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1n the thifd century BC Eratosthenes of Cyrene (276-196) attempted to calculate
the citcumference of the eatth using gnomon measurements.and the properties of

similar triangles. His caleulation is widely taken as oneof the great ac_hieyements O
of Greek science. In wA Chinese Eratosthenes of the Flat Earth: A Study of'a’ .

Fragment of Cosmology in Huai Nan tzu i 7 F." Christopher Cu__llen’ remarks.

that a ¢0mparison of Greek and Chinese calculations provides a good example of

the characteristics of success and failure in science. Eratosthenes had two hy-

potheses of c_onside_rable-predictive power, despite the- fact that he would have -

found some d';ft"l_uulty in justifying them: " (a) the earth is spherical; (b} the sun is

for.practical purposes at an infinite distance so that its rays reach the garth sensi-

! Barlier versions of this pﬁper were presented in the conference "Rethinking Science
and Civilisation: the ldeologies, Disciplines and Rhetorics of World History,” Stanford
University, May 21-23, 1999: at the Needham Research Institute, September 10, 1999;

and in the Mathematics Colloquium of the University of California at Riverside, April 27,

2000, 1 am grateful to John C. Baez, Alan C. Bowen, Christopher Cullen, Sir Geoffrey
Lioyd, Nathan Sivin, Hans Ulrich Vogel and two anonymous readers for EASTM for
reading and comments. C
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bly parallel. As it will appear, the Chinese author -believed neither of these
things."? - ' ' L o
Several second century (BC) Chinese texis use gnomon shadow lengths to

" calutate terrestrial and celestial distances, including the distance from the earth

to the sun. They assumed that the earth'was flat and the sun at 2 measurably finite

- distance, ‘Theit calculations were less accurate than' Erdtosthenes', but no less

mathematically well teasoned. These apparently- similar cafculations invite con-

sideration from another. viewpoint, namely the role of quant'iﬁcatioh in the origins
of science: . - ; _ o

* 1Introductory Conmderatlons L

"The d'e'velbinﬁiént'_ of physical methods and mathematical -:tech.niques‘-.for_ "'-acéﬁ-

raig" niez‘l_s;i_rement,_.z_md_thé‘man-ipulati;)ni of the data, of';_S'ﬁch'_msast_lrameﬁt;- is -
widely accepted as one of the bases of the Eumpéan_“"sci_e_ntiﬁc revolution.” The -

~¢achet of measurement and calculation has extended from the physical sciences

to far. more interpretive contexis; contar__npdmry'_exampl:s'inclu_de psychological

testing and computer simulations. of human behiavior. These developments are

typically contrasted with a “premodern” science based on categorical thinking
rather than extrapolation from accurate, measurement, fot ‘example, in this state-
ment by Joseph Needham: “In’"s0 far-as numerical figures entered -into. them '

[premodern sciences}, numbets were maniputated in forms of 'numerology’ or -
number-mysticism constructed a priori, not employed as the.stutf of quantitative
measurements éompared-a posteriori fas in imodérn science]."3 Here we have a-
clean divide between "quantities” and "categories,” the stuff of ‘numerology and .
"pumber-mysticism." 'B_'o_th,terms need further consideration. o

' Ca_tegot"ies_, Quantities, Metrology and Meffq,sbpl_iy

The terms "category” and "categorical thinking" have been applied to a wide
range of conceptual schemes based on the classification by qualities. The pio-
neering work of Luciety Levy-Bruht and Claude Lévi-Strauss first called atterition
to the complexity of the classificatory schemata used by piimitive societies.* . -

" These terms have been applied toa range of humoural theories, Greek, Chinese

and otherwise, including the correlative cosmologies of Han China, as well as to -

2 Cullen 1976; 107, reprinted as Appendix A in Major 1993: Sec atso Lloyd 1996: 60. R

As will be apparent throughout, the present studyis particularly indebted to Christopher

Cullen’s studies of Chinese mathematics and astronomy and his pioneering work on the ..’ '

Zhoubi suan jing.
3 Needham 1979:'15. :
4 Levy-Bruhl 1923 and 1966; Lévi-Straus 1969,
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the classificatory schemes of Chinese iistorics and encyclopedias.5 The latter
have been widely studied within the context of Chinese cosmology, bui iess on in
their relations to calculation and the quantitative measurement.

