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Abstract

Freund and Schapire (1997) introduced “Discrete AdaBoost”(DAB) which has been
mysteriously effective for the high-dimensional binary classification or binary predic-
tion. In an effort to understand the myth, Friedman, Hastie and Tibshirani (FHT,
2000) show that DAB can be understood as statistical learning which builds an addi-
tive logistic regression model via Newton-like updating minimization of the“exponential
loss”. From this statistical point of view, FHT proposed three modifications of DAB,
namely, Real AdaBoost (RAB), LogitBoost (LB), and Gentle AdaBoost (GAB). All of
DAB, RAB, LB, GAB solve for the logistic regression via different algorithmic designs
and different objective functions. The RAB algorithm uses class probability estimates
to construct real-valued contributions of the weak learner, LB is an adaptive Newton
algorithm by stagewise optimization of the Bernoulli likelihood, and GAB is an adap-
tive Newton algorithm via stagewise optimization of the exponential loss. The same
authors of FHT published an influential textbook, The Elements of Statistical Learn-
ing (ESL, 2001 and 2008). A companion book An Introduction to Statistical Learning
(ISL) by James et al. (2013) was published with applications in R. However, both ESL
and ISL (e.g., sections 4.5 and 4.6) do not cover these four AdaBoost algorithms while
FHT provided some simulation and empirical studies to compare these methods. Given
numerous potential applications, we believe it would be useful to collect the R libraries
of these AdaBoost algorithms, as well as more recently developed extensions to Ad-
aBoost for probability prediction with examples and illustrations. Therefore, the goal
of this chapter is to do just that, i.e., (i) to provide a user guide of these alternative
AdaBoost algorithms with step-by-step tutorial of using R (in a way similar to ISL,
e.g., Section 4.6), (ii) to compare AdaBoost with alternative machine learning classifi-
cation tools such as the deep neural network (DNN), logistic regression with LASSO
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and SIM-RODEO, and (iii) to demonstrate the empirical applications in economics,
such as prediction of business cycle turning points and directional prediction of stock
price indexes. We revisit Ng (2014) who used DAB for prediction of the business cycle
turning points by comparing the results from RAB, LB, GAB, DNN, logistic regression
and SIM-RODEO.

Keywords: AdaBoost, R, Binary classification, Logistic regression, DAB, RAB, LB,
GAB, DNN.

1 Introduction

A large number of important variables in economics are binary. Let

π (x) ≡ P (y = 1|x)

and y takes value 1 with probability π (x) and −1 with probability 1−π (x). The studies on
making the best forecast on y can be classified into two classes (Lahiri and Yang, 2012). One
is focusing on getting the right probability model π̂ (x), e.g., logit and probit models (Bliss,
1934; Cox, 1958; Walker and Duncan, 1967), then making the forecast on y with π̂ (x) > 0.5
using the estimated probability model. The other is to get the optimal forecast rule on y
directly, e.g., the maximum score approach (Manski, 1975, 1985; Elliott and Lieli, 2013),
without having to (correctly) model the probability π̂ (x).

Given the availability of high-dimensional data, the binary classification or binary prob-
ability prediction problems can be improved by incorporating a large number of covariates
(x). A number of new methods are proposed to take advantage of the great number of
covariates. Freund and Schapire (1997) introduce machine learning method called Discrete
AdaBoost algorithm, which takes a functional descent procedure and selects the covariates
(or predictors) sequentially. Friedman et al. (2000) show that AdaBoost can be understood
as a regularized logistic regression, which selects the covariates one-at-a-time. The influential
paper also discusses several extensions to the original idea of Discrete AdaBoost and pro-
poses new Boosting methods, namely Real AdaBoost, LogitBoost and Gentle Boost, which
uses the exponential loss or Bernoulli log-likelihood as fitting criteria. Later on, Friedman
(2001) generalize the idea to any fitting criteria and proposes the Gradient Boosting Ma-
chine. Bühlmann and Yu (2003) and Bühlmann (2006) propose the L2 Boost and prove its
consistency for regression and classification. Mease et al. (2007) use the logistic function to
convert the class label output of boosting algorithms into probability and/or quantile predic-
tions. Chu et al. (2018a) show the linkage between the Discrete AdaBoost and the maximum
score approach and propose Asymmetric AdaBoost for utility based high-dimensional binary
classification.

On the other hand, efforts are made to incorporate traditional binary classification and
probability prediction methods into the high-dimensional sparse matrix set-up. The key fea-
ture of high-dimensional data is the redundancy of covariates in the data. Hence, methods
are proposed to select useful covariates while/before estimation of the models. Tibshirani
(1996) proposes the LASSO that is to add L1 penalty to including more covariates in the
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model. Zou (2006) drives a necessary condition for consistency of the LASSO variable selec-
tion and proposes the Adaptive LASSO which is showed to enjoy oracle property. LASSO
type methods are often used with parametric models such as linear model or logistic model.
To relax the parametric assumptions, Lafferty and Wasserman (2008) propose the Regu-
larization of the Derivative Expectation Operator (RODEO) for variable selection in kernel
regression. Chu et al. (2018b) proposes SIM-RODEO for variable selection in semiparametric
single-index model. See Su and Zhang (2014) for a thorough review of variable selection in
nonparametric and semiparametric models.

This paper gives a overview of recently developed machine learning methods, namely Ad-
aBoost in the role of binary prediction. AdaBoost algorithm focuses on making the optimal
forecast directly without modeling the conditional probability of the events. AdaBoost gets
an additive model by iteratively minimizing an exponential loss function. In each iteration,
AdaBoost puts more weights on the observations that cannot be predicted correctly using
the previous predictors. Moreover, AdaBoost algorithm is able to solve classification problem
with high-dimensional data which is an advantage to traditional classification methods.

The rest of the paper is organized as follow. In Section 2 we provide a brief introduction
of AdaBoost from minimizing the ‘exponential loss’. In Section 3 we show popular variants
of AdaBoost. Section 5 gives numerical examples of the boosting algorithms. Section 6
compares the mentioned boosting algorithms with Deep Neural Network (DNN) and logistic
regression with LASSO. Section 7 concludes.

2 AdaBoost

The algorithm of AdaBoost is as shown in Algorithm 1. Let y be the binary class taking a
value in {−1, 1} that we wish to predict. Let fm (x) be the weak learner (weak classifier) for
the binary target y that we fit to predict using the high-dimensional covariates x in the mth
iteration. Let errm denote the error rate of the weak learner fm (x), and Ew (·) denote the
weighted expectation (to be defined below) of the variable in the parenthesis with weight w.
Note that the error rate Ew

[
1(y 6=fm(x))

]
is estimated by errm =

∑n
i=1wi1(yi 6=fm(xi)) with the

weight wi given by step 2(c) from the previous iteration. n is the number of observations.
The symbol 1(·) is the indicator function which takes the value 1 if a logical condition inside
the parenthesis is satisfied and takes the value 0 otherwise. The symbol sign(z) = 1 if z > 0,
sign(z) = −1 if z < 0, and hence sign(z) = 1(z>0) − 1(z<0).
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Algorithm 1 Discrete AdaBoost (DAB, Freund and Schapire, 1997)

1. Start with weights wi = 1
n
, i = 1, . . . , n.

2. For m = 1 to M

(a) For j = 1 to k (for each variable)

i. Fit the classifier fmj(xij) ∈ {−1, 1} using weights wi on the training data.

ii. Compute errmj =
∑n

i=1wi1(yi 6=fmj(xji)).

(b) Find ĵm = arg minj errmj

(c) Compute cm = log
(

1−errm,ĵm

errm,ĵm

)
.

(d) Set wi ← wi exp[cm1(yi 6=fm,ĵm
(xĵm,i))

], i = 1, . . . , n, and normalize so that
∑n

i=1wi =
1.

3. Output the binary classifier sign[FM (x)] and the class probability prediction π̂(x) =
eFM (x)

eFM (x)+e−FM (x) where FM (x) =
∑M

m=1 cmfm,ĵm(xĵm).

Remark 1. Note that the presented version of Discrete AdaBoost as well as Real AdaBoost
(RAB), LogitBoost (LB) and Gentle AdaBoost (GAB) which will be introduced later in the
paper are different from their original version when they are first introduced. The original
version of these algorithms only output the class label. In this paper, we follow the idea of
Mease et al. (2007) and modified the algorithms to output both the class label and probability
prediction. The probability prediction is attained using

π̂(x) =
eFM (x)

eFM (x) + e−FM (x)
, (1)

where FM(x) is the sum of weak learner in the algorithms.

