Endogenous TFP, Labor Market Policies and Loss of Skills

Victor Ortego-Marti
UC Riverside

November 20, 2019
Workshop to celebrate Ricardo Lagos’s research
UC Irvine
Motivation

- Large differences in TFP among OECD countries
 - What determines TFP?

- Search frictions in labor market
 - Average productivity of formed matches
 - affect TFP

- Unemployed workers suffer large productivity losses
 - If more, longer unemployment spells
 - economy less productive

Question:
TFP with search frictions & skill loss during unemp?
Effect of labor market policies on TFP and u?
Motivation

- Large differences in TFP among OECD countries
 - What determines TFP?

- Search frictions in labor market
 - Average productivity of formed matches
 \[\Rightarrow \text{affect TFP} \]
Motivation

- Large differences in TFP among OECD countries
 - What determines TFP?

- Search frictions in labor market
 - Average productivity of formed matches
 ⇒ affect TFP

- Unemployed workers suffer large productivity losses
 - If more, longer unemployment spells
 ⇒ economy less productive
Motivation

- Large differences in TFP among OECD countries
 - What determines TFP?

- Search frictions in labor market
 - Average productivity of formed matches
 ⇒ affect TFP

- Unemployed workers suffer large productivity losses
 - If more, longer unemployment spells
 ⇒ economy less productive

Question:

- TFP with search frictions & skill loss during unemp?
- Effect of labor market policies on TFP and u?
Why skill loss?

- 1960-1995
 - high UI in EU vs US
 - \(u \uparrow \) in EU, \(u \sim \text{constant} \) in US
 - TFP \(\uparrow \) in EU relative to US
Why skill loss?

- 1960-1995
 - high UI in EU vs US
 - $u \uparrow$ in EU, $u \sim$ constant in US
 - TFP \uparrow in EU relative to US

- Theories emphasizing average productivity & role of policy (UI) successful, if UI \uparrow
 \Rightarrow better/productive matches formed
 \Rightarrow TFP \uparrow
Why skill loss?

- 1960-1995
 - high UI in EU vs US
 - $u \uparrow$ in EU, $u \sim$ constant in US
 - TFP \uparrow in EU relative to US

- Theories emphasizing average productivity & role of policy (UI) successful, if UI \uparrow
 \Rightarrow better/productive matches formed
 \Rightarrow TFP \uparrow

- However, 1995-onwards
 - UI = or \uparrow in EU vs US
 - $u \sim$ constant or \uparrow in EU, \sim constant in US
 - TFP \downarrow in EU relative to US
This paper

- Model of TFP à la Lagos (2006)
THIS PAPER

- Model of TFP à la Lagos (2006)

- Search frictions in labor market
 - Endogenous separations, Mortensen Pissarides (1994)
This paper

- Model of TFP à la Lagos (2006)

- Search frictions in labor market
 - Endogenous separations, Mortensen Pissarides (1994)

- Workers lose skills during unemployment
This paper

- Model of TFP à la Lagos (2006)
- Search frictions in labor market
 - Endogenous separations, Mortensen Pissarides (1994)
- Workers lose skills during unemployment
- Aggregate production, TFP determined by
 - Productivity of matches formed/active
 → reservation productivity
 - Aggregate distribution of skills
 → job finding rate, reservation productivity
This paper

- Model of TFP à la Lagos (2006)
- Search frictions in labor market
 - Endogenous separations, Mortensen Pissarides (1994)
- Workers lose skills during unemployment
- Aggregate production, TFP determined by
 - Productivity of matches formed/active
 → reservation productivity
 - Aggregate distribution of skills
 → job finding rate, reservation productivity
- Job finding rate, reservation productivity
 → “sufficient” statistics for TFP
Main Results

- Two opposing channels
 - Average productivity
 - Reservation productivity \uparrow
 \Rightarrow raises TFP (average matches more productive)
 - Skill channel
 - Reservation productivity and job finding rate
 \Rightarrow compositional effect on skill distribution
 \Rightarrow affect TFP

