
Introduction to R
A Short Overview

Thomas Girke

December 5, 2014

Introduction to R Slide 1/70

Introduction
Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Important Utilities
Basic Calculations
Reading and Writing External Data
Some Great R Functions

Graphics Environments
Base Graphics

Exercise: Analysis Routine

Introduction to R Slide 2/70

Outline

Introduction
Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Important Utilities
Basic Calculations
Reading and Writing External Data
Some Great R Functions

Graphics Environments
Base Graphics

Exercise: Analysis Routine

Introduction to R Introduction Slide 3/70

Outline

Introduction
Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Important Utilities
Basic Calculations
Reading and Writing External Data
Some Great R Functions

Graphics Environments
Base Graphics

Exercise: Analysis Routine

Introduction to R Introduction Look and Feel of the R Environment Slide 4/70

Why Using R?

Complete statistical environment and programming language

Efficient functions and data structures for data analysis

Powerful graphics

Access to fast growing number of analysis packages

Most widely used language in bioinformatics

Is standard for data mining and biostatistical analysis

Technical advantages: free, open-source, available for all OSs

Books & Documentation

simpleR - Using R for Introductory Statistics (John Verzani, 2004) Link

Bioinformatics and Computational Biology Solutions Using R and
Bioconductor (Gentleman et al., 2005) Link

More on this see ”Finding Help” section in UCR Manual Link

Introduction to R Introduction Look and Feel of the R Environment Slide 5/70

http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf
http://www.bioconductor.org/help/publications/books/bioinformatics-and-computational-biology-solutions/
http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual#TOC-Finding-Help

What You’ll Get?

R Gui: OS X

Command-line R: Linux/OS X R Gui: Windows

Introduction to R Introduction Look and Feel of the R Environment Slide 6/70

RStudio: Alternative Working Environment for R
New integrated development environment (IDE) for R Link that works well for
beginners and developers.

Important shortcuts: Ctrl+Enter (send code), Ctrl+Shift+C

(comment/uncomment), Ctrl+1/2 (switch window focus)
Introduction to R Introduction Look and Feel of the R Environment Slide 7/70

http://www.rstudio.com/ide/download/

Vim-R-Tmux: Command-Line IDE for R

Terminal-based Working Environment for R: Vim-R-Tmux Link

Introduction to R Introduction Look and Feel of the R Environment Slide 8/70

http://manuals.bioinformatics.ucr.edu/home/programming-in-r/vim-r

Outline

Introduction
Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Important Utilities
Basic Calculations
Reading and Writing External Data
Some Great R Functions

Graphics Environments
Base Graphics

Exercise: Analysis Routine

Introduction to R Introduction R Library Depositories Slide 9/70

Package Depositories

CRAN (>6,000 packages) general data analysis Link

Bioconductor (>900 packages) bioscience data analysis Link

Omegahat (>90 packages) programming interfaces Link

Introduction to R Introduction R Library Depositories Slide 10/70

http://cran.at.r-project.org/
http://www.bioconductor.org/
http://www.omegahat.org/

Outline

Introduction
Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Important Utilities
Basic Calculations
Reading and Writing External Data
Some Great R Functions

Graphics Environments
Base Graphics

Exercise: Analysis Routine

Introduction to R Introduction Installation Slide 11/70

Installation of R and Add-on Packages

Install R for your operating system from:

http://cran.at.r-project.org Link

Install RStudio from:

http://www.rstudio.com/ide/download Link

Installation of CRAN Packages
> install.packages(c("pkg1", "pkg2"))

> install.packages("pkg.zip", repos=NULL)

Installation of Bioconductor Packages
> source("http://www.bioconductor.org/biocLite.R")

> library(BiocInstaller)

> BiocVersion()

> biocLite()

> biocLite(c("pkg1", "pkg2"))

For more details see Bioc Install page Link and BiocInstaller Link

Introduction to R Introduction Installation Slide 12/70

http://cran.at.r-project.org/
http://www.rstudio.com/ide/download/
http://www.bioconductor.org/install/
http://www.bioconductor.org/packages/release/bioc/html/BiocInstaller.html

Outline

Introduction
Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Important Utilities
Basic Calculations
Reading and Writing External Data
Some Great R Functions

Graphics Environments
Base Graphics

Exercise: Analysis Routine

Introduction to R Introduction Getting Around Slide 13/70

Startup and Closing Behavior

Starting R

The R GUI versions, including RStudio, under Windows and Mac OS X
can be opened by double-clicking their icons. Alternatively, one can start
it by typing ’R’ in a terminal (default under Linux).