The most widely used weak learner is the classification tree. The simplest classification
tree, the stump, takes the following functional form

f (xj, a) =

{
1 xj > a

−1 xj < a

where the parameter a is found by minimizing the error rate

min
a

n∑
i=1

wi1 (yi 6= f (xji, a)) . (2)

In addition to the commonly used classification tree weak learners in machine learning
literature described above, Discrete AdaBoost, in principle, can take any classifier and boost
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its performance through the weighted voting scheme. For example, we can also use a one-
variable Logistic Regression as a weak learner which we will call the logistic weak learner.
Simulation results of Chu et al. (2018a) show that the logistic weak learner generally has
better performance than the stump in traditional econometric models. In the logistic weak
learner, we assume the probability

π (xj) ≡ P (y = 1|xj) =
exjβ

1 + exjβ
.

Let Y = y+1
2
∈ {0, 1}. We estimate the parameter β by maximizing the weighted logistic

log-likelihood function

max
β

logL = log
n∏
i=1

[(
exjiβ

1 + exjiβ

)Yi ( 1

1 + exjiβ

)1−Yi
]wi

= log
n∏
i=1

(
eYixjiβ

1 + exjiβ

)wi

(3)

=
n∑
i=1

log

(
eYixjiβ

1 + exjiβ

)wi

=
n∑
i=1

wi
[
Yixjiβ − log

(
1 + exjiβ

)]
. (4)

Then the resulting logistic weak learner will be

f (xj, β, τ) =

{
1 π (xj, β) > 0.5

−1 π (xj, β) < 0.5.

Several packages in R provide off-the-shelf implementations of Discrete AdaBoost. JOUS-
Boost gives an implementation of the Discrete AdaBoost algorithm from Freund and Schapire
(1997) applied to decision tree classifiers and provides a convenient function to generate test
sample of the algorithms.

Here we use the circle data function from JOUSBoost to generate a test sample. The
circle data function simulate draws from a Bernoulli distribution over {−1, 1}. First, the
predictors x are drawn i.i.d. uniformly over the square in the two dimensional plane centered
at the origin with side length 2 ∗ outerr, and then the response is drawn according to π(x),
which depends on r(x), the euclidean norm of x. If r(x) ≤ innerr, then π(x) = 1, if
r(x) ≥ outerr then π(x) = 0, and π(x) = (outerr − r(x))/(outerr − innerr) when innerr ≤
r(x) ≤ outerr as in Mease et al. (2007). The code of the function is shown below.

circle_data <- function (n = 500, inner_r = 8, outer_r = 28) {

if (outer_r <= inner_r)

stop("outer_r must be strictly larger than inner_r")

X = matrix(stats::runif(2 * n, -outer_r, outer_r), nrow = n,

ncol = 2)
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r = apply(X, 1, function(x) sqrt(sum(x^2)))

p = 1 * (r < inner_r) + (outer_r - r)/(outer_r - inner_r) *

((inner_r < r) & (r < outer_r))

y = 2 * stats::rbinom(n, 1, p) - 1

list(X = X, y = y, p = p)

}

Then we use the implementation of Discrete AdaBoost from ada package since the ada
package provides implementation of not only Discrete AdaBoost and also Real AdaBoost,
LogitBoost and Gentle AdaBoost which we will discuss about in the next section.

#Generate data from the circle model

library(JOUSBoost)

set.seed(111)

dat <- circle_data(n = 500)

x <- dat$X

y <- dat$y

library(ada)

model <- ada(x, y, loss = "exponential", type = "discrete", iter = 200)

print(model)

where y and x are the training samples, and iter controls the number of boosting iterations.

Remark 2. The algorithms in ada for Discrete AdaBoost, Real AdaBoost, LogitBoost and
Gentle Boost may not follow exactly the same steps and/or criteria as described in the paper.
However, the major settings, the loss function and characteristics of weak learners, are the
same. We choose to use the ada package since it’s widely accessible and easy to use for the
readers.

The output is as follow.

Call:

ada(x, y = y, loss = "exponential", type = "discrete", iter = 200)

Loss: exponential Method: discrete Iteration: 200

Final Confusion Matrix for Data:

Final Prediction

True value -1 1

-1 300 14

1 15 171

Train Error: 0.058

Out-Of-Bag Error: 0.094 iteration= 195
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Additional Estimates of number of iterations:

train.err1 train.kap1

197 197

Other packages include fastAdaboost which uses C++ code in the backend to provide an
implementation of AdaBoost that is about 100 times faster than native R based libraries.

library(fastAdaboost)

adaboost(y~x, nIter)

where y and x are the training samples and nIter is the number of boosting iterations. Note
that fastAdaboost also contains implementation of Real AdaBoost which we will introduce
later. GBM which is short for Generalized Boosting Regression Models contains implemen-
tation of extensions to Freund and Schapire’s AdaBoost algorithm and Friedman’s gradient
boosting machine.

Friedman et al. (2000) show that AdaBoost builds an additive logistic regression model

FM (x) =
M∑
m=1

cmfm (x) (5)

via Newton-like updates for minimizing the exponential loss

J (F ) = E
(
e−yF (x)|x

)
. (6)

We use greedy method to minimize the exponential loss function iteratively. After m itera-
tions, the current classifier is denoted as Fm (x) =

∑m
s=1 csfs (x). In the next iteration, we

are seeking an update cm+1fm+1 (x) for the function fitted from previous iterations Fm (x).
The updated classifier would take the form

Fm+1 (x) = Fm (x) + cm+1fm+1 (x) .

The loss for Fm+1 (x) will be

J (Fm+1 (x)) = J (Fm (x) + cm+1fm+1 (x))

= E
[
e−y(Fm(x)+cm+1fm+1(x))

]
. (7)

Expand w.r.t. fm+1 (x)

J (Fm+1 (x)) ≈ E

[
e−yFm(x)

[
1− ycm+1fm+1 (x) +

y2c2m+1f
2
m+1 (x)

2

]]
= E

[
e−yFm(x)

(
1− ycm+1fm+1 (x) +

c2m+1

2

)]
.
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The last equality holds since y ∈ {−1, 1} , fm+1 (x) ∈ {−1, 1}, and y2 = f 2
m+1 (x) = 1.

fm+1 (x) only appears in the second term in the parenthesis, so minimizing the loss function
(7) w.r.t. fm+1 (x) is equivalent to maximizing the second term in the parenthesis which
results in the following conditional expectation

max
f

E
[
e−yFm(x)ycm+1fm+1 (x) |x

]
.

For any c > 0 (we will prove this later), we can omit cm+1 in the above objective function

max
f

E
[
e−yFm(x)yfm+1 (x) |x

]
.

To compare it with the Discrete AdaBoost algorithm, here we define weight w = w (y, x) =
e−yFm(x). Later we will see that this weight w is equivalent to that shown in the Discrete
AdaBoost algorithm. So the above optimization can be seen as maximizing a weighted
conditional expectation

max
f

Ew [yfm+1 (x) |x] (8)

where Ew (y|x) := E(wy|x)
E(w|x) refers to a weighted conditional expectation. Note that (8)

Ew [yfm+1 (x) |x]

= Pw (y = 1|x) fm+1 (x)− Pw (y = −1|x) fm+1 (x)

= [Pw (y = 1|x)− Pw (y = −1|x)] fm+1 (x)

= Ew (y|x) fm+1 (x) .

where Pw (y|x) = E(w|y,x)P (y|x)
E(w|x) . Solve the maximization problem (8). Since fm+1 (x) only

takes 1 or -1, it should be positive whenever Ew (y|x) is positive and -1 whenever Ew (y|x)
is negative. The solution for fm+1 (x) is

fm+1 (x) =

{
1 Ew (y|x) > 0

−1 otherwise.

Next, minimize the loss function (7) w.r.t. cm+1

cm+1 = arg min
cm+1

Ew
(
e−cm+1yfm+1(x)

)
Ew
(
e−cm+1yfm+1(x)

)
= Pw (y = fm+1 (x)) e−cm+1 + Pw (y 6= fm+1 (x)) ecm+1

∂Ew
(
e−cyfm+1(x)

)
∂c

= −Pw (y = fm+1 (x)) cm+1e
−cm+1 + Pw (y 6= fm+1 (x)) cm+1e

cm+1

Let
∂Ew

(
e−cm+1yfm+1(x)

)
∂cm+1

= 0,
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and we have

Pw (y = fm+1 (x)) cm+1e
−cm+1 = Pw (y 6= fm+1 (x)) cm+1e

cm+1 ,

Solve for cm+1, we obtain

cm+1 =
1

2
log

Pw (y = fm+1 (x))

Pw (y 6= fm+1 (x))
=

1

2
log

(
1− errm+1

errm+1

)
,

where errm+1 = Pw (y 6= fm+1 (x)) is the error rate of fm+1 (x). Note that cm+1 > 0 as long
as the error rate is smaller than 50%. Our assumption cm+1 > 0 holds for any learner that
is better than random guessing.

