xi has a k-component mixture density of f : Rd

→ R:

f (xi;ψ) =

k
j=1

λjgj(xi; θj), (1.1)

where θj ∈ Θj ⊆ Rqj is the parameter corresponding to the component density gj, λj’s are themixing proportions,λj ∈ (0, 1)

for j = 1, . . . , k,
k

j=1 λj = 1, andψ = (λ1, . . . , λk−1, θ
T
1, . . . , θ

T
k )

T
∈ R

k
j=1 qj+k−1. Model like (1.1) is called a finitemixture

model, which provides a flexible methodology when the observations are from a number of classes with unknown class
indicators.

Finite mixture models are widely used in econometrics, biology, genetics, and engineering; see, e.g. Frühwirth-Schnatter
(2001), Grün and Hornik (2012), and Liang (2008) and Plataniotis (2000). For this reason, there is a rich history of studying
mixture models both theoretically and practically. Everitt and Hand (1981), Lindsay (1995), and McLachlan and Peel (2000)
provided great summaries of the theories, algorithms, and many technical details of mixture models.
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When a random variable has a finite mixture density that depends on certain covariates, we obtain a finite mixture of
regression (FMR) model. Suppose we observe univariate response yi and p-dimensional covariate xi, the FMR model can be
written as follows:

f (yi|xi;ψ) =

k
j=1

λjgj(yi − xTi βj), (1.2)

where βj ⊆ Rp, λj ∈ (0, 1),
k

j=1 λj = 1,ψ = (λ1, . . . , λk−1,β
T
1, . . . ,β

T
k )

T
∈ Rkp+k−1, and gj is a parametric distribution

function, such as normal, for j-th component, j = 1, . . . , k.
The parametric FMR model (1.2) can be estimated through the maximum likelihood estimators. As there are usually no

explicit solutions to the unknown parameters, it is natural to reformulate the likelihood as an incomplete data problem and
apply the expectation–maximization (EM) algorithm for the FMRmodels; see, e.g. Dempster et al. (1977) andMcLachlan and
Krishnan (2007). Besides estimating the parameters in the FMRmodels, the EMalgorithms also provide the probabilities that
an observation belongs to certain classes. Consequently, FMR models can also be considered as unsupervised classification
methods, even though clustering might not always be the goal.

Usually people assume that the densities gj’s belong to certain parametric families, e.g. normal distribution. These
parametric assumptions are often too strong and restrictive. There exist some previousworks forModels (1.1) and (1.2) with
non-normal component error densities gj’s. Galimberti and Soffritti (2014), Song et al. (2014), Ingrassia et al. (2014), Punzo
and McNicholas (2014), and Yao et al. (2014) discussed clustering and FMR model with heavy-trailed error distributions
such as t or Laplace distributions. Liu and Lin (2014), Lin et al. (2007), Lin (2010), Zeller et al. (2011), and Lachos et al.
(2011) explored the finitemixturemodels with skewed error distributions such as skewed-normal or skewed-t distribution.
Verkuilen and Smithson (2012), Ingrassia et al. (2015), Punzo and Ingrassia (2016), and Bartolucci and Scaccia (2005)
discussed the FMR model with other specific families such as beta or exponential distribution.

These previous works adjusted some certain model misspecification. However, most of the time, we are still not sure
which parametric family we should apply, say error densities from logistic distribution vs Laplace distribution. Moreover,
the parameter estimation may still be biased if the parametric model is misspecified. Another drawback is that each model
requires a specific EM algorithmbased on the parametric assumption. As a result, it would be valuable to have a universal EM
algorithm for all, or at least some classes of the FMRmodels. Possible solutions include traditional nonparametric methods,
e.g. Hunter and Young (2012) and Wu and Yao (2016), to adjust the parametric model mis-specification. These traditional
nonparametric methods, e.g. kernel methods, bring new difficulties in selecting the tuning parameters.

To relax the parametric assumption, nonparametric shape constraints are becoming increasingly popular. In this paper,
we make one shape constraint instead of a specific parametric assumption for each component density. We assume each
component density gj to be log-concave. A density g(x) is log-concave if its log-density,φ(x) = log g(x), is concave. Examples
of log-concave densities include, but are not limited to normal, Laplace, chi-square, logistic, gamma with shape parameter
greater than 1, and beta distributionwith both parameters greater than 1. Log-concave densities are unimodal but unimodal
densities are not necessarily log-concave. Log-concave densities havemany favorable properties as described by Balabdaoui
et al. (2009). To estimate the log-densityφ(x), Dümbgen et al. (2011) proposed an estimator bymaximizing a log-likelihood-
type functional:

L(φ,Q ) =


φdQ −


exp{φ(x)}dx+ 1, (1.3)

where Q ∈ Q, Q is the family of all d-dimensional distributions, φ ∈ Φ and Φ is the family of all concave functions. For
linear regression with log-concave error density, Dümbgen et al. (2011) proposed an estimator by maximizing:

L̂(φ,β,Q ) =
1
n

n
i=1

φ(yi − xTi β)−


exp{φ(x)}dx+ 1. (1.4)

Such estimators, like the maximizers of (1.3) and (1.4), are called log-concave maximum likelihood estimators (LCMLEs),
which were studied by, for example, Dümbgen and Rufibach (2009), Cule et al. (2010), Cule and Samworth (2010), Chen and
Samworth (2013), and Dümbgen et al. (2011). Dümbgen et al. (2011) proved the existence, uniqueness, and consistency
of LCMLEs for (1.3) and (1.4) under fairly general conditions. These estimators provide more generality and flexibility
without any tuning parameter. For log-concave mixture models, Chang and Walther (2007) proposed a log-concave
EM-type algorithm formixture density estimation, alongwith the application in clustering. Hu et al. (2016) further proposed
the LCMLE, which is the maximizer of a log-likelihood type functional, and proved the existence and consistency for the
LCMLE for the log-concave mixture models. To the best of our knowledge, none of the existing works have studied the
log-concave FMR models as well as their computational algorithms. This paper aims to fill in this gap.

In this paper,we adopt the idea of log-concave density estimation and combine itwith the FMRmodels. The identifiability
of the proposed model has been established by Wang et al. (2012), Balabdaoui and Doss (2014), and Wu and Yao (2016).
We propose two EM-type algorithms, which aim at adjusting the model misspecification. The remainder of this paper is
organized as follows. We introduce the basic setup, model details and notations in Section 2. We propose the EM-type
algorithms for the log-concave mixtures of regression models in Section 3. Simulation studies and real data analysis are
conducted in Sections 4 and 5. We end the paper with a short conclusion in Section 6.
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2. Mixtures of regression models with log-concave error densities

In this paper, we let Z be a latent variable with P(Z = j) = λj, where λj ∈ (0, 1), and
k

j=1 λj = 1 for j = 1, . . . , k. While
given the latent variable Z = j, the response yi has a linear relationship with xi ∈ Rp:

yi = xTi βj + ϵj, (2.1)

where βj = (β0,j, β1,j, . . . , βp−1,j)
T
∈ Rp and ϵj is the error term with the distribution function gj(j = 1, . . . , k). We

assume that each component’s error distribution gj is an unknown density function with the mean 0 for j = 1, . . . , k. If we
do not assume a zero mean for gj,βj does not contain the intercept term accordingly. To relax the traditional parametric
assumption about gj, we only assume that gj’s are log-concave, i.e. log gj is concave for j = 1, . . . , k. We define θj = (λj,β

T
j )

T

for j = 1, . . . , k and θ = (θT1, . . . , θ
T
k )

T . The likelihood function for the mixture of regressions model can be presented as:

f (yi|xi, θ, g) =
k

j=1

λjgj(yi − xTi βj), (2.2)

where θ ∈ Θ = {θ = (θT1, . . . , θ
T
k )

T
| βj ∈ Rp, λj ∈ (0, 1),

k
j=1 λj = 1} ⊂ Rkp+k−1.

Let y = (y1, . . . , yn)T ∈ Rn, xi = (1, xi,1, . . . , xi,p−1)T and X = (x1, . . . , xn)T ∈ Rn×p be the n observations for the
mixture of regressions model, where n ≫ kp + k − 1. In order to estimate the model (2.2), it is natural to maximize the
observed log-likelihood function:

ℓ(θ, g|X, y) =
n

i=1

log
k

j=1

λjgj(yi − xTi βj), (2.3)

where gj(x) = exp{φj(x)} for some unknown concave function φj(x).

3. The EM-type algorithms for log-concave FMRmodels

We define the missing value Z = (z1, . . . , zn)T ∈ Rn×k, where zi = (zi1, . . . , zik)T (i = 1, . . . , n) is a k-dimensional
indicator vector with its j-th element given by

zij =

1 if (xi, yi) belongs to j-th group;
0 otherwise .

Consequently, the complete log-likelihood for Eq. (2.3) is:

ℓc(θ, g|X, y, Z) =
n

i=1

k
j=1

zij{log λj + log gj(yi − xTi βj)}. (3.1)

In the E-step, given the current estimate θ(t) and g(t)
j ’s, we need to compute

Q (θ, g|θ(t), g(t),X, y) = E{ℓc(θ, g|X, y, Z) | θ(t), g(t),X, y},

which is equivalent to computing

z(t+1)
ij = E(Zij|θ(t), g(t),X, y) = Pr(Zij = 1|θ(t), g(t),X, y)

=
λ

(t)
j g(t)

j (yi − xTi β
(t)
j )

k
h=1

λ
(t)
h g(t)

h (yi − xTi β
(t)
h )

. (3.2)

In M-step, we need to maximize the following Q function:

Q (θ, g|θ(t),X, y) =
n

i=1

k
j=1

z(t+1)
ij {log λj + log gj(yi − xTi βj)}

=

n
i=1

k
j=1

z(t+1)
ij log λj +

n
i=1

k
j=1

z(t+1)
ij log gj(yi − xTi βj). (3.3)
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The first part of (3.3) is maximized by λ
(t+1)
j =

1
n

n
i=1 z

(t+1)
ij , j = 1, . . . , k. However, for the second part, there is no

explicit solution for βj’s and gj’s. Consequently, we propose to alternatively update gj’s and βj’s to maximize the second part
of (3.3).