Startup/Closing Behavior

The R environment is controlled by hidden files in the startup directory:
.RData, .Rhistory and .Rprofile (optional).

Closing R

> q()

Save workspace image? [y/n/c]:

Note

When responding with ’y’, then the entire R workspace will be written to
the .RData file which can become very large. Often it is sufficient to just
save an analysis protocol in an R source file. This way one can quickly
regenerate all data sets and objects.

Introduction to R Introduction Getting Around Slide 14/70

Getting Around

Create an object with the assignment operator <- (or =)

> object <- ...

List objects in current R session

> ls()

Return content of current working directory

> dir()

Return path of current working directory

> getwd()

Change current working directory

> setwd("/home/user")

Introduction to R Introduction Getting Around Slide 15/70

Outline

Introduction
Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Important Utilities
Basic Calculations
Reading and Writing External Data
Some Great R Functions

Graphics Environments
Base Graphics

Exercise: Analysis Routine

Introduction to R Introduction Basic Syntax Slide 16/70

Basic R Syntax

General R command syntax

> object <- function_name(arguments)

> object <- object[arguments]

Finding help

> ?function_name

Load a library

> library("my_library")

Lists all functions defined by a library

> library(help="my_library")

Load library manual (PDF file)

> vignette("my_library")

Introduction to R Introduction Basic Syntax Slide 17/70

Executing R Scripts

Execute an R script from within R

> source("my_script.R")

Execute an R script from command-line

Rscript my_script.R

R CMD BATCH my_script.R

R --slave < my_script.R

Introduction to R Introduction Basic Syntax Slide 18/70

Outline

Introduction
Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Important Utilities
Basic Calculations
Reading and Writing External Data
Some Great R Functions

Graphics Environments
Base Graphics

Exercise: Analysis Routine

Introduction to R Introduction Data Types and Subsetting Slide 19/70

Data Types I

Numeric data: 1, 2, 3

> x <- c(1, 2, 3); x

[1] 1 2 3

> is.numeric(x)

[1] TRUE

> as.character(x)

[1] "1" "2" "3"

Character data: ”a”, ”b”, ”c”

> x <- c("1", "2", "3"); x

[1] "1" "2" "3"

> is.character(x)

[1] TRUE

> as.numeric(x)

[1] 1 2 3

Introduction to R Introduction Data Types and Subsetting Slide 20/70

Data Types II

Complex data

> c(1, "b", 3)

[1] "1" "b" "3"

Logical data

> x <- 1:10 < 5

> x

[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

> !x

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

> which(x) # Returns index for the 'TRUE' values in logical vector

[1] 1 2 3 4

Introduction to R Introduction Data Types and Subsetting Slide 21/70

Data Objects: Vectors and Factors

Vectors (1D)

> myVec <- 1:10; names(myVec) <- letters[1:10]

> myVec[1:5]

a b c d e

1 2 3 4 5

> myVec[c(2,4,6,8)]

b d f h

2 4 6 8

> myVec[c("b", "d", "f")]

b d f

2 4 6

Factors (1D): vectors with grouping information

> factor(c("dog", "cat", "mouse", "dog", "dog", "cat"))

[1] dog cat mouse dog dog cat

Levels: cat dog mouse

Introduction to R Introduction Data Types and Subsetting Slide 22/70

Data Objects: Matrices, Data Frames and Arrays
Matrices (2D): two dimensional structures with data of same type

> myMA <- matrix(1:30, 3, 10, byrow = TRUE)

> class(myMA)

[1] "matrix"

> myMA[1:2,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 2 3 4 5 6 7 8 9 10

[2,] 11 12 13 14 15 16 17 18 19 20

> myMA[1, , drop=FALSE]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 2 3 4 5 6 7 8 9 10

Data Frames (2D): two dimensional structures with variable data types

> myDF <- data.frame(Col1=1:10, Col2=10:1)

> myDF[1:2,]

Col1 Col2

1 1 10

2 2 9

Arrays: data structure with one, two or more dimensions

Introduction to R Introduction Data Types and Subsetting Slide 23/70

Data Objects: Lists and Functions

Lists: containers for any object type

> myL <- list(name="Fred", wife="Mary", no.children=3, child.ages=c(4,7,9))

> myL

$name

[1] "Fred"

$wife

[1] "Mary"

$no.children

[1] 3

$child.ages

[1] 4 7 9

> myL[[4]][1:2]

[1] 4 7

Functions: piece of code

> myfct <- function(arg1, arg2, ...) {

+ function_body

+ }

Introduction to R Introduction Data Types and Subsetting Slide 24/70

General Subsetting Rules

Subsetting by positive or negative index/position numbers

> myVec <- 1:26; names(myVec) <- LETTERS

> myVec[1:4]