Now we have finished the steps of one iteration and can get our updated classifier by

Fm+1 (x)← Fm (x) +

(
1

2
log

(
1− errm+1

errm+1

))
fm+1 (x) .

Note that in the next iteration, the weight we defined wm+1 will be

wm+1 = e−yFm+1(x) = e−y(Fm(x)+cm+1fm+1(x)) = wm × e−cm+1fm+1(x)y.

Since −yfm+1 (x) = 2× 1{y 6=fm+1(x)} − 1, the update is equivalent to

wm+1 = wm × e
(
log

(
1−errm+1
errm+1

)
1[y 6=fm+1(x)]

)
= wm ×

(
1− errm+1

errm+1

)1[y 6=fm+1(x)]

.

Thus the function and weights update are of an identical form to those used in AdaBoost.
AdaBoost could do better than any single weak classifier since it iteratively minimizes the
loss function via a Newton-like procedure. Interestingly, the function F (x) from minimizing
the exponential loss is the same as maximizing a logistic log-likelihood. Let

J (F (x)) = E
[
E
(
e−yF (x)|x

)]
= E

[
P (y = 1|x) e−F (x) + P (y = −1|x) eF (x)

]
.

Taking derivative w.r.t. F (x) and making it equal to zero, we obtain

∂E
(
e−yF (x)|x

)
∂F (x)

= −P (y = 1|x) e−F (x) + P (y = −1|x) eF (x) = 0

F ∗ (x) =
1

2
log

[
P (y = 1|x)

P (y = −1|x)

]
.

Moreover, if the true probability

P (y = 1|x) =
e2F (x)

1 + e2F (x)
,
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for Y = y+1
2

, the log-likelihood is

E (logL|x) = E
[
2Y F (x)− log

(
1 + e2F (x)

)
|x
]
.

The solution F ∗ (x) that maximize the log-likelihood must equals the F (x) in the true model

P (y = 1|x) = e2F (x)

1+e2F (x) . Hence,

e2F
∗(x) = P (y = 1|x)

(
1 + e2F

∗(x)
)

e2F
∗(x) =

P (y = 1|x)

1− P (y = 1|x)

F ∗ (x) =
1

2
log

[
P (y = 1|x)

P (y = −1|x)

]
. (9)

AdaBoost that minimizes the exponential loss yield the same solution as logistic regression
that maximizes the logistic log-likelihood.

3 Extensions to AdaBoost Algorithms

In this section we introduce extensions of Discrete AdaBoost, namely Real AdaBoost (RAB),
LogitBoost (LB) and Gentle AdaBoost (GAB), and discuss how some aspects of the DAB
may be modified to yield RAB, LB and GAB. In the last section, we learned that Discrete
AdaBoost minimizes an exponential loss via iteratively adding a binary weaker learner to
the pool of weak learners. The addition of a new weak learner can be seen as taking a step
on the direction that loss function descents in the Newton method. There are two major
ways to extend the idea of Discrete AdaBoost. One focuses on making the minimization
method more efficient by adding a more flexible weak learner. The other is to use different
loss functions that may lead to better results. Next, we give an introduction to several
extensions of Discrete AdaBoost.
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3.1 Real AdaBoost

Algorithm 2 Real AdaBoost (RAB, Friedman et al. 2000)

1. Start with weights wi = 1
n
, i = 1, . . . , n.

2. For m = 1 to M

(a) For j = 1 to k (for each variable)

i. Fit the classifier to obtain a class probability estimate pm(xj) = P̂w(y =
1|xj) ∈ [0, 1] using weights wi on the training data.

ii. Let fmj(xj) = 1
2

log
pm(xj)

1−pm(xj)
.

iii. Compute errmj =
∑n

i=1wi1(yi 6=sign(fmj(xji))).

(b) Find ĵm = arg minj errmj.

(c) Set wi ← wi exp [−yifm,ĵm(xĵm,i)], i = 1, . . . , n, and normalize so that
∑n

i=1wi =
1.

3. Output the classifier sign[FM (x)] and the class probability prediction π̂(x) =
eFM (x)

eFM (x)+e−FM (x) where FM (x) =
∑M

m=1 fm(x).

Real AdaBoost focuses solely on improving the minimization procedure of Discrete Ad-
aBoost. In Real AdaBoost, the weak learners are continuous comparing to Discrete Ad-
aBoost where the weak learners are binary (discrete). Real AdaBoost is minimizing the
exponential loss with continuous updates where Discrete AdaBoost minimizes the exponen-
tial loss with discrete updates. Hence, Real AdaBoost is more flexible with the step size and
direction of the minimization and minimizes the exponential loss faster and more accurately.
However, Real AdaBoost also imposes restriction that the classifier must produces a proba-
bility prediction which reduces the flexibility of the model. As we shall see in the numerical
examples, Real AdaBoost may achieve a larger in-sample training error due to the flexibility
of its model. On the other hand, this also reduces the chances of fitting and would in the
end achieve a smaller out-of-sample test error.

As we mentioned earlier, ada gives an implementation of the Real AdaBoost as well as
Discrete AdaBoost.

#Generate data from the circle model

library(JOUSBoost)

set.seed(111)

dat <- circle_data(n = 500)

x <- dat$X

y <- dat$y
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library(ada)

model <- ada(x, y, loss = "exponential", type = "real", iter = 200)

print(model)

where y and x are the training samples, and iter controls the number of boosting iterations.
The output is as follow.

Call:

ada(x, y = y, loss = "exponential", type = "real", iter = 200)

Loss: exponential Method: real Iteration: 200

Final Confusion Matrix for Data:

Final Prediction

True value -1 1

-1 293 21

1 29 157

Train Error: 0.1

Out-Of-Bag Error: 0.114 iteration= 189

Additional Estimates of number of iterations:

train.err1 train.kap1

189 189

3.2 LogitBoost

Friedman et al. (2000) propose LogitBoost by minimizing the Bernoulli log-likelihood via
an adaptive Newton algorithm for fitting an additive logistic regression model. LogitBoost
extends Discrete AdaBoost in two ways. First, it uses the Bernoulli log-likelihood instead
of exponential function as loss function. Furthermore, it updates the classifier by adding a
linear model instead of a binary weak learner.
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Algorithm 3 LogitBoost (LB, Friedman et al., 2000)

1. Start with weights wi = 1
n
, i = 1, . . . , n, F (x) = 0 and probability estimates p(xi) = 1

2
.

2. For m = 1 to M

(a) Compute the working response and weights

zi =
y∗i − p(xi)

p(xi)(1− p(xi))
(10)

wi = p(xi)(1− p(xi)) (11)

(b) For j = 1 to k (for each variable)

i. Fit the function fmj(xji) by a weighted least-squares regression of zi to xji
using weights wi on the training data.

ii. Compute errmj = 1−R2 from the weighted least-squares regression.

(c) Find ĵm = arg minj errmj

(d) Update F (x)← F (x) + 1
2
fm,ĵ(xĵ) and p(x)← eF (x)

eF (x)+e−F (x) , i = 1, . . . , n.

3. Output the classifier sign[FM (x)] and the class probability prediction π̂(x) =
eFM (x)

eFM (x)+e−FM (x) where FM (x) =
∑M

m=1 fm,ĵm(xĵm).

In LogitBoost, continuous weak learner are used similar to Real AdaBoost. However,
LogitBoost specified the use of linear weak learner while Real AdaBoost allows any weak
learner that returns a probability between zero and one. A bigger and more fundamental
difference here is that LogitBoost uses the Bernoulli log-likelihood as loss function instead of
the exponential loss. Hence, LogitBoost is more similar to logistic regression than Discrete
AdaBoost and Real AdaBoost. As we will see in the simulation result, LogitBoost has the
smallest in-sample training error but the largest out-of-sample test error. This implies that
while LogitBoost is the most flexible of the four, it suffers the most from overfitting.

LogitBoost is arguably one of the most well-known boosting algorithm. Popular packages
are available such as caTools. For consistency of the paper, here we stick with the ada package
which gives an ideal implementation of LogitBoost algorithm for small to moderate-sized data
sets.

#Generate data from the circle model

library(JOUSBoost)

set.seed(111)

dat <- circle_data(n = 500)

x <- dat$X

y <- dat$y
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library(ada)

model <- ada(x, y, loss = "logistic", type = "gentle", iter = 200)

print(model)

where y and x are the training samples, and iter controls the number of boosting iterations.
The output is as follow.