- Effects of UI
 - Small on skill distribution, large on reserv value \Rightarrow TFP \uparrow
 - Large on distribution, small on reserv value \Rightarrow TFP \downarrow

- Additional mechanism joint behavior of UI, u, TFP
 - Quantitatively, skill loss affect impact of UI? (wip...)
Related literature

■ TFP and labor market frictions

■ Search and skill loss

■ Development accounting, no search
Related literature

- Job displacement

- Loss of skills, further evidence
 - motherhood and earnings: Mincer (1979 JPE), Mincer & Ofek (1982 JHE)
 - test scores: Estin Gustavsson (2008)
 - breaks in production: health services, David & Brachet (2011 AEJ Micro), Hockenberry (2014 JHE); data entry, Globerson et al (1989 IIE); mechanical assembly, Bailey (1989 MS); car radio production, Shafer (2001 MS)

- Time continuous, discount rate r

- Agents, risk averse
 - Workers
 - Firms

- Firms post vacancies to find workers

- Unemployed workers search for jobs
SEARCH & MATCHING FRICCTIONS

- Matching function $m(u, v)$
 - Unemployed u, vacancies v
 - Market tightness $\theta = v/u$

- Finding rates
 - Workers: $\theta q(\theta) = \frac{m(u,v)}{u}$
 - Firms: $q(\theta) = \frac{m(u,v)}{v}$

- Exogenous separation at rate s

- Workers leave labor force/die at rate μ
 - Ensures stationarity of endogenous skill distribution
Production function, firm level

- Lagos (2006), Houtthaker (1955)
 - fixed proportion technologies/Leontieff

- Match production technology: $f(x, n, k) = x \min(n, k)$
 - x: match quality, $x \sim G(\cdot)$
 - n: hours
 - k: capital

- Poisson rate λ
 - \rightarrow shock to match quality, new draw from $G(\cdot)$

- k capture scale of operation
 - assumption, all projects same scale
Skill Loss

- Workers suffer skill loss during unemployment

- Two skill levels: \(H, L \)
 - Workers born \(H \)
 - If \(H \) unemployed
 \[\rightarrow \text{become} \; L \; \text{at rate} \; \sigma \]
 - Empirical evidence
 \[\rightarrow \text{skill loss very persistent, does not wash away} \]
 - Tractable, closed form endogenous TFP
 (but can be generalized)

- Low skill \(L \) output
 - \(\delta f(x, n, k) \), with \(0 < \delta < 1 \)
Endogenous skill distribution

- Skill distribution
 \[\to \text{TFP through agg human capital} \]

- Unemployed: \(u_H, u_L \)

- Employed: \(e_H, e_L \)

- Skill distribution
 - Unemployed: \(\Delta_u = u_H/u \)
 - Employed: \(\Delta_e = e_H/e \)
Bellman equations: unemployed workers

- Non-market time
 - H unemp workers: b
 - L unemp workers: $b\delta$

- Bellman unemployed

\[
(r + \mu)U_H = b + \theta q(\theta) \int \max\{W_H(z) - U_H, 0\} dG(z) \\
+ \sigma(U_L - U_H)
\]

\[
(r + \mu)U_L = b\delta + \theta q(\theta) \int \max\{W_L(z) - U_L, 0\} dG(z)
\]
Bellman equations: employed workers

- Wages $w_i(x)$, $i = H, L$

- Bellman employed, $i = H, L$

\[(r + \mu)W_i(x) = w_i(x) + \lambda \int \max\{W_i(z) - U_H, 0\} dG(z)\]

\[\quad - (\lambda + s)(W_i(x) - U_i)\]
Bellman equations: firms

- Profits $\pi_i(x), i = H, L$

- Bellman filled job, $i = H, L$

\[(r + \mu)J_i(x) = \pi_i(x) + \lambda \int \max\{J_i(z) - V, 0\} dG(z)\]
\[- (\lambda + s)(J_i(x) - V),\]