A B C D

1 2 3 4

Subsetting by same length logical vectors

> myLog <- myVec > 10

> myVec[myLog]

K L M N O P Q R S T U V W X Y Z

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Subsetting by field names

> myVec[c("B", "K", "M")]

B K M

2 11 13

Calling a single column or list component by its name with the $ sign

> iris$Species[1:8]

[1] setosa setosa setosa setosa setosa setosa setosa setosa

Levels: setosa versicolor virginica

Introduction to R Introduction Data Types and Subsetting Slide 25/70

Outline

Introduction
Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Important Utilities
Basic Calculations
Reading and Writing External Data
Some Great R Functions

Graphics Environments
Base Graphics

Exercise: Analysis Routine

Introduction to R Introduction Important Utilities Slide 26/70

Combining Objects

The c function combines vectors and lists

> c(1, 2, 3)

[1] 1 2 3

> x <- 1:3; y <- 101:103

> c(x, y)

[1] 1 2 3 101 102 103

The cbind and rbind functions can be used to append columns and rows, respecively.

> ma <- cbind(x, y)

> ma

x y

[1,] 1 101

[2,] 2 102

[3,] 3 103

> rbind(ma, ma)

x y

[1,] 1 101

[2,] 2 102

[3,] 3 103

[4,] 1 101

[5,] 2 102

[6,] 3 103

Introduction to R Introduction Important Utilities Slide 27/70

Accessing Name Slots and Dimensions of Objects

Length and dimension information of objects

> length(iris$Species)

[1] 150

> dim(iris)

[1] 150 5

Accessing row and column names of 2D objects

> rownames(iris)[1:8]

[1] "1" "2" "3" "4" "5" "6" "7" "8"

> colnames(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

Return name field of vectors and lists

> names(myVec)

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

> names(myL)

[1] "name" "wife" "no.children" "child.ages"

Introduction to R Introduction Important Utilities Slide 28/70

Sorting Objects

The function sort returns a vector in ascending or descending order

> sort(10:1)

[1] 1 2 3 4 5 6 7 8 9 10

The function order returns a sorting index for sorting an object

> sortindex <- order(iris[,1], decreasing = FALSE)

> sortindex[1:12]

[1] 14 9 39 43 42 4 7 23 48 3 30 12

> iris[sortindex,][1:2,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

14 4.3 3.0 1.1 0.1 setosa

9 4.4 2.9 1.4 0.2 setosa

> sortindex <- order(-iris[,1]) # Same as decreasing=TRUE

Sorting on multiple columns

> iris[order(iris$Sepal.Length, iris$Sepal.Width),][1:2,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

14 4.3 3.0 1.1 0.1 setosa

9 4.4 2.9 1.4 0.2 setosa

Introduction to R Introduction Important Utilities Slide 29/70

Outline

Introduction
Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Important Utilities
Basic Calculations
Reading and Writing External Data
Some Great R Functions

Graphics Environments
Base Graphics

Exercise: Analysis Routine

Introduction to R Introduction Basic Calculations Slide 30/70

Basic Operators and Calculations

Comparison operators: ==, ! =, <, >, <=, >=

> 1==1

[1] TRUE

Logical operators: AND: &, OR: |, NOT: !

> x <- 1:10; y <- 10:1

> x > y & x > 5

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

Calculations: to look up math functions, see Function Index Link

> x + y

[1] 11 11 11 11 11 11 11 11 11 11

> sum(x)

[1] 55

> mean(x)

[1] 5.5

> apply(iris[1:6,1:3], 1, mean)

1 2 3 4 5 6

3.333333 3.100000 3.066667 3.066667 3.333333 3.666667

Introduction to R Introduction Basic Calculations Slide 31/70

http://cran.at.r-project.org/doc/manuals/R-intro.html#Function-and-variable-index

Outline

Introduction
Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Important Utilities
Basic Calculations
Reading and Writing External Data
Some Great R Functions

Graphics Environments
Base Graphics

Exercise: Analysis Routine

Introduction to R Introduction Reading and Writing External Data Slide 32/70

Reading and Writing External Data

Import data from tabular files into R

> myDF <- read.delim("myData.xls", sep="\t")

Export data from R to tabular files

> write.table(myDF, file="myfile.xls", sep="\t", quote=FALSE, col.names=NA)

Copy and paste (e.g. from Excel) into R

> ## On Windows/Linux systems:

> read.delim("clipboard")

> ## On Mac OS X systems:

> read.delim(pipe("pbpaste"))

Copy and paste from R into Excel or other programs

> ## On Windows/Linux systems:

> write.table(iris, "clipboard", sep="\t", col.names=NA, quote=F)

> ## On Mac OS X systems:

> zz <- pipe('pbcopy', 'w')

> write.table(iris, zz, sep="\t", col.names=NA, quote=F)

> close(zz)

Introduction to R Introduction Reading and Writing External Data Slide 33/70

Exercise 1: Object Subsetting Routines and Import/Export

Task 1 Sort the rows of the iris data frame by its first column and sort its columns
alphabetically by column names.