Call:

ada(x, y = y, loss = "logisitc", type = "gentle", iter = 200)

Loss: logisitc Method: gentle Iteration: 200

Final Confusion Matrix for Data:

Final Prediction

True value -1 1

-1 309 5

1 8 178

Train Error: 0.026

Out-Of-Bag Error: 0.07 iteration= 196

Additional Estimates of number of iterations:

train.err1 train.kap1

195 195
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3.3 Gentle AdaBoost

Algorithm 4 Gentle AdaBoost (GAB, Friedman et al. 2010)

1. Start with weights wi = 1
n
, i = 1, . . . , n.

2. For m = 1 to M

(a) For j = 1 to k (for each variable)

i. Fit the regression function fmj(xij) by weighted least-squares of yi on xi using
weights wi on the training data.

ii. Compute errmj = 1−R2 from the weighted least-squares regression.

(b) Find ĵm = arg minj errmj

(c) Set wi ← wi exp[−yifm,ĵm(xĵm,i)], i = 1, . . . , n, and normalize so that
∑n

i=1wi = 1.

3. Output the classifier sign[FM (x)] and the class probability prediction π̂(x) =
eFM (x)

eFM (x)+e−FM (x) where FM (x) =
∑M

m=1 fm,ĵm(xĵm).

Gentle AdaBoost extends Discrete AdaBoost in the sense that it allows each weak learner to
be a linear model. This is similar to LogitBoost and more flexible than Discrete AdaBoost
and Real AdaBoost. However, it is closer to Discrete AdaBoost and Real AdaBoost than
LogitBoost in the sense that Gentle AdaBoost, Discrete AdaBoost and Real AdaBoost all
minimize the exponential loss while LogitBoost minimizes the Bernoulli log-likelihood. An-
other point that Gentle AdaBoost is more similar to Real AdaBoost than Discrete AdaBoost
is that since the weak learners are continuous, there is no need to find an optimal step size for
each iteration because the weak learner is already optimal. As we will see in the simulation
results, Gentle Boost often lies between Real AdaBoost and LogitBoost in terms of in-sample
training error and out-of-sample test error.

ada also gives an implementation of the Gentle AdaBoost algorithm.

#Generate data from the circle model

library(JOUSBoost)

set.seed(111)

dat <- circle_data(n = 500)

x <- dat$X

y <- dat$y

library(ada)

model <- ada(x, y, loss = "exponential", type = "gentle", iter = 200)

print(model)

where y and x are the training samples, and iter controls the number of boosting iterations.
The output is as follow.
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Call:

ada(x, y = y, loss = "exponential", type = "gentle", iter = 200)

Loss: exponential Method: gentle Iteration: 200

Final Confusion Matrix for Data:

Final Prediction

True value -1 1

-1 305 9

1 15 171

Train Error: 0.048

Out-Of-Bag Error: 0.078 iteration= 198

Additional Estimates of number of iterations:

train.err1 train.kap1

196 196

For all the four boosting algorithms mentioned above, ada outputs the class label by
default. However, we can use the command predict to output probability prediction and/or
of class label using ada.

#Generate data from the circle model

library(JOUSBoost)

set.seed(111)

dat <- circle_data(n = 500)

x <- dat$X

y <- dat$y

library(ada)

model <- ada(x, y, loss = "exponential", type = "discrete", iter = 200)

#New Data for Prediction

newx <- data.frame(1,1)

names(newx) <- c('V1', 'V2')

predict(model, newdata = newx, type = "F")

predict(model, newdata = newx, type = "prob")

where y and x are the training samples, iter controls the number of boosting iterations. model
is the output from fitting the model using ada, newdata is the data to be used in prediction
and type specifies the type of output from the predict function. When type = “vector”, the
function outputs class labels. When type = “F”, the function outputs F (x) which the sum
of all weak learners. When type = “prob”, the function outputs the class probability using
1. The output is as follow.
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> predict(model, newdata = newx, type = "F")

1

4.345358

> predict(model, newdata = newx, type = "prob")

[,1] [,2]

1 0.0001681114 0.9998319

Note that manually transforming the sum of all weak learners F (x) into probability prediction
using equation 9 would lead to the same result as directly output the probability prediction
from the package as in the second line.

4 Alternative Classification Methods

Apart from Boosting algorithms, we also consider Deep Neural Network, Logistic Regres-
sion and semiparametric single-index model as alternative methods to obtain a predictor
of y. Deep Neural Network is able to deal with high-dimensional data. For Logistic Re-
gression, we have to select useful information from noises. Hence, a shrinkage parameter
is used with the logistic log-likelihood which we call LASSO. Semiparametric single-index
model is an extension to parametric single-index model such as Logistic Regression. It re-
laxes the parametric assumptions and uses the kernel function of fit the data locally. For
high-dimensional problem, we use SIM-RODEO to select useful explanation variables for
semiparametric single-index models.

4.1 Deep Neural Network

Deep Neural Network is undoubtedly one of the most state-of-the-art classification methods.
The model is similar to a multi-stage regression or classification model. The idea is to build
a flexible nonlinear statistical model consisted of several layers and each layer is consisted of
neurons as in Figure 1.

For binary classification, there is only one output Y that is the class probability or class
label. Since the transformation from class probability to class label is straight-forward, we
focus on the case where the output is the class probability. The layer labeled X is the
input layer which contains all the explanatory variables in the data set. Note that the
number of explanatory variables k is allowed to be extremely large (larger than the number
of observations) as in high-dimensional settings. The layers labeled Z are the hidden layers.
The number of hidden layers p can be arbitrarily set by the user and each hidden layer can
contain arbitrarily many neurons denoted by qt where t stands for the tth hidden layer.

The output zts of the sth neuron in the tth hidden layer is normally a single-index function
g(αts+β

′
tsZt−1) where α is a scalar, β is a vector of same length qt−1 as the number of neurons

in the (t−1)th hidden layer or the input layer if t = 1 and Zt−1 = (zt−1,1, zt−1,2, . . . , zt−1,qt−1)
is a vector of outputs from all neurons of the (t − 1)th hidden layer or the input layer if
t = 1. Similarly, the output layer of the model is also chosen to be a single-index function of
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Figure 1: Diagram of Deep Neural Network

the outputs of the last hidden layer. Hence,

z1s = g(w01s + w′1sX) (12)

zts = g(w0ts + w′tsZt−1) (13)

Y = π̂(x) = f(w0 + w′Zt). (14)

The function g(v) is called the activation function. It is often chosen to be a sigmoid.
Popular choices are the Rectified Linear Unit (ReLU)

g(v) = max(0, v)

and the logistic function

g(v) =
1

1 + e−v
.

The function f(v) in the output layer can also be a sigmoid. In addition to the ReLU and
logistic function, the identity function can also be used as the output function.

Since the activation function, output function, and number of hidden layers and neurons
are all chosen by the user prior to fitting the model, the only parameters to be determined by
the data are the weights α’s and β’s. We choose the best values for α’s and β’s to minimize
a given loss function. For binary classification, the squared error loss

L(w) =
∑
i

(yi − π̂(xi))
2

and the cross-entropy

L(w) = −
∑
i

yi log π̂(xi)
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are often used. The minimization procedure of Deep Neural Network is often time-consuming.
Moreover, convergence and optimality can not be guaranteed. Hence, multiple attempts need
to be made for a single problem. Two techniques, stochastic gradient descent and back-
propagation, are often used for minimization of Deep Neural Network. Fortunately, we do
not have to worry about the implementation of the minimization procedure since packages
are available in R.

Remark 3. Note that the class probability can be converted to class label easily by the rule

Ŷ = 1
(

ˆπ(x) > 0.5
)

where 1(·) is the indicator function.

We now turn to the implementation of Deep Neural Network using R. There are two
packages in R for Deep Neural Networks, neuralnet and keras. neuralnet is a package in R

that solves Deep Neural Network. keras, on the other hand, is an interface of tensorflow

which we will introduce later in R. Hence, neuralnet is easier to use for R users and works
fairly well on moderate-size problems. Let us introduce the use of neuralnet first.

#Generate data from the circle model

library(JOUSBoost)

set.seed(111)

dat <- circle_data(n = 500)

x <- dat$X

y <- dat$y > 0

sum.data <- data.frame(x,y)

library(neuralnet)

print(net.sum <- neuralnet(y ~ X1 + X2, sum.data, hidden = 2,

act.fct = "logistic", err.fct = "sse"))

where y is the class label, X1 and X2 are the explanatory variables, hidden is a vector that
specifies the number of neurons in each layer and act.fct specifies the kind of activation
function to be used. In our example, there is only one hidden layer with two neurons in
it. The activation function is logistic and the loss function to be minimized is the sum of
squared errors.