- Bellman vacancy

\[rV = -ck + q(\theta)[\Delta_u \int \max\{J_H(z) - V, 0\} dG(z) + (1 - \Delta_u) \int \max\{J_L(z) - V, 0\} dG(z)]\]

- Assume

 - free entry for vacancies $\Rightarrow V = 0$
 - capital must be pre-installed, rental cost c
Firms profits, H workers

- Similar to Lagos (2006)

- Revenue: $f(x, n, k)$

- Costs:
 - Rental cost of capital: ck
 - Variable cost: ϕn
 - “Fixed” cost: $C(x, \phi)k = \max\{\phi - x, 0\}$
 \[\Rightarrow \text{non-increasing in } x \text{ is enough, Lagos (2006)} \]

\[\Rightarrow \pi_H(x) = f(x, n, k) - w_H(x) - ck - \phi n - C(x, \phi)k \]
Firms profits, \(L \) workers

- Revenue: \(\delta f(x, n, k) \)

- Tractability, costs proportional too (not essential)
 - Rental cost of capital: \(\delta ck \)
 - Variable cost: \(\delta \phi n \)
 - “Fixed” cost: \(\delta C(x, \phi)k \)

\[
\Rightarrow \pi_L(x) = \delta f(x, n, k) - w_L(x) - c\delta k - \phi \delta n - \delta C(x, \phi)k
\]

- If assume same costs
 - \(\rightarrow \) larger effect of skill loss on TFP (share \(L \uparrow \))
Equilibrium

- **Optimal hours**

 \[n(x) = \begin{cases}
 k, & \text{if } \phi < x \\
 0, & \text{if } \phi \geq x
 \end{cases} \]

- **Note: choice of hours**

 ≠ job destruction decision (hoarding possible)

- **Profits**

 \[\pi^H(x) = (x - c - \phi)k - w^H(x). \]
 \[\pi^L(x) = (x - c - \phi)\delta k - w^L(x). \]
Surplus

- Surplus: \(S^i(x) = J^i(x) + W^i(x) - U^i - V, \ i = L, H \)
 - Increasing in \(x \)
 - \(\exists! \ R_i \) such that \(S^i(R_i) = 0, \ i \in \{H, L\} \)

- Assume NB over wages,
 \(\beta \) worker bargaining strength

\[
w_i(x) = \arg \max_{w_i(x)} [W_i(x) - U_i]^\beta [J_i(x) - V]^{1-\beta}.
\]

- Wages

\[
w_H(x) = \beta(x - c - \phi)k + (1 - \beta)(r + \mu)U_H, \ \forall x \geq R_H
\]
\[
w_L(x) = \beta(x - c - \phi)\delta k + (1 - \beta)(r + \mu)U_L, \ \forall x \geq R_L
\]

Reservation values

Proposition

The reservation productivity is larger for workers with low human capital, i.e. $R_H \leq R_L$

- Useful to derive aggregate TFP.

- Intuition: match with $H \rightarrow$ larger surplus

 \Rightarrow firm and worker willing to form less productive matches

 \Rightarrow better matches required with L worker for > 0 surplus

- $\delta = 1 \Rightarrow R_L = R_H$
Equilibrium \(\{\theta, R_L, R_H, \Delta_u, \Delta_e\} \) satisfies

- **Job Creation Condition (JC):**
 \[\Rightarrow \text{Free Entry } V = 0 \]

- **Job Destruction Conditions (JDH, JDL):**
 \[\Rightarrow S^H(R_H) = 0, \ S^L(R_L) = 0 \]