It is also well known that MLEs can be sensitive to outliers, see e.g. Yao et al. (2014) and García-Escudero et al. (2009). To
overcome this problem, we further propose a robust technique, which adopts the idea of least trimmed squares (LTS), see
e.g. Rousseeuw (1985) for a detailed description of LTS. For each algorithm, when updating λj’s and βj’s in the tth iteration
(j = 1, . . . , k), we drop s observations with the least log-likelihood values. In that way, we sacrifice some efficiency to
gain the robustness to the outliers. The number s is the trimming tuning parameter, which satisfies 0 < s < n/2. In this
paper, wemainly use this trimmed idea to get a stable estimate of log-concave component error densities while enjoying its
robustness when the component error densities are highly skewed or have heavy tails. Our empirical experience suggests
that the choice of s = ⌊n/40⌋works well. Note that a larger value of s would make our algorithms more robust if there are
outliers in the dataset and the sample size is not too small.

Our methodology is summarized as follows. First, we apply some stochastic search strategy, which will be addressed
later, to create the initial value for normal mixtures of regressionmodels from function regmixEM in R package mixtools,
see Benaglia et al. (2009), until convergence.We treat the outcome of the normalmixture EMalgorithmas the starting values
for our EM-type algorithms, i.e. ψ(0)

= (λ̂
(0)
1 , . . . , λ̂

(0)
k , β̂

(0)T
1 , . . . , β̂

(0)T
k )T . The normal mixture of regressions model usually

provides good initial values and our proposed EM algorithm will further improve the estimate if the error density is not
normally distributed. The initial estimated density gj can be obtained by the function mlelcd in R package LogConcDEAD
(Cule et al., 2009).

First, we propose Algorithm 3.1 for the case that all components have the same error density g .

Algorithm 3.1. The EM-type algorithm when all gj’s are the same, i.e. gj ≡ g .
Initialize ψ(0) and z(0)

ij from normal mixture EM algorithm with equal variances and initialize the trimmed index subset
of size n− s, denoted by I(0), which has the n− s largest log-likelihoods. Initialize g(0) by the function mlelcd through fitted
residuals yi − xTi β

(0)
j with weights z(0)

ij for i = 1, . . . , n, j = 1, . . . , k.
In tth iteration, it consists of the following steps.
E-step: Given ψ(t) and g(t), we calculate

z(t+1)
ij = E(Zij|X, y,ψ(t), g(t)) =

λ
(t)
j g(t)(yi − xTi β

(t)
j )

k
h=1

λ
(t)
h g(t)(yi − xTi β

(t)
h )

, (3.4)

for i = 1, . . . , n, j = 1, . . . , k.
M-step:
(A) Calculate the log-likelihood value for each observation:

ℓ
(t)
i = ℓ(xi, yi|g(t),ψ(t)) = log

k
j=1

λ
(t)
j g(t)(yi − xTi β

(t)
j ),

from i = 1, . . . , n. Update the trimmed index subset of size n−s, denoted by I(t+1), which has the n−s largest log-likelihoods.
(B) Update λ simply through

λ
(t+1)
j =

1
n− s


i∈I(t+1)

z(t+1)
ij , j = 1, . . . , k. (3.5)

(C) Update β:

β̃
(t+1)
j ← argmax

βj


i∈I(t+1)

z(t+1)
ij log g(t)(yi − xTi βj), j = 1, . . . , k. (3.6)

(D) Shift the intercept of β̃
(t+1)
j so that the residuals have a zero mean.

β̂
(t+1)
j = (β̂

(t+1)
j,0 , β̃

(t+1)
j,1 . . . , β̃

(t+1)
j,p−1 ),

where

β̂
(t+1)
j,0 = β̃

(t+1)
j,0 + c(t+1)

j with c(t+1)
j =

1
n− s


i∈I(t+1)

z(t+1)
ij (yi − xTi β̃

(t+1)
j ),

for j = 1, . . . , k.
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(E) Update g by:

g(t+1)
← argmax

g∈G

n
i=1

k
j=1

z(t+1)
ij log g(yi − xTi β̂

(t+1)
j ), (3.7)

where G is the family of all log-concave densities.
In (3.6), βj is updated through the function optim in R. The evaluation of logg(t)(yi− xTi β

(t+1)
j ) is calculated through the

function dlcd in R package LogConcDEAD. In (3.7), the error density g is updated through the function called mlelcd in
the R package LogConcDEAD through kn fitted residuals yi − xTi β

(t+1)
j with weights z(t+1)

ij , i = 1, . . . , n, j = 1, . . . , k. The
algorithm is terminated if either tmax of iterations has been reached, or if ℓ(t+1)

− ℓ(t) < 10−8, where ℓ(t)
=


i∈I(t) ℓ

(t)
(i) is

the trimmed log-likelihood.