Task 2 Subset the first 12 rows, export the result to a text file and view it in Excel.

Task 3 Change some column titles in Excel and import the result into R.

Structure of iris data set:

> class(iris)

[1] "data.frame"

> dim(iris)

[1] 150 5

> colnames(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

Introduction to R Introduction Reading and Writing External Data Slide 34/70

Outline

Introduction
Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Important Utilities
Basic Calculations
Reading and Writing External Data
Some Great R Functions

Graphics Environments
Base Graphics

Exercise: Analysis Routine

Introduction to R Introduction Some Great R Functions Slide 35/70

Some Great R Functions I

The unique() function to make vector entries unique

> length(iris$Sepal.Length)

[1] 150

> length(unique(iris$Sepal.Length))

[1] 35

The table() function counts the occurrences of entries

> table(iris$Species)

setosa versicolor virginica

50 50 50

The aggregate() function computes statistics of data aggregates

> aggregate(iris[,1:4], by=list(iris$Species), FUN=mean, na.rm=TRUE)

Group.1 Sepal.Length Sepal.Width Petal.Length Petal.Width

1 setosa 5.006 3.428 1.462 0.246

2 versicolor 5.936 2.770 4.260 1.326

3 virginica 6.588 2.974 5.552 2.026

Introduction to R Introduction Some Great R Functions Slide 36/70

Some Great R Functions II

The %in% function returns the intersect between two vectors

> month.name %in% c("May", "July")

[1] FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

The merge() function joins two data frames by common field entries, here row names
(by.x=0). To obtain only the common rows, change all=TRUE to all=FALSE. To
merge on specific columns, refer to them by their position numbers or their column
names.

> frame1 <- iris[sample(1:length(iris[,1]), 30),]

> frame1[1:2,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

17 5.4 3.9 1.3 0.4 setosa

39 4.4 3.0 1.3 0.2 setosa

> dim(frame1)

[1] 30 5

> my_result <- merge(frame1, iris, by.x = 0, by.y = 0, all = TRUE)

> dim(my_result)

[1] 150 11

Introduction to R Introduction Some Great R Functions Slide 37/70

Graphics in R

Powerful environment for visualizing scientific data

Integrated graphics and statistics infrastructure

Publication quality graphics

Fully programmable

Highly reproducible

Full LATEX Link & Sweave Link support

Vast number of R packages with graphics utilities

Introduction to R Introduction Some Great R Functions Slide 38/70

http://www.latex-project.org/
http://www.stat.auckland.ac.nz/~dscott/782/Sweave-manual-20060104.pdf

Documentation on Graphics in R

General

Graphics Task Page Link

R Graph Gallery Link

R Graphical Manual Link

Paul Murrell’s book R (Grid) Graphics Link

Interactive graphics

rggobi (GGobi) Link

iplots Link

Open GL (rgl) Link

Introduction to R Introduction Some Great R Functions Slide 39/70

http://cran.r-project.org/web/views/Graphics.html
http://addictedtor.free.fr/graphiques/allgraph.php
http://cged.genes.nig.ac.jp/RGM2/index.php
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.ggobi.org/
http://www.rosuda.org/iplots/
http://rgl.neoscientists.org/gallery.shtml

Graphics Environments

Viewing and saving graphics in R

On-screen graphics

postscript, pdf, svg

jpeg, png, wmf, tiff, ...

Four major graphic environments

Low-level infrastructure

R Base Graphics (low- and high-level)
grid : Manual Link , Book Link

High-level infrastructure

lattice: Manual Link , Intro Link , Book Link

ggplot2: Manual Link , Intro Link , Book Link

Introduction to R Introduction Some Great R Functions Slide 40/70

http://www.stat.auckland.ac.nz/~paul/grid/grid.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://lmdvr.r-forge.r-project.org
http://www.his.sunderland.ac.uk/~cs0her/Statistics/UsingLatticeGraphicsInR.htm
http://www.amazon.com/Lattice-Multivariate-Data-Visualization-Use/dp/0387759689
http://had.co.nz/ggplot2/
http://www.ling.upenn.edu/~joseff/rstudy/summer2010_ggplot2_intro.html
http://had.co.nz/ggplot2/book/