- **Distributions** \(\Delta_u, \Delta_e \) stationary

- Set \(\delta = 1 \) (no skill loss)
 \[\Rightarrow \text{Lagos (2006)} \]
Job Creation Condition

\[
\frac{c}{q(\theta)} = (1 - \beta) \left[\Delta_u \int_{R_H} (z - R_H) dG(z) + (1 - \Delta_u) \delta \int_{R_L} (z - R_L) dG(z) \right] \frac{r + \mu + \lambda + s}{\Delta u}
\]

- Intuition
 - Post vacancies until
 - expected vacancy cost = expected value of filled job
Job Destruction Conditions

\[
(R_H - \phi - c)k + \lambda \int_{R_H} \frac{z - R_H}{r + \mu + \lambda + s} kdG(z) - (r + \mu)U_H = 0
\]

\[
(R_L - \phi - c)\delta k + \lambda \int_{R_L} \frac{z - R_L}{r + \mu + \lambda + s} kdG(z) - (r + \mu)U_L = 0
\]

where

\[
(r + \mu)U_L = b\delta + \beta f(\theta) \int_{R_L} \frac{z - R_L}{r + \mu + s + \lambda} \delta kdG(z)
\]

\[
U_H = \beta(\theta) \left(\frac{r + \mu}{r + \mu + \sigma} \right) \int_{R_H} \frac{z - R_H}{r + \mu + s + \lambda} kdG(z)
\]

\[
+ \frac{\sigma}{r + \mu + \sigma} \beta f(\theta) \int_{R_L} \frac{z - R_L}{r + \mu + s + \lambda} \delta kdG(z) + \left(\frac{r + \mu + \delta \sigma}{r + \mu + \sigma} \right) b
\]
From flow equation + stationarity

\[\Delta u = \frac{\mu [f(\theta)(1 - G(R_L)) + s + \lambda G(R_L) + \mu]}{\mu [f(\theta)(1 - G(R_L)) + s + \lambda G(R_L) + \mu] + \sigma (s + \lambda G(R_L) + \mu)} \]

\[\Delta e = \frac{1}{1 + \frac{e_L}{e_H}} \]

where

\[\frac{e_L}{e_H} = \frac{1 - G(R_L)}{1 - G(R_H)} \cdot \frac{\sigma}{\mu} \cdot \frac{s + \lambda G(R_H) + \mu}{f(\theta)(1 - G(R_L)) + s + \lambda G(R_L) + \mu} \]
Existence and Uniqueness

Proposition

Assume \(\eta < \bar{\eta} \) and \(\theta < \bar{\theta} \). Then the equilibrium exists and is unique.

Intuition

- Implicit theorem

 \[\Rightarrow \text{can express } R_L = R_L(\theta) \text{ using JD for } L \text{ workers} \]

- Reduce equilibrium to one JD, one JC

- First condition ensures JC downward sloping

 If \(\eta \) “too large”, u distribution improves too much when \(\theta \uparrow \)

- Second condition similar to Lagos (2006), ensures crossing
Aggregation: Preview

- Aggregate, TFP depends on
 - match quality
 - human capital distribution

- R_L, R_H, θ “sufficient” statistics
 - uniquely determine TFP

- Lagos (2006) \rightarrow TFP determined by match quality

- With skill loss \rightarrow TFP depends on match quality and human capital
Distribution of match quality

- CDF observed match quality: $\tilde{G}^H(\cdot), \tilde{G}^L(\cdot)$

- Flow equation, $i \in \{H, L\}, \forall x \geq R_i$

$$
\frac{d[\tilde{G}^i(x)e^i]}{dt} = \lambda e^H [1 - \tilde{G}^i(x)][G(x) - G(R^i)]
+ f(\theta)u^i[G(x) - G(R^i)] - \lambda e^i\tilde{G}^i(x)[1 - G(x)]
- \lambda e^i\tilde{G}^i(x)G(R^i) - (s + \mu)e^i\tilde{G}^i(x)
$$

- Steady-state, $d[\tilde{G}^i(x)e^i]/dt = 0$

$$
\tilde{G}^i(x) = \frac{G(x) - G(R^i)}{1 - G(R^i)} , \text{ for } i \in \{H, L\}.
$$

(1)
AGGREGATION

- Follow Lagos (2006) method

- Aggregate output, capital, hours/labor: Y, K, N
 - Relationship b/w aggregate variables?