The algorithm usually converges after 10 iterations for p = 2 or 3. For each iteration, the most time consuming step is
the (E) step for the density updating, which usually takes about 20 s for a sample size of 400. Consequently, the average
computational time is about 3–5 min.

To avoid the local maximum, we follow the similar stochastic search strategy proposed by Dümbgen et al. (2013). We
restart the entire algorithm 20 times. For each restart, we randomly sample ⌊αn⌋ (α ∈ (0, 1)) observations k times, fit k
simple linear regressions, obtain the k groups of coefficients, and treat them as the starting values of β’s in the normal EM
algorithm for k components. Additionally, we generate λj’s from a Uniform(0,1) distribution, scale them so that their sum is
one, and treat them as the starting values of the mixing proportions in the normal EM algorithm. We then fit a normal FMR
model, obtain the estimated coefficients, and use them as the initial values for our algorithm. We repeat this procedure 20
times and select the solution with the highest trimmed likelihood to avoid getting stuck in a local maximum.

The LCMLEg has been studied byWalther (2002) and Rufibach (2007). Here, we briefly summarize the results. Given i.i.d.
data X1, . . . , Xn which follow a distribution g , the Log-concave Maximum Likelihood Estimator (LCMLE)g exists uniquely
and has support on the convex hull of the dataset (by Theorem 2 of Cule et al., 2010). In addition, logg is a piecewise linear
function whose knots are a subset of {X1, . . . , Xn}. Walther (2002) and Rufibach (2007) provided algorithms for computingg(Xi), i = 1, . . . , n. The entire log-density logg canbe computedby linear interpolation between logg(X(i)) and logg(X(i+1)).
Walther (2002) and Rufibach (2007) also pointed out that it is natural to apply weights in the density estimation step of the
EM-type algorithms. The z(t+1)

ij ’s can be viewed asweights for the kn fitted residuals yi−xTi β
(t+1)
j (i = 1, . . . , n, j = 1, . . . , k),

while estimating the log-concave density g for M-step 3 in our algorithms.
A more general case is that the components’ error terms do not share a common distribution, i.e. at least one gj is

different. Consequently, we propose Algorithm 3.2. The main difference is that, in Algorithm 3.2, each component density
gj is estimated by the iterative residuals only from the according component class, instead of being estimated by the entire
residuals from all components in Algorithm 3.1.

Algorithm 3.2. The EM-type algorithm when gj’s are different.
Initialize ψ(0) and z(0)

ij from normal mixture EM algorithm with unequal variances and initialize the trimmed subset of
size n − s, denoted by I(0), which has the n − s largest log-likelihoods. For j ∈ {1, . . . , k}, initialize g(0)

j by the function
mlelcd through fitted residuals yi − xTi β

(0)
j with weights z(0)

ij for i = 1, . . . , n.
In tth iteration, it consists of the following steps.
E-step: Given ψ(t) and g(t), we calculate

z(t+1)
ij = E(Zij|X, y,ψ(t), g(t)) =

λ
(t)
j g(t)

j (yi − xTi β
(t)
j )

k
h=1

λ
(t)
h g(t)

h (yi − xTi β
(t)
h )

, (3.8)

for i = 1, . . . , n, j = 1, . . . , k.
M-step:
(A) Calculate the log-likelihood value for each observation:

ℓ
(t)
i = ℓ(xi, yi|g(t),ψ(t)) = log

k
j=1

λ
(t)
j g(t)

j (yi − xTi β
(t)
j ),

for i = 1, . . . , n. Update the trimmed subset of size n− s, denoted by I(t+1), which has the n− s largest log-likelihoods.
(B) Update λ simply through

λ
(t+1)
j =

1
n− s


i∈I(t+1)

z(t+1)
ij , j = 1, . . . , k. (3.9)
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Table 1
The error densities for Model I to Model VIII and the summary of the according features.

ei ’s distribution log-concave Symmetric

Model I Standard Normal: N(0,1) Yes Yes
Model II/VII Centered Beta: 3(Beta(1, 2)− 1/3) Yes No
Model III/VIII Centered Exponential: Exp(2)− 2 Yes No
Model IV Standard Laplace: Laplace(0, 1) Yes Yes
Model V Centered Beta:

4(Beta(0.25, 0.75)− 1/4)
No No

Model VI Centered t: t4 No Yes

(C) Update β:

β̃
(t+1)
j ← argmax

βj


i∈I(t+1)

z(t+1)
ij log g(t)

j (yi − xTi βj), j = 1, . . . , k. (3.10)

(D) Shift the intercept of β̃
(t+1)
j so that the residuals have a zero mean.