"Quantification” refers in general to the expression of properties in numerical
terms, including, but not limited 10, estimation, measurement and calculation

(most measurements incorporate some degree of estimation). It is distinct from

both precision {exactitude) and accuracy (correctness), which is applicable to
qualities as well as quantities.6 It is similar to metrology, as distinct from metro-
sophy.” Metrology pertains to the arts of calculation using numbers, weights and
measures; metrosophy refers to speculation using numbets, especiatly in cosmok-
ogy®

Even within a clearly metrological context, it is necessary to distinguish be-
tween modern and waditional concepts of precision, accuracy and error, in part
because modern scientific concepts of precision have no equivalent 1n premodern
periods. In the ancient world, very particular problems present themselves. For
example, precision in early Greek astronotny was impeded by a number of social
tactors, including the lack of standardized weights and measures between city-
states and the private, rather than institutional, charactet of Greek astronomical
measurements.? The notion of precision has a long and complex history in China.
Clear metrological interest appears in medical and cosmological contexts in the
second and first centuries BC. Examples include the "Treatise on [Mathematical}
Harmonics and Astronomy" (Liiti zhi 14 B i) of the Hanshu (discussed be-
jow),10 and discussions of anatometrics in the Hanshu and Huang Di neijing

5 Correlative cosmologies included detailed analogies between the hody, state and
cosmos, and appeared in such works as the Huang Di neijing 8 7 i 48, the Clhumgiu
faniu & FX % & and later cainonical Confuctan works such as the Baih tong B &
See Graham 1986: 91-92, Graham 1989, and Hendetrson 1084: 2-22. For the classiticatory
scheines of some Chinese histories and encyclopedias, see Bodde 1981, " .

6 Van Nostrand's Scientific Encyclopédia {Considine and Considine, 1989: 2309) de-
fines precision as "the degree of exactness with which a quantity is stated” or "the degree
of discrimination or amount of detail,” and notes that a result may have more precision
than it has accuracy, Within the context of instruments and scientific measuring systems,
it defines accuracy as "the conformity of an indicated value to an accepted standard value,
or true value." Thus the neyactness” of precision refers the refinement with which an
operation is petformed, a measurement stated, or a pumber represented. Accuracy refers
to cotrrectness, understood negatively as freedom trom mistake ot error and posilively as
conformity 10 a standard, model, or to teuth, including the degree of contormity of a
measure §0 a standard or true value.

71 take these terins from Yoge! 1994, to which the following discussion is indebted.

8 O, as one author defines it, "number speculation within cosmological philoso-
phemes’ (Figala 1988: 3 as quoted in Vogel 1994 135). For further discussion of metro-
sophy, see Fleckenstein 1975

9 Lloyd 1994: 157.

10 Hansh 21A: 955972,
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lingshu.!! In late Imperial China, precision becomes an explicit issue in critiques
of traditional astronomy and cosmology.iZ

Both metrology and metrosophy are centrally concerned with the use of num-
ber and the development of number systems, but in very different ways. In me-
trology numbers are used for counting, measuring and defining, in metrosophy,
for the symbolic, magical and cotrelative values ascribed to them.!3 Despite
these differences, these two approaches to number cannot but have overlapped,
sometimes with considerable tension. An example is provided by Chinese geo-
metrical cosmography, described as: “The division of space, celestial and terres-
trial, civic. and agrarian, and ceremonial and secular, into reguiar rectilinear
units." 14 Geometrical cosmography is both metrosophical and metrological; it
involves both "quafitative” cotrelation and "guantitative” measurement.!

In cases of overlap and tension between metrosophical and metrological sys-
tems, quantities can become categoties. Consider chapter 214 of the "Treatise on

11 E.g., the account of dissection in Hanshi 99B: 4145-4146, as well as several trea-
tises in the Huang Di neijing: nCardinal Waters” (Jing shui 48 7K, Lingshu 12}, "Dimen-
sions of the Bones" (Gu e B PE, Lingshu 14), “Dimensions of the Pulsating Vessels"
(Mo du i F&, Lingshu 17), "Intestines and Stomach” (Chang wei i% &, Lingshu 31) and
" A Normal Person Abstains from Cereals” (Ping ren jue git T A 18 &y, Lingshu 32), all
as discussed in Yamada 1991,

12 For example, the Song Neo-Confucian thinker Zhu Xi # ¥ (1130-1200), in a re-
ported conversation with the polymath Cai Yuanding 3¢ 7T & (1 135.1198) about the
inaccuracy of calendrical systems, remarked that "if it were studied with enough precision
to yield a definitive method of computation, there would be no further discrepancies ...
the astronomical technigues of the Ancients were imprecise (shadeue T R, L. "oose) but
there were few discrepancies. The more precise (mi , Hit fight'} the systems of today
are, the more discrepancies appear!" (Zhuzi yulei 57: 14a-17a, trans. Sivin 1986, 163). In
the foregoing interpretation, increases of precision led to greater expectations of accuracy.
An alternative reading is to retain the literal meanings of "tight” and "loose.” Read thus,
the looser systems of the sages of antiquity showed fewer discrepancies than the overly
tight systems of Zhu Xi's day, with the implication that the looser systems were preferable
because of their greater overall consistency (Vogel 1996, especially 80-82). Concepts of
precision also played an important part in sixteenth- and seventeenth-century Chinese
critiques of traditional cosmology. One of Xu Guangai's & 3 % (1 562-1633) priorities
in adopting the astronomy of Tycho Brahe (1546-1601) was (o introduce more accurate
astronomical knowledge based on precise observation (Hashimoto 1988, especially 1-,
49-52 and 227-228). Fang Yizhi 75 DA 8 (161 1-1671) and Wang Fuzhi T K 2 (1619-
1692) heid that discrepancics and irregularities were an inherent part of the cosmos and
are therefore not predictable. The astronomical version ‘of this view was that indeterimi-
nacy was inherent in the fabric of the cosmos, and 3 corresponding imprecision in human
knowledge of the world, regardless of care or precision in observation and calculation
(Henderson 1984 246). '