$call

neuralnet(formula = y ~ X1 + X2, data = sum.data, hidden = 2,

err.fct = "sse", act.fct = "logistic")

$response

y

1 TRUE

2 FALSE

3 TRUE

4 FALSE

5 TRUE
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...

$covariate

[,1] [,2]

[1,] 5.2069519311 4.2558353692

[2,] 12.6829428039 -20.3719270937

[3,] -7.2563678008 24.6251029056

[4,] 0.8357344829 -18.1280552782

[5,] -6.8508599121 17.9034926556

...

$model.list

$model.list$response

[1] "y"

$model.list$variables

[1] "X1" "X2"

$err.fct

function (x, y)

{

1/2 * (y - x)^2

}

<bytecode: 0x4f10880>

<environment: 0x85c0258>

attr(,"type")

[1] "sse"

$act.fct

function (x)

{

1/(1 + exp(-x))

}

<bytecode: 0x6b3fdf8>

<environment: 0x85c0258>

attr(,"type")

[1] "logistic"

$linear.output

[1] TRUE

$data

X1 X2 y
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1 5.2069519311 4.2558353692 TRUE

2 12.6829428039 -20.3719270937 FALSE

3 -7.2563678008 24.6251029056 TRUE

4 0.8357344829 -18.1280552782 FALSE

5 -6.8508599121 17.9034926556 TRUE

...

$net.result

$net.result[[1]]

[,1]

1 0.580442461921

2 0.166226565353

3 0.746461567986

4 0.504631826509

5 0.880228917245

...

$weights

$weights[[1]]

$weights[[1]][[1]]

[,1] [,2]

[1,] 0.9066077391 19.3160782267

[2,] -0.1145926600 1.3507916927

[3,] 0.0356239265 -0.3322296486

$weights[[1]][[2]]

[,1]

[1,] -0.8702072766

[2,] 1.0498484362

[3,] 0.8066945796

$startweights

$startweights[[1]]

$startweights[[1]][[1]]

[,1] [,2]

[1,] -3.3233349646 -0.6039894538

[2,] -0.4675154531 0.6744466927

[3,] 0.4315402657 0.6359205358

$startweights[[1]][[2]]

[,1]

[1,] -0.6129703876

[2,] 0.4148913454

[3,] 0.8773433726
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$generalized.weights

$generalized.weights[[1]]

[,1] [,2]

1 -0.117151263217 0.036419330807

2 -0.148384521998 0.046128951957

3 0.910325193217 -0.221275093627

4 -0.119499601088 0.037149368973

5 0.071284648051 -0.011543348159

...

$result.matrix

1

error 8.553736459613

reached.threshold 0.009821180033

steps 2145.000000000000

Intercept.to.1layhid1 0.906607739056

X1.to.1layhid1 -0.114592659965

X2.to.1layhid1 0.035623926505

Intercept.to.1layhid2 19.316078226658

X1.to.1layhid2 1.350791692688

X2.to.1layhid2 -0.332229648639

Intercept.to.y -0.870207276552

1layhid.1.to.y 1.049848436176

1layhid.2.to.y 0.806694579605

attr(,"class")

[1] "nn"

where ... represents that the rest of the output for this feature is omitted.
The keras package is a high-level interface of tensorflow which is an open source ma-

chine learning framework maintained by Google and is the most used library for fitting Deep
Neural Networks. keras defines the structure and features of the neural network and send
the informations to tensorflow which then solves the minimization problem and returns
the results. keras is suitable for more complicated and larger problems since tensorflow

actually doing the hard work.
Now we give a simple illustration of constructing neural networks with keras by con-

structing the same network as in the previous example in keras. More details about keras
can be found at https://tensorflow.rstudio.com.

#Generate data from the circle model

library(JOUSBoost)

set.seed(111)

22

https://tensorflow.rstudio.com


dat <- circle_data(n = 200)

x <- dat$X

y <- dat$y > 0

sum.data <- data.frame(x,y)

library(keras)

x_train <- x[1:100,]

y_train <- y[1:100,]

x_test <- x[101:200,]

y_test <- y[101:200,]

model <- keras_model_sequential()

model %>%

layer_dense(units = 2, activation = 'sigmoid', input_shape = c(100)) %>%

layer_dense(units = 1, activation = 'softmax')

model %>% compile(

loss = 'categorical_crossentropy',

optimizer = optimizer_rmsprop(),

metrics = c('accuracy')

)

history <- model %>% fit(

x_train, y_train,

epochs = 30, batch_size = 100,

validation_split = 0.2

)

4.2 Logistic Regression with LASSO

In traditional econometrics, the most used classification and probability prediction method
should be logistic regression. Logistic regression assumes that the proabability that the
output variable Y = y+1

2
∈ {0, 1} takes value one follows a logistic function of x. That is

π (x) = P (Y = 1|x) =
1

1 + e−xβ
.

Given a sample data of y and x, the likelihood of the sample can be rewritten as

L (β) =
∏
i

(
1

1 + e−xiβ

)Yi ( 1

1 + exiβ

)1−Yi
. (15)
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Taking the log transformation, the log-likelihood is

logL (β) = log

(∏
i

(
1

1 + e−xiβ

)Yi ( 1

1 + exiβ

)1−Yi
)

(16)

=
∑
i

log

((
1

1 + e−xiβ

)Yi ( 1

1 + exiβ

)1−Yi
)

(17)

=
∑
i

log

(
1

1 + e−xiβ

)Yi
+ log

(
1

1 + exiβ

)1−Yi
(18)

=
∑
i

Yixiβ − log
(
1 + e−xiβ

)
. (19)

Because of the high-dimensional feature of our problem, we have to control the number of
explanatory variables included in the model. Hence, an L1 penalty a.k.a LASSO penalty
is added to the log-likelihood as a penalty to including more explanatory variables in the
model. Logistic regression with LASSO minimizes the negative logistic log-likelihood (4)
with a Lasso penalty as below

min−
N∑
t=1

[
Yixiβ − log

(
1 + exiβ

)]
+ λ |β|1 . (20)

A well-known package called glmnet package provided by Hastie and Qian uses a quadratic
approximation to the log-likelihood, and then coordinate descent on the resulting penalized
weighted least-squares problem. And it is so far the most trust-worthy package in R for
logistic regression with LASSO. For binary classification, we use the estimated β to construct
a logistic probability model for y. Then, get our prediction from the model. If π̂ (x) > 0.5,
the predicted class will be 1. And if π̂ (x) < 0.5, the predicted class will be 0.

We can use the following command for logistic regression.

library(JOUSBoost)

set.seed(111)

dat <- circle_data(n = 100)

x <- dat$X

y <- dat$y > 0

sum.data <- data.frame(x,y)

library(glmnet)

model <- cv.glmnet(y,x, family = "binomial")

y.fit <- predict(model, newx = x, s = "lambda.1se", type = "response") > 0.5

train.error <- print(sum(y.fit != y) / n)

The output is the in-sample training error rate.

[1] 0.086
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If we are interested in knowing the estimated coefficients of the model, we can check the
components in the model object.

# The value of lambda's as shown in the objective function

print(model$glmnet.fit$lambda)

# The estimated beta's using the corresponding lambda

# shown by the previous command

print(model$glmnet.fit$beta)

The output looks like this.

[1] 0.029100660 0.026515438 0.024159880 0.022013582 0.020057956 0.018276063 0.016652468

[8] 0.015173109 0.013825171 0.012596981 0.011477900 0.010458235 0.009529154 0.008682611

[15] 0.007911271 0.007208456 0.006568076 0.005984587 0.005452932 0.004968509 0.004527120

[22] 0.004124943 0.003758495 0.003424601 0.003120368 0.002843164 0.002590585

2 x 27 sparse Matrix of class "dgCMatrix"

[[ suppressing 27 column names ‘s0’, ‘s1’, ‘s2’ ... ]]

V1 . -0.0006865767 -0.001312223 -0.001882394 -0.00240204 -0.0028939228

-0.0033458069 -0.003757714

V2 . . . . . 0.0003774458

0.0007948127 0.001175215

V1 -0.004133202 -0.004475500 -0.004787549 -0.005072024 -0.005331360 -0.005567777

-0.005783296

V2 0.001521948 0.001838004 0.002126106 0.002388728 0.002628126 0.002846351

0.003045275

V1 -0.005979761 -0.006158854 -0.006322106 -0.006470914 -0.006606555 -0.006730189

-0.006842877

V2 0.003226601 0.003391885 0.003542542 0.003679864 0.003805030 0.003919112

0.004023090

V1 -0.006945586 -0.007039197 -0.007124515 -0.007202272 -0.007273138

V2 0.004117857 0.004204228 0.004282945 0.004354685 0.004420064

Note that I reformat the output to fit the size of the paper.