Outline

Introduction
Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Important Utilities
Basic Calculations
Reading and Writing External Data
Some Great R Functions

Graphics Environments
Base Graphics

Exercise: Analysis Routine

Introduction to R Graphics Environments Slide 41/70

Outline

Introduction
Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Important Utilities
Basic Calculations
Reading and Writing External Data
Some Great R Functions

Graphics Environments
Base Graphics

Exercise: Analysis Routine

Introduction to R Graphics Environments Base Graphics Slide 42/70

Base Graphics: Overview

Important high-level plotting functions

plot: generic x-y plotting

barplot: bar plots

boxplot: box-and-whisker plot

hist: histograms

pie: pie charts

dotchart: cleveland dot plots

image, heatmap, contour, persp: functions to generate image-like
plots

qqnorm, qqline, qqplot: distribution comparison plots

pairs, coplot: display of multivariant data

Help on these functions

?myfct

?plot

?par

Introduction to R Graphics Environments Base Graphics Slide 43/70

Base Graphics: Preferred Input Data Objects

Matrices and data frames

Vectors

Named vectors

Introduction to R Graphics Environments Base Graphics Slide 44/70

Scatter Plot: very basic

Sample data set for subsequent plots

> set.seed(1410)

> y <- matrix(runif(30), ncol=3, dimnames=list(letters[1:10], LETTERS[1:3]))

> plot(y[,1], y[,2])

●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

y[, 1]

y[
, 2

]

Introduction to R Graphics Environments Base Graphics Slide 45/70

Scatter Plot: all pairs
> pairs(y)

A

0.2 0.4 0.6 0.8

●

●

●

●

●

●

●

●

●

●

0.
2

0.
4

0.
6

0.
8

●

●

●

●

●

●

●

●

●

●

0.
2

0.
4

0.
6

0.
8

●

●

●

●

●

●

●

●

●

●

B ●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C

Introduction to R Graphics Environments Base Graphics Slide 46/70

Scatter Plot: with labels
> plot(y[,1], y[,2], pch=20, col="red", main="Symbols and Labels")

> text(y[,1]+0.03, y[,2], rownames(y))

●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

Symbols and Labels

y[, 1]

y[
, 2

]

a

b

c

d

e

f

g

h

i

j

Introduction to R Graphics Environments Base Graphics Slide 47/70

Scatter Plots: more examples

Print instead of symbols the row names

> plot(y[,1], y[,2], type="n", main="Plot of Labels")

> text(y[,1], y[,2], rownames(y))

Usage of important plotting parameters

> grid(5, 5, lwd = 2)

> op <- par(mar=c(8,8,8,8), bg="lightblue")

> plot(y[,1], y[,2], type="p", col="red", cex.lab=1.2, cex.axis=1.2,

+ cex.main=1.2, cex.sub=1, lwd=4, pch=20, xlab="x label",

+ ylab="y label", main="My Main", sub="My Sub")

> par(op)

Important arguments

mar: specifies the margin sizes around the plotting area in order: c(bottom,

left, top, right)

col: color of symbols

pch: type of symbols, samples: example(points)

lwd: size of symbols

cex.*: control font sizes

For details see ?par

Introduction to R Graphics Environments Base Graphics Slide 48/70

Scatter Plots: more examples

Add a regression line to a plot

> plot(y[,1], y[,2])

> myline <- lm(y[,2]~y[,1]); abline(myline, lwd=2)

> summary(myline)

Same plot as above, but on log scale

> plot(y[,1], y[,2], log="xy")

Add a mathematical expression to a plot

> plot(y[,1], y[,2]); text(y[1,1], y[1,2],

> expression(sum(frac(1,sqrt(x^2*pi)))), cex=1.3)

Introduction to R Graphics Environments Base Graphics Slide 49/70

Exercise 2: Scatter Plots

Task 1 Generate scatter plot for first two columns in iris data frame and color dots by
its Species column.

Task 2 Use the xlim/ylim arguments to set limits on the x- and y-axes so that all data
points are restricted to the left bottom quadrant of the plot.