13 Sec Vogel 1994, especially 135-136.

14 Henderson 1984: 59.

15 Henderson 1984: 59-87 and 119-136.
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[Mathematicai] Harmonics and Astronomy” (Lift zhi) of the Haifsizu.lﬁ The first
part of the chapter introduces a system that integrates metrology and metrosophy,
the laiter including numerology, musical pitch, celestial phenomena, astronomy,

cosmology, historiography, politics and ethics. It describes harmonics ([i) as -

consisting of five categories: complete pumbers (beishie {0, harmonized
sounds (hesheng & &), reliable length measures (shendu B FE), good capacity
measutes (jiationg B &), and weights and balances (quan heng 1 #i).17 These
categories also describe a hierarchy of kinds of quantities: number, pitch, length,
volume and weight, with units of measure for each, forming an integrated metro-
logical system based on the length of the huangzhong pitch-pipe. This system in
turn was placed in a wider network of corresponding metrological and metroso-
phical phenomena, with correlations to yin I and yang [, heaven and earth
(tiandi 7 1), the four seasons (sishi 9 1), the five phases (wixing T. 7). the
ten-thousand things (wanwi & 1), the five constant virtues (wuchang fi. )
and so forth.!8 Texts such as this show the limitations on our ability to distin-
guish between & priori "numerology"” and a posteriori "quantitative measurement”
in premodetn [eXis. ‘
Quantification is not necessarily more accurate than gualitative description.
For example, inaccurate measurement may be evidence of an atternpt at quantiti-
cation or mathematical reasoning about nature. In each case we must ask where
the numbets came from, including what verification procedures were used to
ascertain them and how they were used. Simplistic oppositions between quantifi-
cation and categorical thinking impede our understanding of complex interactions
petween cosmology. mathematics, observation and analysis in ancient science.
The Chinese and Greek gnomon shadow measurements allow us 10 problemaiize
this divide; we can use them to explore two distinct contexts for measurement,
calculation and quantitication in the ancient world. The details and contexts of
these calculations illustrate a balance between "quantities” and "categoties.”
Their Greek and Chinese authors had discovered that they could combine
mathematical knowledge and direct measurements to calculate” distances that
could not be measured directly. Apparent similarities in mathematics and meas-

arement methods belie important differences in assumptions, models, interpreta-
tion of data, conclusions and context, including the nature of the "similarity"
between large and small and the use of conventional values rather than actual

measureinents.

16 Hanshi 21A: 955-972.

17 Hanshe 21A: 956, trans. Vogel 1994: 137, All five categories are ascribed to the
Iueangzhong pitch pipe, waditionally attrituted to the Yellow Emperor (Hanshu 21A: 959,
Guoyn 3. 42, Needham 1962: 199.

18 A full treatment of Hanshet 21 is beyond the scope of e present study. For further

discussion, see Yogel 1994,
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Quantification and the Origins of Science '

Quantification in the ancient world also bears on claims for and against the
uniquely Western origins of science. OF the historians of science who credit the
Greeks with fundamental insights not duplicated elsewhere, some emphasize a
distinct, and qualitative, "mode of thought; such claims do not turn on measure-
ment or the coltection and manipulation of accurate data."!9 The work of Joseph
Needham directly challenged accounts of ancient science that moved from unigue
Greek insights to claims that ancient science was uniquety Greek.20 Needham's
entire project rejected the claim that the origins of science were uniquely West-
etn, but nonetheless asserted that only modern science was genuinely universal:

The sciences of the medieval world were tied closely to their
ethnic environments, and it was very difficult, if not impos-
sible, for the people of those difierent cultures to find any
common basis of discourse. 21

A:?cording to Needham, universal modern (rather than distinctively Western)
science emerged from the unique "scientific evolution” of the West, which -
prominently included quantification: ‘

ft is surely quite cicar by now that the history of science and
technology of the Old World must be thought of as a whole,
But when this is done, a great paradox presents itself, Why
did modern science, the mathematization of hypotheses
about nature, with all its implications for contemporary
technology, take its meteoric rise only in the West at the
time of Galileo?22

_ Nathan Sivin subsequently problematized Needham's position, and argued, as

historians of science now typically do, that the "scientific revolution" of seven-
teenth-century Europe was not a unique event in world history. Sivin's atticle

_'? For example, A.C. Crombie, writing as recently as 1994 (1994: 1213), credits the
origins of science (o ancient Greek philosophers, mathematicians and physicians who
Qevelopacl the "two fundamental conceptions of universal natural causality matched by
formal proof.” For the view that Greek science was a new creation that was inscparable
fiom Greek philosophy, see Kahn 1991.