4.3 Semiparametric Single-Index Model

Chu et al. (2018b) consider a standard single index model,

y = m (x′β) + u, (21)

where β = (β1, . . . , βk) is a vector of coefficients. Under the sparsity condition, we assume
that βj 6= 0 for j ≤ r and βj = 0 for j > r. We also assume that the random errors u
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are independent. However, we allow the presence of heteroskedasticity to encompass a large
category of models for binary prediction, e.g. Logit and Probit models. The kernel estimator
(Ichimura 1993) we use is as shown below

m̂ (x′β;h) =

∑n
i=1 yiK

(
X′iβ−x′β

h

)
∑n

i=1K
(
X′iβ−x′β

h

) , (22)

where K (·) is a kernel function. The semiparametric kernel regression looks for the best
β and h to minimize a weighted squared error loss. However, exact identification is not
available. If one blows up β and θ simultaneously by multiplying the same constant, the
kernel estimator would yield identical estimates and losses. The standard identification
approach is to set the first element of β to be 1 (Ichimura 1993).

In terms of variable selection and prediction, we only need to focus on finding the best
θ ≡ β

h
. Hence, we can simplify the estimator to

m̂ (x′θ) =

∑n
i=1 yiK (X ′iθ − x′θ)∑n
i=1K (X ′iθ − x′θ)

. (23)

The basic idea of the SIM-Rodeo is to view the local bandwidth selection as a variable
selection in sparse semiparametric single index model. The SIM-Rodeo algorithm ampli-
fies the inverse of the bandwidths for relevant variables while keeping the inverse of the
bandwidths of irrelevant variables relatively small. The SIM-Rodeo algorithm is greedy as it
solves for the locally optimal path choice at each iteration. It can also be shown to attain the
consistency in mean square error when it is applied for sparse semiparametric single index
models. SIM-Rodeo is able to distinguish truly relevant explanatory variables from noisy
irrelevant variables and gives a consistent estimator of the regression function. In addition,
the algorithm is fast to finish the greedy steps.

Now we derive the Rodeo for Single Index Models. First we introduce some notation.
Let

Wx =

 K (X ′1θ − x′θ) · · · 0
...

. . .
...

0 · · · K (X ′nθ − x′θ)

 (24)

where K (·) is the Gaussian kernel. The standard Ichimura (1993) estimator takes the form

m̂ (x′θ) =

∑n
i=1 yiK (X ′iθ − x′θ)∑n
i=1K (X ′iθ − x′θ)

= (ι′Wxι)
−1
ι′Wxy. (25)
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The derivative of the estimator Zj with respect to θj is

Zj ≡
∂m̂ (x′θ)

∂θj
(26)

= (ι′Wxι)
−1
ι′
∂Wx

∂θj
y − (ι′Wxι)

−1
ι′
∂Wx

∂θj
ι (ι′Wxι)

−1
ι′Wxy

= (ι′Wxι)
−1
ι′
∂Wx

∂θj
(y − ιm̂ (x′θ)) . (27)

For the ease of computation, let

Lj =


∂ logK(X′1θ−x′θ)

∂θj
· · · 0

...
. . .

...

0 · · · ∂ logK(X′nθ−x′θ)
∂θj

 . (28)

Note that
∂Wx

∂θj
= WxLj, (29)

which appears in equation (27). With the Gaussian kernel, K (t) = e−
t2

2 , then Lj becomes

Lj =


−1

2

∂(X′1θ−x′θ)
2

∂θj
· · · 0

...
. . .

...

0 · · · −1
2
∂(X′nθ−x′θ)

2

∂θj


=

 − (X ′1θ − x′θ) (X1j − xj) · · · 0
...

. . .
...

0 · · · − (X ′nθ − x′θ) (Xnj − xj)

 ,

where X1j and Xnj are the jth elements of vectors X1 and Xn. And xj is the jth element of
vector x. To simplify the notation, let Bx = (ι′Wxι)

−1 ι′Wx. Then, the derivative Zj becomes

Zj = (ι′Wxι)
−1
ι′
∂Wx

∂θj
(y − ιm̂ (x′θ))

= BxLj (I − ιBx) y

≡ Gj (x, θ) y. (30)

Next, we give the conditional expectation and variance of Zj.

Zj = Gj (x, θ) y = Gj (x, θ) (m (x′β) + u) , (31)

E (Zj|X) = E (Gj (x, θ) (m (x′β) + u) |X) = Gj (x, θ)m (x′β) , (32)

Var (Zj|X) = Var (Gj (x, θ) (m (x′β) + u) |X) = σ′Gj (x, θ)′Gj (x, θ)σ, (33)
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where σ = (σ (u1) , . . . , σ (un))′ is the vector of standard deviations of u. In the algorithm, it
is necessary to insert an estimate of σ. Since we allow the errors to be heteroskedastic as in
Logit and Probit models and estimate σ(ui) using the estimator σ̂(ui) = m(x′iθ̂)(1−m(x′iθ̂)).

SIM-Rodeo is described in Algorithm 5, which is a modified algorithm of Rodeo (Lafferty
and Wasserman 2008).

Algorithm 5 SIM-Rodeo (Chu et al., 2018b)

1. Select a constant 0 < α < 1 and the initial value

θ0 = c0 log log n

where c0 is sufficiently small. Compute Zj with θj = θ0 for all j.

2. Initialize the coefficients θ, and activate all covariates:

(a) θj =

{
θ0 Zj > 0
−θ0 otherwise,

j = 1, . . . , k.

(b) A = {1, . . . , k}.

3. While A 6= ∅ is nonempty, do for each j ∈ A:

(a) Compute Zj and sj =
√

Var (Zj|X) using (30) and (33) respectively.

(b) Compute the threshold λj = sj
√

2 log n.

(c) If |Zj| > λj, then set θj ← θj
α

; Otherwise, remove j from A (i.e., A ← A− {j}).

4. Obtain θ̂ = (θ1, . . . , θk). Output the class probability prediction π̂(x) = m̂
(
x′θ̂
)

and

the classifier F (x) = 1(π̂(x)>0.5).

We start by setting θj = θ0 that is close to zero. Hence, (X ′iθ − x′θ) are close to zero and
K (X ′iθ − x′θ) are close to K (0). This means our estimator starts with the simple average
of all observations, ȳ. If the derivative of θj is statistically different from zero. We amplify
θj. If xj is indeed a relevant explanatory variable, then the weights K (X ′iθ − x′θ) change
according to xj. The estimator will give higher weights to observations close to x′θ and lower
weights to observations away from x′θ.

5 Monte Carlo

In this section, we demonstrate the above DAB, RAD, LB and GB via small Monte Carlo
simulation designs to illustrate R functions and library.

We construct the two DGPs to check the finite sample properties of the Boosting al-
gorithms. DGP1 is a binary logistic model where y follows a Bernoulli distribution with
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probability

π (x) ≡ 1

1 + e−xβ

to be 1 and 1− π (x) to be −1 where

x
n×k
∼ N

(
0,

Σ

β′Σβ

)
, Σij = ρ|i−j|,

n = 100, k = {2, 20} and ρ ∈ {0} .

We have two settings for the β. In the low-dimension case (k = 2) , we let

β = (1, 1).

In the high-dimension case (k = 20), we let β = (β1, . . . , βk) where

βi = 0.9i. (34)

that decrease exponentially. Hence, most of the β’s are very close 0.
DGP2 is the circle model introduced in Section 2. Here we have two settings for the circle

model. In the low dimension case, only the two relevant x’s are used to train the models
as shown in the toy demo in previous sections. In the high dimension (sparse) case, three
irrelevant x’s are added in addition to the two relevant ones. Table 1 and Table 2 show
the in-sample training error and the out-of-sample test error in the two cases for different
methods.

To construct the training and testing samples, we randomly generate x using the above
distribution and calculate π (x). To generate the random variable y based on x, we first
generate a random variable ε that follows uniform distribution between [0, 1]. Next, we
compare ε with π (x). There is a probability of π (x) that ε is smaller than π (x) and a
probability 1− π (x) otherwise. Hence, we set

y =

{
1 ε < π (x)

−1 ε > π (x) .

Given a set of observations {(x, y)}, we compare the average loss (classification error)
achieved by using different methods. The formula for the average loss is as below.

ErrorRate =
1

n

∑
1 (yi 6= sign (FM (xi))) , (35)

where n is the number of observations in the set.
To evaluate the algorithms, first we train our predictors with the training data of size

n = 100. Then, we use a testing data set that contains 100 new observations of (x, y) to
compute the average loss (35) achieved by the Boosting algorithms, Deep Neural Network,
Logistic Regression and semiparametric Single-Index Model for out-of-sample evaluations.
The boosting algorithms are component-wise versions of the four methods as shown before.
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The alternative methods we have, Deep Neural Network, Logistic Regression with LASSO
penalty and semiparametric single-index model with SIM-RODEO considers all variables at
the same time. The number of Monte Carlo repetition for each DGP is 1000.