- Aggregate capital: K

 \[K = [1 - (1 - \theta)u]k \]

 ⇒ Effective capital $K_e = \frac{1-u}{1-(1-\theta)u}K$
Aggregating output

- Firm with worker $i \in \{H, L\}$ produces if
 - $x \geq R_i$ (job active/created)
 - $x \geq \phi$ (>0 hours)

- Define: $\mu_i = \max\{R_i, \phi\}, i \in \{H, L\}$

- Aggregate output

$$Y = (1 - \Delta_e)(1 - u) \int_{\mu_L} \delta f(x, n(x), k) d\tilde{G}_L(x)$$

$$+ \Delta_e (1 - u) \int_{\mu_H} f(x, n(x), k) d\tilde{G}_H(x).$$
Similarly, aggregate hours N

\[
N = (1 - u)\Delta_e \int_{\mu_H} n(x) d\tilde{G}^H(x)
+ (1 - u)(1 - \Delta_e) \int_{\mu_L} n(x) d\tilde{G}^L(x)
\]
Distribution match quality

- Assume $G(.) \sim$ Pareto, $\varepsilon > 0$, $\alpha > 1$

$$G(x) = \begin{cases}
0, & \text{if } x < \varepsilon \\
1 - \left(\frac{\varepsilon}{x}\right), & \text{if } \varepsilon \leq x
\end{cases}$$

- Distribution, observed matches

$$\tilde{G}^i(x) = \begin{cases}
0, & \text{if } x < R_i \\
1 - \left(\frac{R_i}{x}\right), & \text{if } R_i \leq x
\end{cases}$$
Proposition

Let $\gamma \equiv 1/\alpha$. The economy’s aggregate production function $Y = F(K_e, N)$ satisfies

$$Y = F(K_e, N) = AK_e^\gamma N^{1-\gamma},$$

where A is the economy’s TFP, with

$$A = \begin{cases}
 A_l = \frac{\Delta e R_H^\gamma + (1 - \Delta e) R_L^\gamma}{\Delta e R_H^\gamma + (1 - \Delta e) R_L^\gamma} \cdot \frac{1}{1-\gamma} \cdot \frac{1}{1-\gamma} & , \text{if } R_H < R_L \leq \phi \\
 A_m = \frac{\Delta e R_H^\gamma + (1 - \Delta e) R_L^\gamma \delta \phi^{-1}}{\Delta e R_H^\gamma + (1 - \Delta e) \delta R_L^\gamma} \cdot \frac{1}{1-\gamma} \cdot \frac{1}{1-\gamma} & , \text{if } R_H < \phi < R_L \\
 A_h = \left[\Delta e R_H + (1 - \Delta e) \delta R_L\right] \cdot \frac{1}{1-\gamma} & , \text{if } \phi \leq R_H < R_L
\end{cases}$$
Discussion

- Lagos (2006)
 - R sufficient statistic for TFP

- Skill loss
 - R and θ (job finding rate) sufficient statistics for TFP
Discussion

- Lagos (2006)

\[A = \frac{R}{1 - \gamma} \]