20 The first volume of Science and Civilisation in China appeared in 1959. Six years
fater, Joseph Needham's "Poverties and Triumphs of the Chinese Scientific Tradition"
appeared in Alistair Crombic's 1963 anthology Scientific Change: Historical Studies in
the Intellecinal, Social and Technical Conditions for Scientific Discovery and Technical
fnvention, from Antiguity fo the Present (Needham 1963). It is morert'réquently cited as
reprinted in The Grand Titration: Science and Society in Eaxst and West (Needham 1979)

21 Needham 1963: 118. '

22 Needham 1963: §17.
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demonsiraies a differcnt scientific revolution in Song-dynasty China and argues
that the difference between the two wevolutions” was one of degree rather than
kind.23 In a parenthetical remark, be points out a potential "scientific revolution
that did not take place" in Hellenistic Greece:

{ remember how puzzled a classicist colleague once was at
why Archimedes didn't set off a scientific revolution. My
colleague was convinced that Archiredes had the mathe-
matical tools to invent dynamics, why did he stop shert,
eighteen hundred years befare Galileo? Why didn't someone
form a committee and fund an enonnous research project s0
that Archimedes’ dynamics and his talent for invention could
have saved the Hellenistic world from its enemies? Unfortu-
nately, neither new ideas without human organization o
carry them out, nor new assoctations rearranging clichés, can

change the world.24

The most important of two ostensible shifts between ancient and modern science
is the development of methods and mathematical techniques for accurate meas-
urement of physical phenomena and the manipulation of the resulting data,
Needhan's "mathematization of hypotheses about nature."2% (The other is helio-
centrism, discussed below.} Following from this, the usual answer to the ques-
tion, Why the Scientific Revolution Did Not Take Place in Greece — Or Didn't
It? — which Sivin argues is a false question based on bad assumptions — is the
claim that Greek science and all seience before Galileo, was qualitative and
lacked exact quantitative expression or data. This claim has been taken by some,

most notably Alexandre Koyré, to diminish any claims by Greek science to be
science at all. 2 As Koyté put it:

23 Sivin 1982: 65. A complete treatment of the complex arguments of this paper is be-
yond the scope of the present study. For example, Sivin contrasts the marginatized posi-
tion of premodern Western astronomers and other scientists in European society with the
highly official character of Chinese astronomy. For an incisive treatment of the history
and significance of Sivin's work on these and other problems see Chu's (2001) double
review of Sivin 1995k and 1995¢. .

24 Sivin 1982: 61-62. Elsewhere, he makes a sociological distinction between what
others have called modern "universal” biomedicine and the diverse practices of traditional
medical systems, which have more in common with each other than with the modern
medicine that is challenging and replacing them: "modern medicine, on the other hand,
has certain basic characteristics that can be secn anywhere that it is practiced, despite
great variation in its social organization and the way it is understood by laymen. ... It uses
surgery, asepsis, anesthesia and powerful drugs to overcoine life-threatening traumas,
infeciions and biochemicat dysfunctions that no traditional system can control.” C. Sivin
1987: 6.

25 Koyré 1957 and Kuhn 1957.

26 For statements of this claim, see Koyré 1948 806-823 (rpt. 1961 3LIE), Koyré
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. no one had the idea of counting, of weighing and of
measuring, Or, more exactly, no one ever sought to get be-
yond the practical use of number, weight, measure in the
imprecision of everyday life.27

Geoffrey Lioyd takes Koyré's claim head-on by examining its merits in several
areas of Greek science: dynamics, element theory, geophysics, astronomy, har-
monics, optics, the use of standardized weights and the applications of counting,
He demonstrates that, while the first two fit Koyré's claim, the others do not.
Optics, harmonics, astronomy and geophysics provided important counterevi-
dence that the ancient Greeks sought exactness in the formulation of rigorous
theories and in the collection of precise data. He argues that cases must be taken
individually, that "the ancients' performance in different contexts and at different
periods varies, and each field and period must be judged on its own merits."28

Lloyd's study of "Measurement and Mystification™ also demonsteates the lim-
its of overvaluing quantification for its own sake. Premature or poorly grounded
mathematization or quantification in some Greek medical theories impeded their
speculations about nature.29 Other appeals to mathematics and precision were
rhetorical (e.g. symbolic numbers) or confused precision with accaracy. Other
cases of "exact measurement” used instruments of very limited accuracy. Nor
were the limits of appeals to precision lost upon the Greeks themselves;
akpiPewa, precise measurement, is already a target of Aristophanes, who depicts
Socrates trying to measure the length of the jump of aflea30 -

II Greek Geodesy and Celestial Measurement

During the third century BC several Greek mathematicians and astronomers de-
veloped hypotheses and calculations regarding the motion and sizes and distance
of the sun, moon and earth. Because of the direct link between them, I examine
the arguments and calculations of Aristacchus, Archimedes and Eratosthenes.
What were they attempting to accomplish in their celestial measurements, calcu-
Jations and mathematical hypotheses? Were these attempts at accurate measure-
ment or geometric proofs using nurabers of only vague relation to actual meas-
urements?