β̂
(t+1)
j = (β̂

(t+1)
j,0 , β̃

(t+1)
j,1 . . . , β̃

(t+1)
j,p−1 ),

where

β̂
(t+1)
j,0 = β̃

(t+1)
j,0 + c(t+1)

j with c(t+1)
j =

1
n− s


i∈I(t+1)

z(t+1)
ij (yi − xTi β̃

(t+1)
j ),

for j = 1, . . . , k.
(E) Update gj by:

g(t+1)
j ← argmax

gj∈G

n
i=1

z(t+1)
ij log gj(yi − xTi β̂

(t+1)
j ), (3.11)

for j = 1, . . . , k, where G is the family of all log-concave densities.
In (3.11), the j-th component density gj is updated through the function called mlelcd in the R package LogConcDEAD

through n fitted residuals yi − xTi β
(t+1)
j with weights z(t+1)

ij , i = 1, . . . , n for j ∈ {1, . . . , k}. The algorithm is terminated if
either the maximum number of iterations tmax has been reached, or if ℓ(t+1)

− ℓ(t) < 10−8, where ℓ(t)
=


i∈I(t) ℓ

(t)
i is the

trimmed log-likelihood for tth iteration.

4. Numerical experiments

4.1. Simulation setup

In this section,we study the performance of our EM-type algorithms and compare themwith the according EMalgorithms
for the normal FMR models. For the convenience purposes, in the following text and tables, we denote Algorithm 3.1 as
‘‘LCD-EM1’’ and compare it with the normal EM algorithm with equal variance and similar trimming techniques, denoted
as ‘‘Normal-EM1’’. We also denote Algorithm 3.2 as ‘‘LCD-EM2’’ and compare it with the normal EM algorithmwith unequal
variance and similar trimming techniques, denoted as ‘‘Normal-EM2’’.

We generate data from 2-component log-concave FMR models:

yi =

βT
1xi + ei,1 with probability λ;

βT
2xi + ei,2 with probability 1− λ.

(4.1)

For Model I through Model VI, we set xi = (1, x1,i)T , where x1,i’s are independently generated from Uniform(−1, 3).
We let λ = 0.3,β1 = (β0,1, β1,1)

T
= (0, 2)T , and β2 = (β0,2, β1,2)

T
= (−2, 5)T . For Model VII and Model VIII,

we set xi = (1, x1,i, xi,2)T , where x1,i’s and x1,2’s are both independently generated from Uniform(−1, 3). We let λ =
0.3,β1 = (β0,1, β1,1, β2,1)

T
= (0, 2, 1)T , and β2 = (β0,2, β1,2, β2,2)

T
= (−2, 5, 3)T . We let ei,1 = ei,2 ≡ ei, where ei’s

are independently and identically generated based on the parametric form from Table 1. For all eight models, we generate
data for a finite sample size of n = 400.

For Model IX to Model XI, we let xi = (1, x1,i)T , where x1,i’s are independently generated as Uniform(−1, 3). We set
n = 400, λ = 0.4,β1 = (β0,1, β1,1)

T
= (0, 1)T , and β2 = (β0,2, β1,2)

T
= (−3, 4)T . The component error densities are

generated based on the parametric form of Model IX to Model XI in Table 2.
For all nine models, we repeat the simulation N = 200 times. We visualize the generated data of Models III and IX for

a single replicate in Fig. 1. For both replicates, our proposed algorithm has monotone increasing log-likelihood. It is also
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Table 2
The error densities for Models IX, X, and XI.

ei,1 ’s distribution ei,2 ’s distribution

Model IX N(0,1) N(0,0.25)
Model X 3(Beta(1, 2)− 1/3) N(0, 0.25)
Model XI 2

3 Laplace(0, 1)
2
3 (Exp(2)− 2)

(a) Model III: Generated data. (b) Model XI: Generated data.

(c) Model III: Monotone increasing likelihood. (d) Model XI: Monotone increasing likelihood.

Fig. 1. Generated data for Models III and XI (green and red lines represent the true coefficients for the two components) and the monotone increasing
log-likelihood value in each iteration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

valuable to compare our proposed algorithmwith some other parametric EM algorithms that are proposed in the literature.
In this study,we select twopopular ones, EMalgorithm for Laplace-FMRmodels (denoted as ‘‘Laplace-EM’’) and EMalgorithm
for t-FMR models (denoted as ‘‘t-EM’’). We compare the same criteria in Model IV and Model VI.

There is awell-known label switching issuewhen sorting the labels formixturemodels (Stephens, 2000; Yao and Lindsay,
2009). In this paper, we adopt themethod of Yao (2015) to find the labels byminimizing the distance between the estimated
classification probabilities and the true labels over different permutations. After sorting the labels, we compute the MSE of
all parameters over the N replicates, i.e. MSE = N−1

N
h=1(θ̂h − θ0)

2, where θ̂h = (β̂
T
1, β̂

T
2, λ̂)Th is the vector of parameter

estimates of the hth replicate and θ0 is the true value for the vector of the parameters. As the mixtures of regression models
serve as a methodology for classification, we compute the average of misclassification numbers (AMN) as well.