Structure of iris data set:

> class(iris)

[1] "data.frame"

> iris[1:4,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

> table(iris$Species)

setosa versicolor virginica

50 50 50

Introduction to R Graphics Environments Base Graphics Slide 50/70

Line Plot: Single Data Set

> plot(y[,1], type="l", lwd=2, col="blue")

2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

Index

y[
, 1

]

Introduction to R Graphics Environments Base Graphics Slide 51/70

Line Plots: Many Data Sets
> split.screen(c(1,1));

[1] 1

> plot(y[,1], ylim=c(0,1), xlab="Measurement", ylab="Intensity", type="l", lwd=2, col=1)

> for(i in 2:length(y[1,])) {

+ screen(1, new=FALSE)

+ plot(y[,i], ylim=c(0,1), type="l", lwd=2, col=i, xaxt="n", yaxt="n", ylab="",

+ xlab="", main="", bty="n")

+ }

> close.screen(all=TRUE)

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Measurement

In
te

ns
ity

Introduction to R Graphics Environments Base Graphics Slide 52/70

Bar Plot Basics
> barplot(y[1:4,], ylim=c(0, max(y[1:4,])+0.3), beside=TRUE,

+ legend=letters[1:4])

> text(labels=round(as.vector(as.matrix(y[1:4,])),2), x=seq(1.5, 13, by=1)

+ +sort(rep(c(0,1,2), 4)), y=as.vector(as.matrix(y[1:4,]))+0.04)

A B C

a
b
c
d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.27

0.53

0.93

0.14

0.47

0.31

0.05
0.12

0.44

0.32

0

0.41

Introduction to R Graphics Environments Base Graphics Slide 53/70

Bar Plots with Error Bars
> bar <- barplot(m <- rowMeans(y) * 10, ylim=c(0, 10))

> stdev <- sd(t(y))

> arrows(bar, m, bar, m + stdev, length=0.15, angle = 90)

a b c d e f g h i j

0
2

4
6

8
10

Introduction to R Graphics Environments Base Graphics Slide 54/70

Histograms

> hist(y, freq=TRUE, breaks=10)

Histogram of y

y

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Introduction to R Graphics Environments Base Graphics Slide 55/70

Density Plots

> plot(density(y), col="red")

0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

density.default(x = y)

N = 30 Bandwidth = 0.136

D
en

si
ty

Introduction to R Graphics Environments Base Graphics Slide 56/70

Pie Charts
> pie(y[,1], col=rainbow(length(y[,1]), start=0.1, end=0.8), clockwise=TRUE)

> legend("topright", legend=row.names(y), cex=1.3, bty="n", pch=15, pt.cex=1.8,

+ col=rainbow(length(y[,1]), start=0.1, end=0.8), ncol=1)

a

b

c

d

ef

g

h

i
j a

b
c
d
e
f
g
h
i
j

Introduction to R Graphics Environments Base Graphics Slide 57/70

Color Selection Utilities

Default color palette and how to change it

> palette()

[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow" "gray"

> palette(rainbow(5, start=0.1, end=0.2))

> palette()

[1] "#FF9900" "#FFBF00" "#FFE600" "#F2FF00" "#CCFF00"

> palette("default")

The gray function allows to select any type of gray shades by providing values from 0
to 1

> gray(seq(0.1, 1, by= 0.2))

[1] "#1A1A1A" "#4D4D4D" "#808080" "#B3B3B3" "#E6E6E6"

Color gradients with colorpanel function from gplots library

> library(gplots)

> colorpanel(5, "darkblue", "yellow", "white")

Much more on colors in R see Earl Glynn’s color chart Link

Introduction to R Graphics Environments Base Graphics Slide 58/70

http://research.stowers-institute.org/efg/R/Color/Chart/

Saving Graphics to Files

After the pdf() command all graphs are redirected to file test.pdf. Works for all
common formats similarly: jpeg, png, ps, tiff, ...

> pdf("test.pdf"); plot(1:10, 1:10); dev.off()

Generates Scalable Vector Graphics (SVG) files that can be edited in vector graphics
programs, such as InkScape.

> svg("test.svg"); plot(1:10, 1:10); dev.off()

Introduction to R Graphics Environments Base Graphics Slide 59/70

Exercise 3: Bar Plots

Task 1 Calculate the mean values for the Species components of the first four columns
in the iris data set. Organize the results in a matrix where the row names are
the unique values from the iris Species column and the column names are
the same as in the first four iris columns.

Task 2 Generate two bar plots: one with stacked bars and one with horizontally
arranged bars.

Structure of iris data set:

> class(iris)

[1] "data.frame"

> iris[1:4,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

> table(iris$Species)

setosa versicolor virginica

50 50 50

Introduction to R Graphics Environments Base Graphics Slide 60/70

Outline

Introduction
Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Important Utilities
Basic Calculations
Reading and Writing External Data
Some Great R Functions

Graphics Environments
Base Graphics

Exercise: Analysis Routine

Introduction to R Exercise: Analysis Routine Slide 61/70

Analysis Routine: Overview

The following exercise introduces a variety of useful data
analysis utilities in R.