£968: 8oit., and Kuhn 1961: 161-193 (rpt. 1977,

27 Koyré 1961: 318, as quoted in Lioyd 1987: 216.

28 Lloyd 1987: 278.

2% For example, overty numerical theories of periodicity in embryology and Galen's
attempts to grade degrees of hot, cold, wet and dry (Lloyd 1987: 280).

30 Aristuph.anes, Clouds, 1431t. Cf. Lloyd 1987 280n218. Unless otherwise noted,
Greek texts refer to the editions in the Loeb Classical Library series,
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Avristarchus of Sameos

Aristarchus of Samos (310-230 BC) is known to have been 2 pupil of Strato of
Lampsacus, a natural philosopher who succeeded Theophrastus as head of the
Peripatetic school in 288 (or 287) BC and held that post for eighteen years. 3!

He is best known as the first Greek exponent of a heliocentric theory. Our ma-
jor source for it is the works of his younger contemporary Archimedes of Syra-
cuse (287-212 BC), who recorded it, but, like his contemporaries, did not believe
it. (Copernicus did and quoted Aristarchus in his own formulation.32} Aris-
tarchus' contemporaries rejected the theory in part because it conflicted with the
commonsense view that the earth did not move.33 According to Plutarch, Clean-
thes (d. 232 BC), the head of the Stoic schoo! at Athens, urged that Aristarchus
be indicted on charges of impiety for "putting the Hearth of the Universe in mo-
tion,"34 ' _ o :

The one sutviving work of Aristarchus is On the Sizes and Distances of the
Sun and Moon. n it, Aristarchus uses six (unexplained) hypotheses to prove
eighteen propositions. The hypotheses are: (1) that the moon receives light from
the sun; (2) that "the earth holds the relation of point and center to the sphere of
the moen,” in other words, that the maoon revolves around the earth; (3) that
“when the moon appears halved, the observer's eye lies on the plane of the great
circle dividing its bright and dark halves,” in other words, that the centers of the
sun, earth and moon form a right triangle with its right angle at the center of the
moon; (4) that "when the moon appears haived, its [angular] distance from the
sun is one-thirtieth quadrant short of a quadrant (87°);" (5) that the earth's
shadow has a breadth of two moons; and (6) that the moon subtends one-fifteenth
of a sign of the zodiac 33

These hypotheses vary in the extent to which they could have been, and were,
actually observed. The first three and fifth seem to be the results of actual obser-
vations that do not depend on high-precision measuring devices. The two hy-

31 Astius i.15.5 and Galen, Histor. Philos. 3, in Doxographi Graeci, ed. H. Diehls

© 1879: 313 and 601, as quoted in Heath 1913: 299,

32 Cf. Heath 1913: 301-302, and Koyré 1957: 28, 281n2. See Nicolaus Copernicus
(1473-1543), De revoluionibus orbium caelestim (Nuremberg, 1543), trans. Duncan
1976.

33 For discussion of the reasons for the rejection of Aristarchus” heliocentric hypothe-
sis throughout antiquity, see Lloyd 1973: 57-61.

34 Plutarch, De facie in orbe lunae, 6: 922F-923A, as cited in Heath 1913; 304, Ac-
cording to Diogenes Laertius, Cleanthes' works included a tract "Against Aristarchus.” By
contrast, the Babylonian astronomer Seleucus {c.150 BC}, one of the few adherents of
heliocentrism it antiquity, maintained it as both a mathematical proposition and a physi-
cal fact (Heath 1913: 304-308). Aristarchus views also contradicted Plato (Timaers 39b-d,
Laws vii 822a).

35 Aristarchus, De Mag. et Dist. Solis et Lunae, us translated in Heath 1913: 352-354.

i
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potheses that required precise measurement were (4) and (6), and it is difficult to
ascettain whether either was aciualy vbserved. The instrumentation available to
Aristarchus would not have yielded the needed precision to obscrve (4}, and even
if the value of 1/30 quadrant short of a quadrant was not determined instrumen-
tally, there still remains the question of whether it was observed. Although (6)
could have been observed, it is not clear that it was. 37 o

Vitruvius credits Aristarchus with the invention of an improved sand-dial, the
axégn. Instead of a plane, its sutface was a concave hemisphere with a vertical
pointer in its center and lines marked on its surface.38 The pointer’s shadow made
it possible to measure the direction and height of the sun; however, such a device
could not have been used at night to measure the direction and height of the
moon.

In the propositions, Aristarchus uses assumptions and the properties of similar
triangles to "demonstrate” ratios between the diameters of the earth, sun and
mooh and their distances from each other. For example:

Proposition 7. The distance of the sun from the earth is
greater than 18 times, but less than 20 times the distance of
the moon from the earth.*?