- Skill loss

\[
A = \begin{cases}
A_l = \frac{\Delta e R_H^{\frac{1}{\gamma}} + (1 - \Delta e) R_L^{\frac{1}{\gamma}} \delta}{\left[\Delta e R_H^{\frac{1}{\gamma}} + (1 - \Delta e) R_L^{\frac{1}{\gamma}} \right]^{1 - \gamma}} \cdot \frac{1}{1 - \gamma}, & \text{if } R_H < R_L \leq \phi \\
A_m = \frac{\Delta e R_H^{\frac{1}{\gamma}} + (1 - \Delta e) R_L \delta \phi^{\frac{1}{\gamma} - 1}}{\left[\Delta e R_H^{\frac{1}{\gamma}} + (1 - \Delta e) \phi^{\frac{1}{\gamma}} \right]^{1 - \gamma}} \cdot \frac{1}{1 - \gamma}, & \text{if } R_H < \phi < R_L \\
A_h = [\Delta e R_H + (1 - \Delta e) \delta R_L] \cdot \frac{1}{1 - \gamma}, & \text{if } \phi \leq R_H < R_L
\end{cases}
\]

- \(\delta = 1 \) (no skill loss) \(\Rightarrow \) Lagos (2006)
Skill channel

- No skill loss

 - If $R \uparrow \Rightarrow TFP \uparrow$
 - Two economies with same R

 \Rightarrow same TFP, even if job finding rates very \neq
Skill channel

- No skill loss
 - If $R \uparrow \Rightarrow TFP \uparrow$
 - Two economies with same R
 \Rightarrow same TFP, even if job finding rates very \neq

- With skill loss, further channel
 - TFP depends on skill distribution Δ^e
 & match quality (i.e. R_i)
 - If skill distribution improves $\Delta^e \uparrow$
 \Rightarrow TFP $A \uparrow$ ($\frac{\partial A}{\partial \Delta^e} > 0$)
Skill channel

- **No skill loss**
 - If $R \uparrow \Rightarrow TFP \uparrow$
 - Two economies with same R
 \[\Rightarrow \text{same TFP, even if job finding rates very } \neq \]

- **With skill loss, further channel**
 - TFP depends on skill distribution Δ^e
 & match quality (i.e. R_i)
 - If skill distribution improves $\Delta^e \uparrow$
 \[\Rightarrow \text{TFP } A \uparrow (\frac{\partial A}{\partial \Delta^e} > 0) \]

- **Distribution Δ^e determined by both**
 - Job finding rate $f(\theta)$
 - Reservation values R_H, R_L (\(\frac{\partial \Delta^e}{\partial R_L} > 0\), \(\frac{\partial \Delta^e}{\partial R_H} < 0\))
Labor market policies

- Advantage w/ method in Lagos (2006)
 - R “sufficient” statistic
 → uniquely determines TFP
 - Effect of labor mkt policies?
 Need effect on R alone \Rightarrow TFP
 - If policy $\uparrow R$ \Rightarrow TFP \uparrow

- Same with skill loss, except
 → sufficient statistics: R and $f(\theta)$ (skill channel)

- If policy $\uparrow R$ but \downarrow distribution Δ_e (e.g. if job finding \downarrow)
 \Rightarrow overall effect depends on relative size
Labor market policies

- Policies
 - UI ($R_i \uparrow$, $\theta \downarrow$)
 - Hiring subsidy ($R_i \uparrow$, $\theta \uparrow$)
 - Employment subsidy ($R_i \downarrow$, $\theta \uparrow$)
 - Firing tax ($R_i \downarrow$, $\theta \downarrow$)

- In particular, UI may lower TFP
 - Non-linear/monotonic effect of UI on TFP
Skill channel and policy

- EU-US unemployment and TFP behavior

- Labor policy (UI) may raise TFP if
 - raises reservation productivity
 - small effect on job finding rate, skill distribution

- If policy starts affecting skill distribution
 ⇒ may reduce TFP and raise unemployment
CONCLUSION

- Model of endogenous TFP à la Lagos (2006)

- TFP depends
 - Average productivity formed/active matches
 - Skill distribution

- Sufficient statistics
 - reservation productivities
 - job finding rate

- Skill channel ⇒ policy can lower TFP

 even if average match quality ↑

- Next step: Quantitative exercise
 - Quantitative effect of mkt policy w/ skill loss?