Introduction to R Exercise: Analysis Routine Slide 62/70

Analysis Routine: Data Import

Step 1 To get started with this exercise, direct your R session to a dedicated workshop

directory and download into this directory the following sample tables. Then

import the files into Excel and save them as tab delimited text files.

MolecularWeight_tair7.xls Link

TargetP_analysis_tair7.xls Link

Import the tables into R

> ## Import molecular weight table

> my_mw <- read.delim(file="MolecularWeight_tair7.xls", header=T, sep="\t")

> my_mw[1:2,]

Sequence.id Molecular.Weight.Da. Residues

1 AT1G08520.1 83285 760

2 AT1G08530.1 27015 257

> ## Import subcelluar targeting table

> my_target <- read.delim(file="TargetP_analysis_tair7.xls", header=T, sep="\t")

> my_target[1:2,]

GeneName Loc cTP mTP SP other

1 AT1G08520.1 C 0.822 0.137 0.029 0.039

2 AT1G08530.1 C 0.817 0.058 0.010 0.100

Introduction to R Exercise: Analysis Routine Slide 63/70

http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/Samples/MolecularWeight_tair7.xls
http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/Samples/TargetP_analysis_tair7.xls

Analysis Routine: Merging Data Frames

Step 2 Assign uniform gene ID column titles

> colnames(my_target)[1] <- "ID"

> colnames(my_mw)[1] <- "ID"

Step 3 Merge the two tables based on common ID field

> my_mw_target <- merge(my_mw, my_target, by.x="ID", by.y="ID", all.x=T)

Step 4 Shorten one table before the merge and then remove the non-matching rows
(NAs) in the merged file

> my_mw_target2a <- merge(my_mw, my_target[1:40,], by.x="ID", by.y="ID", all.x=T)

> # To remove non-matching rows, use the argument setting 'all=F'.

> my_mw_target2 <- na.omit(my_mw_target2a)

> # Removes rows containing "NAs" (non-matching rows).

Problem 1: How can the merge function in the previous step be executed so that only
the common rows among the two data frames are returned? Prove that both
methods - the two step version with na.omit and your method - return identical
results.

Problem 2: Replace all NAs in the data frame my_mw_target2a with zeros.

Introduction to R Exercise: Analysis Routine Slide 64/70

Analysis Routine: Filtering Data

Step 5 Retrieve all records with a value of greater than 100,000 in ’MW’ column and
’C’ value in ’Loc’ column (targeted to chloroplast).

> query <- my_mw_target[my_mw_target[, 2] > 100000 & my_mw_target[, 4] == "C",]

> query[1:4,]

ID Molecular.Weight.Da. Residues Loc cTP mTP SP other

219 AT1G02730.1 132588 1181 C 0.972 0.038 0.008 0.045

243 AT1G02890.1 136825 1252 C 0.748 0.529 0.011 0.013

281 AT1G03160.1 100732 912 C 0.871 0.235 0.011 0.007

547 AT1G05380.1 126360 1138 C 0.740 0.099 0.016 0.358

> dim(query)

[1] 170 8

Problem 3: How many protein entries in the my_mw_target data frame have a MW of
greater then 4,000 and less then 5,000. Subset the data frame accordingly and
sort it by MW to check that your result is correct.

Introduction to R Exercise: Analysis Routine Slide 65/70

Analysis Routine: String Substitutions

Step 6 Use a regular expression in a substitute function to generate a separate ID
column that lacks the gene model extensions.

> my_mw_target3 <- data.frame(loci=gsub("\\..*", "",

+ as.character(my_mw_target[,1]), perl = TRUE),

+ my_mw_target)

> my_mw_target3[1:3,1:8]

loci ID Molecular.Weight.Da. Residues Loc cTP mTP SP

1 AT1G01010 AT1G01010.1 49426 429 _ 0.10 0.090 0.075

2 AT1G01020 AT1G01020.1 28092 245 * 0.01 0.636 0.158

3 AT1G01020 AT1G01020.2 21711 191 * 0.01 0.636 0.158

Problem 4: Retrieve those rows in my_mw_target3 where the second column contains
the following identifiers: c("AT5G52930.1", "AT4G18950.1", "AT1G15385.1",

"AT4G36500.1", "AT1G67530.1"). Use the %in% function for this query. As an
alternative approach, assign the second column to the row index of the data
frame and then perform the same query again using the row index. Explain the
difference of the two methods.

Introduction to R Exercise: Analysis Routine Slide 66/70

Analysis Routine: Calculations on Data Frames

Step 7 Count the number of duplicates in the loci column with the table function and
append the result to the data frame with the cbind function.