Where do the numbers come from? The Greek text is & nareative, listing proce-
dures for naming points and drawing lines and circles between them. It is unclear
whether the figures it uses are actual measurements, and there is no exact visual
representation of quantitative information. {By contrast, translations of this pas-
sage typically include an iflustrative diagram.) The Greek text has the lock and
feel of a proof by deduction from the properties of similar triangles. It is not clear
whether their lengths and angles are determined by the initial assumptions ot by
actual measurements. 40

One explanation of the erross in Aristarchus' calculations is that very small
elongations are difficult to estimate precisely. This explanation impties that Aris-
tarchus was attempting to obtain an accurate value. On the contraty, the terms of

36 As Alan C. Bowen has pointed out (personal comimunication), the observational
status of {4) depends on whether Aristarchus was able to observe both the sun and moon
visible above the horizon when the moon was at quadrature. If so, it would have been
possible by various means o estimate that the angular distance separating the sun and
moon as slightly less than 90, If not, however, it would be clear that the value was nei-
ther determined by measurement nor directly observed.

37 GER. Lloyd has suggested {personal communication) that Sizes and Disiances,
may be a geometric exercise and that Aristarchus arbitratily picked, rather than measured,
the number for hypothesis {(6).

38 Vitruvius, De architectura (i.x 8 (9.1), Heath 1913: 300.

39 Aristarchus, De Mag. et Dist. Solis et Lunae, as cited in Heath 1913, secs.
376.1-380.28. '

40 por further discussion of this demonstration, see Lloyd 1973: 56-57.




20 ~ EASTM 19(2002)

his exposition suggest that Aristarchus was more interested in a mathematical
demonstration than in a practical problem. His “calculations” are problems in
deductive reasoning that draw on proportions and ratios, rather than exact meas-
urements of quantities. ‘

~ Archimedes of Syracuse

One of Koyré's few concessions in his negative judgment of Greek science was in
the area of celestial physics. When we turn to the works of Archimedes, we might
expect to find a greater concern with the kind of precision Koyré is looking for.
Archimedes' broader range of interests included engineering and measurement, as
well as mathematics. Whether or not we accept Vitruvius' story of his use of
precise measurerments to detect the adulteration of a gold crown (by comparing
the water it displaced to the displacement of a pure gold weight), his treatise On
Floating Bodies makes it clear that he understood the workings of specific grav-
ity through the measurements of the volumes and weights of solids.4]

The Yapuirns or Sand-Reckoner of Archimedes uges an astronomical example
to propose a number system capable of expressing large numbers.42 It is also the
soutce for our association of Aristarchus with heliocentrism.43 The Sand-

‘Reckoner was addressed to Gelo[n}, the son and co-ruler of King Hieron II of

Syracuse.# In the first section, Archimedes explains the purpose of the work, to
introduce a new system for the expression of large numbers:

41 Lioyd 1987: 249-250, -

42 Archimedes, Arenarins, in LY. Heiberg (1880-1881): fi. 218, 7-18, and Mugler
1971 vol. 1, 10-20. ‘

43 According to Archimedes, Aristarchus published {or made available) written state-
ments (or illustrations) of certain hypotheses. One was that the "fixed stars" (gmhavéa v
Gotpeav) and the sun remain motionless and that the earth revolves agound the sun "along
the circumference of a circle” (xaté kixhov nepipepeav), Atistarchus suggests that the ratio
of the eartl’s otbit to its distance from the fixed stars was the same as the ratio of the (size
of the) center of a sphere to its surface, with the sense that the universe is very large, since
the center of 4 sphere has no magnitude. 1t is tempting but anachronistic to read into this
passage modern claims for &n infinite universe (such claims rest on modern ideas of divi-
sion by zero). Aristarchus is more likely to have meant that the universe was very large.
The point of the remark that a center has no magnitude might simply have been that the
ratio was improperly formed. ‘ .

44 Gelo {or Gelon) was the son of King Hiero [l of Syracuse (r. 265-216 BC) and Phil-
istis. He narried Nereis, the daughter of King Pyrrhos. Gelo co-ruled with his father from
about 240 BC until the latier's death, at which time Gelo's son Hieronymos inherited the
throne. '
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There are some, King Gelon, who think that the number of
[zraing of] the sand is infinite in multitude ... Again there are
some who, without regarding it as infinite, yet think that no
number has been named which is great enough to exceed its
multitude ... But [ will try to show you by means of geomet-
rical proofs which you will be able to follow, that, of the
numbers named by me ... some exceed ... that of a mass [of
sand} equal in magnitude to the universe.*

He begins with a common definition of the universe as a sphere whose center is
the earth and whose periphery is the center of the sun (with no stated reference to
the fixed stars). He contrasts it with Aristarchus' view that the earth revolves
around an unmoving sun within the sphere of the fixed stars, an immense distance
away. Archimedes' purpose was to calculate the mimber of grains of sand it
would take to fill a large but finite universe. The interest of his example for pre-
sent purposes is that it is more concetned with numbers and ratics than with
measurement. The astronomical data specifies the conditions of his problem, the
expression of large numbers.