4.2. Selecting the trimming constant s and the stochastic search proportion α

One important key step for both algorithms is to select the appropriate trimming constant s and the stochastic search
proportion α. Typically s is a relatively small positive constant. If s is too small (approaching zero), the algorithms do not
have enough robustness powers against the outliers. If s is too large, we scarify too much on the efficiency. Choosing the
trimming tuning parameters adaptively is not easy and has long been a challenging problem. One option is to choose s using
the graphical way suggested by Neykov et al. (2007). In practice, we use s = 0.01–0.05. In our later simulation example,
we choose s = 0.025, which means we drop 2.5% of the observations while updating the parameter. Table 3 shows the
simulation results of MSE’s and AMN ’s over N = 200 replicates for Model III with different trimming size. We observe that
the trimming size between 0.01 or 0.05 is appropriate.

On the other hand, the selection of α is not that sensitive as long as α ≤ 0.5.We takeModel II as an example. In Fig. 2, we
plot the R(β) vs different α’s, where R(β) = N−1

N
h=1 ∥β̂h − β0∥

2,β0 is the vector of true coefficient values, and β̂h is the
estimator for replicate h. We observe that R(β) is almost at the same level for α ∈ (0, 0.5). As α approaching 1, though not
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Table 3
Simulation results for Model III with different trimming size.

Model Method β0,1 β1,1 β0,2 β1,2 λ AMN

LCD-EM1 (s = 0) 0.01900 0.05215 0.02505 0.01878 0.00500 48.15
LCD-EM1 (s = 0.01) 0.01770 0.05215 0.02474 0.01534 0.00307 48.02

III LCD-EM1 (s = 0.025) 0.01095 0.02746 0.02039 0.01676 0.00304 47.49
LCD-EM1 (s = 0.05) 0.01010 0.01910 0.02778 0.02018 0.00359 51.60
LCD-EM1 (s = 0.10) 0.01691 0.02437 0.02855 0.03010 0.00313 51.45

Table 4
Simulation results for Models I–VI.

Model Method β0,1 β1,1 β0,2 β1,2 λ AMN

I LCD-EM1 0.03096 0.01028 0.00874 0.00380 0.00081 41.55
Normal-EM1 0.02671 0.00992 0.00819 0.00348 0.00072 41.43

II LCD-EM1 0.00847 0.00273 0.00273 0.00051 0.00101 26.95
Normal-EM1 0.01310 0.00341 0.00416 0.00134 0.00671 29.68

III LCD-EM1 0.01095 0.02746 0.02039 0.01676 0.00304 47.49
Normal-EM1 0.14997 0.04237 0.038357 0.03090 0.00402 62.17

IV
LCD-EM1 0.03794 0.01526 0.01304 0.00475 0.00152 54.25
Normal-EM1 0.05371 0.01558 0.01538 0.00686 0.00146 55.86
Laplace-EM 0.03314 0.02184 0.01404 0.00354 0.00102 54.08

V LCD-EM1 0.01639 0.00317 0.00695 0.00031 0.00113 33.13
Normal-EM1 0.05458 0.01504 0.02268 0.00480 0.00121 51.66

VI
LCD-EM1 0.01021 0.02783 0.01654 0.01300 0.00245 53.45
Normal-EM1 0.01304 0.03233 0.02011 0.01813 0.00236 54.91
t-EM 0.01421 0.01367 0.00816 0.01416 0.00257 52.08

Fig. 2. Select stochastic search proportion α.

very frequently, the algorithm is more likely to get stuck in some local maximum estimator instead of the local maximum,
as we are repeatedly using the same starting value. In practice, we choose α = 0.10, which usually works very well.

4.3. Simulation results

Table 4 displays the MSEs of parameter estimates (the values of Model IV and Model VI are multiplied by 10) and the
average of misclassification numbers over N = 200 simulations for Algorithm 3.1. For the density which is not normally
distributed, even if not log-concave (Models V and VI), Algorithm 3.1 demonstrates significant improvement over the
traditional normal mixture EM algorithm in terms of much smallerMSE. Especially for Models II, III and V, manyMSEs from
LCD-EM1 are 30% less than those from the Normal-EM1. This phenomena is still true when we increase the dimensionality.
Table 5 displays the simulation results for p = 3. For Models VII and VIII, we still observe much smaller MSEs for LCD-EM1
when comparing with Normal-EM1.

When the error density truly comes from the specific parametric family, the new algorithm still has comparable
performance. TheMSEs of LCD-EM1 is almost the same or only slightly worse than the according parametric EM algorithms
for Model I/IV/VI. Notice that in most cases, we are unsure about the component densities and which parametric EM
algorithm we should apply. In that case, our proposed algorithm shows great flexibility. After fitting this EM algorithm,
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Table 5
Simulation results for Models VII–VIII.