The results are shown below.

Table 1: Error Rate of Low Dimension Circle Model

Train Error Test Error
Discrete AdaBoost 0.0820 0.2053
Real AdaBoost 0.0853 0.2038
LogitBoost 0.0602 0.2090
Gentle AdaBoost 0.0718 0.2062
Deep Neural Network 0.2601 0.3533
Logistic Regression 0.3586 0.3573
SIM-RODEO 0.2986 0.3421

Table 2: Error Rate of High Dimension (Sparse) Circle Model

Train Error Test Error
Discrete AdaBoost 0.0202 0.2203
Real AdaBoost 0.0295 0.2165
LogitBoost 0.0081 0.2232
Gentle AdaBoost 0.0133 0.2208
Deep Neural Network 0.2838 0.4017
Logistic Regression 0.3569 0.3572
SIM-RODEO 0.3542 0.3541

Table 3: Error Rate of Low Dimension Logistic Model

Train Error Test Error
Discrete AdaBoost 0.1431 0.3129
Real AdaBoost 0.1519 0.3120
LogitBoost 0.1302 0.3160
Gentle AdaBoost 0.1339 0.3154
Deep Neural Network 0.2304 0.3090
Logistic Regression 0.2773 0.3083
SIM-RODEO 0.3069 0.3415

From the simulation results, we can see that the four boosting methods work well in both
the circle model and the logistic model. LogitBoost has the smallest training error among
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Table 4: Error Rate of High Dimension (Sparse) Logistic Model

Train Error Test Error
Discrete AdaBoost 0.0007 0.3217
Real AdaBoost 0.0015 0.3215
LogitBoost 0.00007 0.3214
Gentle AdaBoost 0.0001 0.3204
Deep Neural Network 0.0523 0.3172
Logistic Regression 0.2328 0.3432
SIM-RODEO 0.3580 0.3971

all four boosting algorithms as well as the largest testing error. On the other hand, Real
AdaBoost has the largest training error as well as the smallest testing error. Similar rules
applies to the other two boosting methods. Smaller training errors implies larger testing
errors. This is an evidence of overfitting which is related to the hyper-parameters in the
boosting algorithms. If the number of boosting iterations is small, then we will have a larger
training error but less risk of overfitting. On the other hand, if we have more boosting
iterations, then the boosting methods will fit the training data better but raise higher risk
on overfitting. The number of iterations in the boosting algorithms are fixed by the users.
However, cross-validation could be used to determine the optimal number of iterations.

As for the alternative methods, Deep Neural Network works better in the logistic model
than the circle model. This is a result of the set-up of the Deep Neural Network. We use
the logistic function as the activation function and output function, and the entropy as the
loss function. The set-up will give better results when logistic model is the true model. For
the circle model, Deep Neural Network gives a comparable result to the Logistic Regression
in the low-dimension case. However, the result is much worse for the high-dimension case.
Again, this could be a result of our set-up of the Deep Neural Network. We acknowledge that
the Deep Neural Network is high flexible with lots of hyper-parameters Different set-up of
the model may lead to dramatically distinct results. Our setting by no means is the optimal
one and Deep Neural Network could perform better with a different set-up.

For Logistic Regression, it works best in the low-dimension logistic model as all parametric
assumptions are satisfied. However, in the high-dimension case, Logistic Regression will have
a larger bias due to the need to shrink the coefficients of irrelevant variables to zero. To fix
this bias, one may try the De-biased Machine Learning method(Chernozhukov et al., 2018).

6 Applications

In this section we illustrate the R functions in two economics applications.
In the application, we use the FRED monthly data https://research.stlouisfed.

org/econ/mccracken/fred-databases/ to predict the moving direction of real personal
income in the United States. After removing the observations with missing values, our obtain
341 effective observation with a sample period starting from September, 1989 to January
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2018. We use 125 variables which are all variables in the data except for the Consumer
Sentiment Index that is only available quarterly and New Orders for Consumer Goods which
has too many missing data. We generate the direction of the real personal income as our
dependent variable and take the lag of the dependent variable as one explanatory variable.
Hence, we have in total k = 126 explanatory variables and (341−1 = 340) observations. We
use rolling training sample with window width W = 100 and predict the one month ahead
moving direction. We have (n = 340−W = 240) subsamples and predictions.

Table 5: Error Rate of Application

Train Error Test Error
Discrete AdaBoost 0.0028 0.3125
Real AdaBoost 0.0407 0.3291
LogitBoost 0.0003 0.3041
Gentle AdaBoost 0.0020 0.3083
Deep Neural Network 0.2389 0.2666
Logistic Regression 0.2479 0.2708
SIM-RODEO 0.2257 0.2958

The results are very similar to the simulation results for logistic models. The boosting
methods have very small in-sample training errors. However, the out-of-sample testing error
are much larger than the alternatives. This may indicate that the boosting algorithms are
overfitting the model.

7 Conclusions

This paper shows recent developed methods for high-dimensional binary classification and
probability prediction. We start by introducing four component-wise boosting methods,
namely component-wise Discrete AdaBoost, component-wise Real AdaBoost, component-
wise LogitBoost and component-wise Gentle AdaBoost. Discrete AdaBoost, Real AdaBoost
and Gentle AdaBoost minimizes the exponential loss via Newton-like procedures. Logit-
Boost minimizes the Bernoulli log-likelihood via adaptive Newton method. These methods
are extremely popular since they are both computationally efficient and easy to implement.
Moreover, the component-wise Boosting algorithms deal with high dimensional issue by con-
sidering the explanatory one at a time. In each iteration, only the most effective explanatory
variable is chosen to train a weak learner. Hence, these methods allows k � n. However,
hyper-parameters such as the number of boosting iteration normally need to be determined
by the user prior to the estimation procedure. Cross-validation may also be used to choose
the number of iterations.

Next, we give an introduction to alternative methods such as Deep Neural Network,
Logistic Regression and SIM-RODEO. Deep Neural Network is a kind of nonlinear statistical
learning model features a network structure that is similar to the relationship between the
neurons of human brain. Deep Neural Network may be explained partly as a kind of basis
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transformation which leads to extreme flexibility of the model. Deep Neural Network and its
variants are the most popular prediction method at this time and are widely used in fields
such as image and voice recognition.

Logistic Regression is a traditional method used intensively in economics for binary clas-
sification and probability prediction. Logistic Regression assumes that the probability that
the output label is 1 conditional on x follows a logistic function of x. Under such assumption,
the parameters of the model often has practical economic meaning unlike machine learning
methods that are often hard to interpret. However, logistic regression relies heavily on its
parametric assumptions and is the least flexible model introduced in this paper. In addition,
to deal with high-dimensional problem, we have to use the LASSO to control the number of
explanatory variables chosen in the model.

SIM-RODEO relaxes the parametric assumption of Logistic Regression. As a result,
SIM-RODEO is more flexible but, to some extent, still interpretable as Logistic Regression.
However, the flexibility of SIM-RODEO may lead to a slower convergence rate and less time
efficiency.

This paper conducted extensive comparison of the above mentioned methods through
Monte Carlo experiments. We compare the methods using both traditional binary classifica-
tion model (logistic model) and irregular model (circle model). The boosting methods work
well in both the traditional models and irregular models. Logistic Regression works better
in the low dimension logistic model when the parametric assumptions of Logistic Regression
are satisfied. However, in the high-dimensional case, the LASSO introduces high bias in Lo-
gistic Regression and lead to lower classification accuracy. In the irregular models, Logistic
Regression performs poor compared to the boosting algorithms. The Deep Neural Network
performed best in the traditional methods as a result of our configuration of the Neural
Network. We acknowledge that our configuration of Deep Neural Network is by no means
the best and the results here may improve with different activation function, output function
and/or number of hidden layers and neurons. SIM-RODEO is an extension to parametric
methods such as Logistic Regression. It performs reasonably well in the models.

We also use these methods for predicting the changing direction of the real personal
income in the United States. The application show similar results as in the simulation of
logistic models.

This paper gives a thorough introduction of newly developed methods for binary clas-
sification and probability prediction. Advantages and disadvantages of each method are
discussed and compared. We conclude that no single method has an absolute advantage in
all aspects over the other methods. We believe binary classification and probability predic-
tion will remain important for business and economics and look forward to future works on
this problem.
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Bühlmann, P., Yu, B., 2003. Boosting with the $L 2$ loss: Regression
and classification. Journal of the American Statistical Association 98, 324–
339. URL: http://www.tandfonline.com/doi/abs/10.1198/016214503000125, doi:10.
1198/016214503000125.