He describes the sizes of the earth, sun and moon in relative terms, as ratios,
rather than as observed measurements of actual sizes. He introduces four assump-
tions to specify the size of the earth, the relative diameters of the sun, earth and
moon (sun's diameter no greater than 30 times the moon's), the relation between
the diameter of the sun and the circumference of the fixed stars (the univetse) and
the relative diameters of three spheres: the universe (circumscribed by the fixed
stars), the orbit of the sun (around the earth) and the (spherical) earth itself. Fi-
nally comes the size of a grain of sand; no more than 10,000 grains of sand would
fit into a sphere whose diameter was 1/40 a finger-width:46

I. the perimeter of the earth is 3 million [T puptdBeov, lit.
300 myriad] stades and not more ... '

This figure was offered for the sake of the argument; Archimedes probably knew
it to be false because he acknowledges that some had argued for a figure of only
300,000 stades. The second assumption follows the views of the astronomers of
his time:

2. the diameter of the earth is greater than the diameter of
the moon, and the diameter of the sun is greater than the di-

45 Archimedes, Aren. 1, Mugler 19711 vol. 2, 134-135; C. Heath 1897 (rpt. 1912):
221, and Lloyd 1973: 41-42.

46 Archimedes, Aren. [-2, Mugler 19712 vol, 2, 136-145; Translation slightly modified
from Heath 1897/1912: 222-227.

47 Archimedes, Aren. |, Mugler 1971: vol. 2, 136; Heath 1897: 222,
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ameter of the earth.#8
3. the diameter of the sun is about 30 times the diameter of
the moon, and not greater.*? . :

Archimedes states that this assumption-depatts from the views of Eudoxus, Ar-
chimedes' own father Pheidas, and Aristarchus, who argued for a figure between
18 and 20. Why does Archimedes use larger numbers than his predecessors? One
possible reason is improved accuracy of measurement. Another is to establish an
irreproachably conservative upper bound for his calculation, (His choice of a
problem had already created a context for the expression of the largest numbets
possible.) Finally,

4. 'The diameter of the sun is greater than the side of the chi-
liagon inscribed in the greatest circle in the (sphere of the}
universe, 3¢

Archimedes' explanation of this section introduces an actual experimental im-
provement on the measurement of Aristarchus, who found that the sun appeared
to.be 1/720th part of the circle of the zodiac. Archimedes uses experimental
methods to arrive at a higher and lower limit for the angle subtended by the sun.
He invented a sighting tube device to measure the angle subtended by the disk of
the sun, beginning with Aristarchus’ conventional figures. His measurements used
magnitudes of error in the form of upper and lower limits, based on aciual meas-
urement. He shows that the angie subtended by the diameter of the sun was less
than 1/104th past, but greater than 1/200th part, of a right angle.! Finally, he
adds a fifth assumption in the second section: '

5. Suppose a quantity of sand taken not greater than a
poppy-seed, and suppose that it contains not more than
10,000 grains. Next, suppose the diameter of the poppy-seed
to be not fess than 1/40 of a finger-breadth.52

In the third section of the Sand-Reckoner, Archimedes proposes a number system
capable of expressing large numbers. Greek arithmetical calculations at that time
used an alphabetic notation of 27 signs to represent numbers, in addition to the
names of the nunbers 10 (5éxa), 100 {éxarév), 1000 (dhior) and 10,000 (wipion).33

48 Archimedes, Aren. t, Mugler 1971: vol. 2, 136; Heath 1897: 223.

49 Acchimedes, Aren. 1, Mugler 1971: vol. 2, 136; Heath 1897 223,

50 Archimedes, Aren. 1, Mugler 1971: vol. 2, 137; Heath 1897: 223,

51 Archimedes, Aren. 1, Mugler 1971: vol. 2, 138; Heath 1897: 224.

52 Archimedes, Aren. 2, Mugler 1971 vol. 2, 145; Heath 1897: 227,

53 The lettérs o through 8 represented the numbers 1 through 9, with 6 represented not
by Zeta ¢ but by the Phoenician letter Stigma 5. The letters Tota  through Pi n represented
the numbers 10 through 80, with 90 represented by the Phoenician letter Koppa . The
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Thus the number 3 million would be written as 300 myriad or T pupiaBeov, where
the fetter Tau stood for ihe number 300, This was 2 decimal system without
decimal or other positional notation, and it did not provide for the naming of
numbers beyond a hundred million (108), a myriad myriads (nupias puptéSag).
The Greeks used a decimal system for naming integers; they also used the
sexagesimal notation of Babylonian astronomical texts for describing fractions.?*
Thus Greek astronomers, including Archimedes, used Babylonian-style sexage-
simal notation for fractions and used the ordinary alphabetic notation for integers,
degrees and hours.>3 They also used Egyptian fractions to represent quantities
jess than one unit. 5

Archimedes defines the numbers expressed in the existing system as numbers
of the first order, allowing for the expression of a myriad myriad orders of aum-
bers, which in turn become the basis for periods of numbers.?7 In the fourth sec-

last eight letsers of the Greek alphabet, Rho g through Omega <, represented the first eight
numbers of the hundred series (100-800), with the Phoenician letter Sampi » signifying
the number 900. The thousands were represented by the letters for the numbers 1 through
9, with a stroke subscripted to the left of the number (&.g. ,« for 1000). A macron writien
over the letter indicated that i represented a number. See Thomas 1951, vol. 1: 43, and
Cajori 1928: 21-29.