> mycounts <- table(my_mw_target3[,1])[my_mw_target3[,1]]

> my_mw_target4 <- cbind(my_mw_target3, Freq=mycounts[as.character(my_mw_target3[,1])])

Step 8 Perform a vectorized devision of columns 3 and 4 (average AA weight per
protein)

> data.frame(my_mw_target4, avg_AA_WT=(my_mw_target4[,3] / my_mw_target4[,4]))[1:2,5:11]

Loc cTP mTP SP other Freq avg_AA_WT

1 _ 0.10 0.090 0.075 0.925 1 115.2121

2 * 0.01 0.636 0.158 0.448 2 114.6612

Step 9 Calculate for each row the mean and standard deviation across several columns

> mymean <- apply(my_mw_target4[,6:9], 1, mean)

> mystdev <- apply(my_mw_target4[,6:9], 1, sd, na.rm=TRUE)

> data.frame(my_mw_target4, mean=mymean, stdev=mystdev)[1:2,5:12]

Loc cTP mTP SP other Freq mean stdev

1 _ 0.10 0.090 0.075 0.925 1 0.2975 0.4184595

2 * 0.01 0.636 0.158 0.448 2 0.3130 0.2818912

Introduction to R Exercise: Analysis Routine Slide 67/70

Analysis Routine: Plotting Example
Step 10 Generate scatter plot columns: ’MW’ and ’Residues’

> plot(my_mw_target4[1:500,3:4], col="red")

●

●●

●

●

●

●●●●

●●●●
●

●●●●

●

●

●

●●●
●

●
●●

●●

●
●

●

●
●

●●●
●

●●
●

●

●

●

●

●
●

●●●
●

●

●

●
●●

●

●●

●

●
●

●●
●

●

●●
●

●
●●

●

●

●●
●●

●
●●●●

●
●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●●●●

●●●

●

●

●

●
●

●

●

●●
●

●●
●

●

●
●

●

●

●●●
●●●

●
●

●●

●
●

●●

●●

●
●

●●

●

●

●

●●●
●●

●
●

●●●

●

●●
●

●
●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●
●

●●

●●●
●

●

●●●

●●

●

●

●●

●

●●

●
●

●●

●

●
●

●
●

●
●

●

●●●●

●●●

●●●●

●
●●

●●

●

●

●

●●●●●●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●
●

●

●●

●

●

●

●

●●●

●●

●

●
●●

●

●●

●●
●

●

●●

●
●

●
●

●

●

●

●
●●

●

●

●

●●

●●
●

●

●●●
●

●

●

●

●

●

●
●●

●●

●●

●

●

●
●

●●
●

●

●●

●

●
●

●
●

●
●

●
●

●

●●

●●
●

●
●●

●●

●●

●
●

●●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●
●●●●●

●

●

●
●

●

●

●●

●●

●

●

●

●●

●
●

●

●

●●

●

●

●●●
●●

●●

●

●
●

●●

●

●

●●

●

●●

●●
●●

●

●

●
●

●
●

●

●

●

●●●
●

●

●●

●

●

●●

●

●

●

●
●

●●●
●

●

●●
●●

●●●

●●

●
●

●

●

●●

●

0e+00 1e+05 2e+05 3e+05 4e+05

0
50

0
15

00
25

00
35

00

Molecular.Weight.Da.

R
es

id
ue

s

Introduction to R Exercise: Analysis Routine Slide 68/70

Analysis Routine: Export Results and Run Entire Exercise
as Script

Step 11 Write the data frame my_mw_target4 into a tab-delimited text file and inspect it
in Excel.

> write.table(my_mw_target4, file="my_file.xls", quote=F, sep="\t",

+ col.names = NA)

Problem 5: Write all commands from this exercise into an R script named

exerciseRbasics.R, or download it from here Link . Then execute the script
with the source function like this: source("exerciseRbasics.R"). This will
run all commands of this exercise and generate the corresponding output files in
the current working directory.

Introduction to R Exercise: Analysis Routine Slide 69/70

http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/exerciseRbasics.R

Session Information

> sessionInfo()

R version 3.1.2 (2014-10-31)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] C

attached base packages:

[1] stats graphics utils datasets grDevices methods base

loaded via a namespace (and not attached):

[1] tools_3.1.2

Introduction to R Exercise: Analysis Routine Slide 70/70

	Introduction
	Look and Feel of the R Environment
	R Library Depositories
	Installation
	Getting Around
	Basic Syntax
	Data Types and Subsetting
	Important Utilities
	Basic Calculations
	Reading and Writing External Data
	Some Great R Functions

	Graphics Environments
	Base Graphics

	Exercise: Analysis Routine