Chatterjee, S., 2016. fastAdaboost: a Fast Implementation of Adaboost. URL: https:

//CRAN.R-project.org/package=fastAdaboost. r package version 1.0.0.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., Robins,
J., 2018. Double/debiased machine learning for treatment and structural parameters.
Econometrics Journal 21, C1–C68. URL: http://arxiv.org/abs/1608.00060, doi:10.
1111/ectj.12097, arXiv:1608.00060.

Chu, J., Lee, T.H., Ullah, A., 2018a. Asymmetric AdaBoost for High-Dimensional Maximum
Score Regression.

Chu, J., Lee, T.H., Ullah, A., 2018b. Variable Selection in Sparse Semiparametric Single
Index Model.

Cox, D.R., 1958. The regression analysis of binary sequences. Journal of the Royal Statistical
Society. Series B (Methodological) 20, 215–242. URL: http://www.jstor.org/stable/
2983890.

Culp, M., Johnson, K., Michailidis, G., 2016. ada: The R Package Ada for Stochastic
Boosting. URL: https://CRAN.R-project.org/package=ada. r package version 2.0-5.

Elliott, G., Lieli, R.P., 2013. Predicting binary outcomes. Journal of Econo-
metrics 174, 15–26. URL: https://www.sciencedirect.com/science/article/pii/

S0304407613000171, doi:10.1016/j.jeconom.2013.01.003.

Freund, Y., Schapire, R.E., 1997. A Decision-Theoretic Generalization of On-Line Learning
and an Application to Boosting. Journal of Computer and System Sciences 55, 119–139.

Friedman, J., Hastie, T., Tibshirani, R., 2000. Additive logistic regression: A statisti-
cal view of boosting. Annals of Statistics 28, 337–407. doi:10.1214/aos/1016218223,
arXiv:0804.2330.

Friedman, J., Hastie, T., Tibshirani, R., 2010. Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of Statistical Software 33, 1–22. URL: http:
//www.jstatsoft.org/v33/i01/, doi:10.18637/jss.v033.i01, arXiv:NIHMS150003.

34

http://www.ncbi.nlm.nih.gov/pubmed/17813446
http://www.ncbi.nlm.nih.gov/pubmed/17813446
http://dx.doi.org/10.1126/science.79.2037.38
http://dx.doi.org/10.1214/009053606000000092
http://www.tandfonline.com/doi/abs/10.1198/016214503000125
http://dx.doi.org/10.1198/016214503000125
http://dx.doi.org/10.1198/016214503000125
https://CRAN.R-project.org/package=fastAdaboost
https://CRAN.R-project.org/package=fastAdaboost
http://arxiv.org/abs/1608.00060
http://dx.doi.org/10.1111/ectj.12097
http://dx.doi.org/10.1111/ectj.12097
http://arxiv.org/abs/1608.00060
http://www.jstor.org/stable/2983890
http://www.jstor.org/stable/2983890
https://CRAN.R-project.org/package=ada
https://www.sciencedirect.com/science/article/pii/S0304407613000171
https://www.sciencedirect.com/science/article/pii/S0304407613000171
http://dx.doi.org/10.1016/j.jeconom.2013.01.003
http://dx.doi.org/10.1214/aos/1016218223
http://arxiv.org/abs/0804.2330
http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
http://dx.doi.org/10.18637/jss.v033.i01
http://arxiv.org/abs/NIHMS150003


Friedman, J.H., 2001. Greedy Function Approximation: A Gradient Boosting Machine. The
Annals of Statistics 29, 1189–1232. doi:10.2307/2699986.

Fritsch, S., Guenther, F., 2016. neuralnet: Training of Neural Networks. URL: https:

//CRAN.R-project.org/package=neuralnet. r package version 1.33.

James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An Introduction to Statistical
Learning with Applications in R. Springer.

Lafferty, J., Wasserman, L., 2008. Rodeo: Sparse, greedy nonparametric regression. Annals
of Statistics 36, 28–63. doi:10.1214/009053607000000811, arXiv:0803.1709.

Lahiri, K., Yang, L., 2012. Forecasting binary outcomes, in: Elliott, G., Timmermann, A.
(Eds.), Handbook of Economic Forecasting. SSRN. volume 2, pp. 1025–1106. doi:10.1016/
B978-0-444-62731-5.00019-1.

Manski, C.F., 1975. Maximum score estimation of the stochastic utility model of
choice. Journal of Econometrics 3, 205–228. URL: http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.587.6474{&}rep=rep1{&}type=pdf, doi:10.1016/
0304-4076(75)90032-9.

Manski, C.F., 1985. Semiparametric analysis of discrete response. Asymptotic prop-
erties of the maximum score estimator. Journal of Econometrics 27, 313–
333. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.504.

7329{&}rep=rep1{&}type=pdf, doi:10.1016/0304-4076(85)90009-0.

Mease, D., Wyner, A., Buja, A., 2007. Cost-weighted boosting with jittering and over/under-
sampling: Jous-boost. Journal of Machine Learning Research 8, 409–439.

Olson, M., 2017. JOUSBoost: Implements Under/Oversampling for Probability Estimation.
URL: https://CRAN.R-project.org/package=JOUSBoost. r package version 2.1.0.

R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing. Vienna, Austria. URL: https://www.R-project.org/.

Ridgeway, G., 2017. gbm: Generalized Boosted Regression Models. URL: https://CRAN.
R-project.org/package=gbm. r package version 2.1.3.

Su, L., Zhang, Y., 2014. Variable Selection in Nonparametric and Semiparamet-
ric Regression Models, in: Racine, J.S., Su, L., Ullah, A. (Eds.), The Oxford
Handbook of Applied Nonparametric and Semiparametric Econometrics and Statis-
tics. Oxford University Press. URL: http://www.oxfordhandbooks.com/view/

10.1093/oxfordhb/9780199857944.001.0001/oxfordhb-9780199857944-e-009,
doi:10.1093/oxfordhb/9780199857944.013.009.

Tibshirani, R., 1996. Regression Selection and Shrinkage via the Lasso. Journal of the
Royal Statistical Society B 58, 267–288. URL: http://citeseer.ist.psu.edu/viewdoc/
summary?doi=10.1.1.35.7574, doi:10.2307/2346178, arXiv:11/73273.

35

http://dx.doi.org/10.2307/2699986
https://CRAN.R-project.org/package=neuralnet
https://CRAN.R-project.org/package=neuralnet
http://dx.doi.org/10.1214/009053607000000811
http://arxiv.org/abs/0803.1709
http://dx.doi.org/10.1016/B978-0-444-62731-5.00019-1
http://dx.doi.org/10.1016/B978-0-444-62731-5.00019-1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.587.6474{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.587.6474{&}rep=rep1{&}type=pdf
http://dx.doi.org/10.1016/0304-4076(75)90032-9
http://dx.doi.org/10.1016/0304-4076(75)90032-9
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.504.7329{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.504.7329{&}rep=rep1{&}type=pdf
http://dx.doi.org/10.1016/0304-4076(85)90009-0
https://CRAN.R-project.org/package=JOUSBoost
https://www.R-project.org/
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=gbm
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199857944.001.0001/oxfordhb-9780199857944-e-009
http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199857944.001.0001/oxfordhb-9780199857944-e-009
http://dx.doi.org/10.1093/oxfordhb/9780199857944.013.009
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7574
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7574
http://dx.doi.org/10.2307/2346178
http://arxiv.org/abs/11/73273


Tuszynski, J., 2018. caTools: Tools: moving window statistics, GIF, Base64, ROC AUC,
etc. URL: https://CRAN.R-project.org/package=caTools. r package version 1.17.1.1.

Walker, S.H., Duncan, D.B., 1967. Estimation of the probability of an event as a function of
several independent variables. Biometrika 54, 167–179. doi:10.1093/biomet/54.1-2.167.

Zou, H., 2006. The Adaptive Lasso and Its Oracle Properties. Journal of the American Sta-
tistical Association 101, 1418–1429. URL: http://users.stat.umn.edu/{~}zouxx019/
Papers/adalasso.pdf, doi:10.1198/016214506000000735.

36

https://CRAN.R-project.org/package=caTools
http://dx.doi.org/10.1093/biomet/54.1-2.167
http://users.stat.umn.edu/{~}zouxx019/Papers/adalasso.pdf
http://users.stat.umn.edu/{~}zouxx019/Papers/adalasso.pdf
http://dx.doi.org/10.1198/016214506000000735

	Introduction
	AdaBoost
	Extensions to AdaBoost Algorithms
	Real AdaBoost
	LogitBoost
	Gentle AdaBoost

	Alternative Classification Methods
	Deep Neural Network
	Logistic Regression with LASSO
	Semiparametric Single-Index Model

	Monte Carlo
	Applications
	Conclusions