Model Method β0,1 β1,1 β2,1 λ

VII LCD-EM1 0.00001 0.00046 0.00224 0.00040
Normal-EM1 0.00018 0.00589 0.00452 0.00158

VIII LCD-EM1 0.04092 0.00027 0.01603 0.00037
Normal-EM1 0.19841 0.00022 0.09888 0.00040

Model Method β0,2 β1,2 β2,2 AMN

VII LCD-EM1 0.00163 0.00062 0.00051 22.32
Normal-EM1 0.01002 0.00139 0.00247 24.38

VIII LCD-EM1 0.00939 0.00009 0.00001 36.29
Normal-EM1 0.03050 0.00440 0.00436 47.90

Table 6
Simulation results for Models IX–XI.

Model Method β0,1 β1,1 β0,2 β1,2 λ AMN

IX LCD-EM2 0.01473 0.00700 0.00187 0.00088 0.00117 30.21
Normal-EM2 0.01390 0.00551 0.00175 0.00081 0.00087 29.88

X LCD-EM2 0.00543 0.00122 0.00199 0.00080 0.00084 26.97
Normal-EM2 0.00633 0.00266 0.00183 0.00073 0.00075 27.89

XI LCD-EM2 0.00658 0.00436 0.03836 0.00004 0.00022 49.20
Normal-EM2 0.01943 0.01671 0.08099 0.00004 0.00185 61.28

(a) Model III: fitted LCMLE vs true density. (b) Model XI: fitted LCMLEs vs true densities.

Fig. 3. Fitted LCMLE for Models III and XI vs the true densities.

one could characterize the component densities quite well and can further select the appropriate parametric EM algorithm
to get further precisions.

To show the performance of Algorithm 3.2, we report the result over 200 replicates and compare the same criteria as we
did for (4.1). Similar phenomena (shown in Table 6) are observed for Algorithm3.2. For the component that truly comes from
normal distribution (Model IX and Component 2 of Model X), our proposed algorithm has comparable performance to the
normal EM algorithmwith unequal variances and a similar trimming technique. For the components which aremisspecified
(Model XI and component 1 of Model X), potential improvements are gained if we apply LCD-EM2 instead of the Normal-
EM2.

To further illustrate the performance of LCMLE for a single replicate, Fig. 3(a) shows the fitted LCMLE for a single replicate
of Model III’s simulation. The fitted error density by Algorithm 3.1 (green dashed line) approximates the true density (red
solid line) well, even under a finite sample size of 400. Similar phenomena holds for Algorithm 3.2. The fitted log-concave
error densities for the two components (red and green dashed lines) approximate the true densities (red and green solid
line) for both two components well under a finite sample size of 400 for Model XI.

4.4. Classification results

One important feature of the FMR model is that it serves as a tool of unsupervised learning. Consequently, we compare
the average number of misclassifications (AMN ’s) among the 200 replicates in Tables 4 and 6. For Model I andModel VII, the
averagemisclassification numbers for our EM-type algorithms are almost the same or only a little bit higher than the normal
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(a) Model I: Normal FMR Model. (b) Model III: Log-concave FMR Model.

(c) Model IX: Normal FMR Model. (d) Model XI: Log-concave FMR Model.

Fig. 4. Numbers of misclassifications: normal mixture EM algorithm vs log-concave mixture EM algorithm for mixtures of regression models. The solid
lines represent the identity.

EM algorithmwith similar trimming techniques. When the models are misspecified, the average misclassification numbers
obtained from log-concave FMRs are smaller than those from the normal mixture EM algorithm with similar trimming
techniques.

To further illustrate the classification result, we show the classification results for every replicate inModels I, III, IX andXI.
In Fig. 4, each point represents a single replicate. The x-axis represents the number of misclassifications by normal mixture
EM algorithm. The y-axis represents the number ofmisclassifications by our log-concavemixture EM algorithm.We observe
significant improvement in the sense of misclassification rates when the models are misspecified (in Fig. 4(b) and (d), the
majority of points are under the identical line). When the component error densities are indeed normal, we observe no
significant penalties if we apply the log-concave EM algorithm (Fig. 4(a) and (c)).

4.5. Robustness to outliers

Weartificially createModel XII, which has the setup of (4.1) with xi = (1, x1,i)T , where x1,i’s are independently generated
as Uniform(−1, 3). We set λ = 0.3,β1 = (β0,1, β1,1)

T
= (0, 2)T , and β2 = (β0,2, β1,2)

T
= (−1, 2)T . We let ei be

Laplace(0, 1) and artificially replace 10 observations (2.5%) with the extreme outliers. We generated five y values at x = −1
from a Uniform(−15,−10). We also generated another five y values at x = 2 from a Uniform(20, 25).

We report the similar criteria in Table 7. We observe that combining log-concave EM algorithm with trimming has the
best robustness against the non-normal distributed density and outliers.

5. Data analysis

The tone dataset (from package mixtools) contains 150 trials from the same musician; see Cohen (1980) for a detailed
description. In each trial, a fundamental tone, which was purely determined by a stretching ratio, was first provided to
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Table 7
Simulation results for Model XII.

Model Method β0,1 β1,1 β0,2 β1,2 λ AMN

LCD-EM1 (s = 0) 0.12227 0.11354 0.02471 0.00086 0.00019 54.05
LCD-EM1 (s = 0.01) 0.08403 0.01152 0.02666 0.00084 0.00009 53.80
LCD-EM1 (s = 0.025) 0.03180 0.00013 0.02359 0.00047 0.00001 53.35

XII LCD-EM1 (s = 0.05) 0.05297 0.00427 0.02595 0.00043 0.00015 53.35
Normal-EM1 (s = 0) 0.16953 0.22098 0.20755 0.17174 0.00423 66.35
Normal-EM1 (s = 0.025) 0.14019 0.04473 0.05549 0.16231 0.00459 65.35
Normal-EM1 (s = 0.05) 0.03666 0.02956 0.09437 0.02881 0.00348 64.75

Fig. 5. Tone data from the tone perception study of Cohen (1980).

the musician. Then the musician tuned the tone one octave above. The tuning ratio, which was measured as the adjusted
tone divided by the fundamental tone, was recorded. The purpose of this experiment was to demonstrate the ‘‘two musical
perception theory’’. We give the scatter plot of the data in Fig. 5.

For the entire dataset, by applying Algorithm LCD-EM1 with k = 2, we obtain the fitted coefficients (shown as the solid
lines in Fig. 5) and the fitted log-likelihood value.We refit the datawith AlgorithmNormal-EM1, and report the same criteria
as we did for Algorithm 3.1.

To further demonstrate the prediction power of Algorithms 3.1, we apply a 10-folder cross validation to the dataset.
Denote the full dataset as D . We randomly partition D into a training set Rh and a testing set Th with the property
D = Rh + Th for h = 1, . . . ,H , where H = 10. For each folder h ∈ 1, . . . ,H , we estimated the parameters λ̂h

j ’s and

β̂
h
j ’s, as well as the estimated log-concave density gh through the training set Rh. We then calculate the following two types

of mean square errors:

• E1 = H−1
H

h=1


i∈Th

k
j=1 p̂

h
ij{(yi − xTi β̂

h
j )

2
};

• E2 = H−1
H

h=1


i∈Th
minj{(yi − xTi β̂

h
j )

2
};

where p̂hij is the estimated probability that (xi, yi) is from j-th component for folder h:

p̂hij =
λ̂h
j g

h(yi − xTi β̂
h
j )

k
m=1

λ̂h
mgh(yi − xTi β̂

h
m)

,

for i ∈ Th and j ∈ {1, . . . , k}.
We report the same criteria based on the coefficients obtained by the Normal-EM1 algorithm. The results of fitting the

log-concave FMRmodel and the normal FMRmodel are summarized in Table 8. The fitted result obtained by LCD-EM1 has a
much larger log-likelihood. Additionally, Algorithm 3.1 providesmuch smaller mean square errors for both E1 and E2, which
indicates that our proposed algorithm predicts the response more precisely than the traditional normal EM algorithm.
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Table 8
Estimated parameters and other characteristics of LCD-
EM algorithm and Normal-EM algorithm for the tone
dataset.

LCD-EM1 Normal-EM1
Comp 1 Comp 2 Comp 1 Comp 2

β0 −0.0143 1.9488 −0.0388 1.8924
β1 0.9968 0.0263 0.9989 0.0559
λ 0.4253 0.5747 0.3256 0.6744
ℓ 170.91 158.54

E1 0.0039 0.0105
E2 0.0033 0.0041

6. Conclusion and discussion

This paper proposed two robust EM-type algorithms for the log-concavemixtures of regressionmodels. These algorithms
provide more flexibility, which allows a large family of error densities in the mixtures of regression models. By estimating
the log-concave error density in everyM-step of our algorithms, the log-concavemaximum likelihood estimator corrects the
modelmisspecification, e.g. adjusting skewness andheavy tailswhen the error distribution is not normal, in a nonparametric
way without specifying the families of error densities.

Throughnumerical studies, our proposed algorithmshave better performances than the parametric EMalgorithmswhose
parametric families are misspecified. We also observe no significant penalties for applying our proposed algorithms instead
of the according EM algorithms which correctly characterize the error densities in the FMR model.

Future work includes, but is not limited to the theoretical investigation of consistency and convergence properties for
the log-concave FMR models, as an extension of Section 3 of Dümbgen et al. (2011). It would also be a challenging task to
prove the ascending properties for these nonparametric EM algorithms.
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