54 [n sexagesimal notation, 6O units of one kind are written as | unit of the next order
higher, for example, in the following multiplication table of numbers: 4/40, 5/50, 6/1,
771,10, 811,20, 9/1,30, 10/1,40, 11/1,50, 12/2, 13/2,10. See Neugebaver 1957: 12-17,
especially 16.

55 Cajori 1928: 26-29. For sexagesimal tractions in numerical calculations, see
Ptolemy, Synraxis i 10, ed. Heiberg (1880-1881}): i. 3L 7-32. 9, as quoted in Thomas
1951: vol. 2, 412-413. For a comparative perspective, see Lloyd 1994.

56 Cf, Neugebauer 1957: 21, 50, and 72-74.

57 Archimedes, Aren. 3, Mugler 1971: vol. 2, 145-147; Heath 1897: 227-229. He de-
fines the numbers from | to a myriad myriads (100,000,000 or 10% in medern notation),
the numbers expressible through existing names, as numbers of the first order (wpéstol
apiduot). He then posits a mytiad myriads, the last number of the first order, as the units of
numbers of the second order (Bevrépeov dpuév uowides), from 100,000,000 (10%) to
100,000,000210%). The last number of the second order (10%) becomes the unit of sum-
pers of the third order (vpireov apbucsv powdBes), which includes numbers from
100,000,0002 (10') to 100,000,000° {10%), He continues through numbers of the fourth
(10 10 10%) and fifth ordess (107 to 10%} to the myriad-myriadth order of numbers,
ending with a myriad myriads taken a myriad-myriad times (pupckioppiooTé dpiBadv
wuplas pwplabas) or 100,000,000 {,o841¢"). He then defines the numbers from | to
100,000,000 95 the numbers of the first period {amBuct wpcavay meploboy) of a myr-
iad-myriad of orders. He takes the tast number of the first period as the unit of numbers of
the first order of the second period (jovés Bevtépas TeploBou wpcbTLow amBucov) and moving
upwards by octads (series from 10! to 10%, he defines the remaining orders of the second
period and additional periods up to the {0 period, a myrtad myriad units of numbers of
the myriad myriadth order of the myriad myriadth period (vas pupakonuprootéo apibuc
puplas wpiédas) This number would require 80,000 million millions of zeros to express.
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tion, Archimedes applies the system described in the third section to the problem
and assumptions introduced in the first two sections. He concludes that the num-
ber of grains of sand necessary o fill the universe would be fewer than a thou-
sand myriads of numbers of the eighth order (,a puprdBes TGV &yBocav aplcov), oF
1063 in modern notation.>8

Whereas Aristarchus may have been satisfied with a conventional figure, Ar-
chimedes introduced an observational method through his invention of a sighting
tube to measure the angle subtended by the disk of the sun, as well as the use of
upper and lower limits.59 Nonetheless, the argument of the Sand-Reckaner sug-
gests that Archimedes too may not have been primarily interested in geophysical
measurement, astronomical observation, or the creation of precision instruments.

Eratosthenes of Cyrene

Fratosthenes of Cyrene was known as 2 student of the philosopher Ariston of
Chios, of the grammarian Lysanias of Cyrene and of the poet Callimachus.60 His
range of interests earned him the nicknames Pentathlos and Beta (for being sec-
ond-place in everything). Ptolemy Euergetes invited him to Alexandria as tutor to
his son Philopator and later made him Librarian at Alexandria. The one book
attributed to him, TThatovikés, seems o have addressed mathematics in relation to
Platonic philosophy.

Much of our knowledge of Eratosthenes comes through Archimedes. Of the
twelve known complete works of Archimedes, five are undedicated 8! and five
are addressed to the astronomer Dosithios of Pelusium (c. 230 B(C).62 Of the
remaining two, the first is the Sand-Reckoner, discussed above, addressed to
Archimedes' patron. The second is the Method or Egobos {clagsed as) a lost work
until 1906. It is addressed to Eratosthenes. The language of the dedication makes
cleat the central concerns of Archimedes investigations. It is addressed to Eratos-

58 Architnedes, Arer. 4, Mugler 19712 vol. 2, 149-156; Heath 1897: 229-232.

59 Bowen (personal communication) notes that we do not know exactly how Ar-
chimedes understood these upper and lower bounds: Whether he meant them to be simply
extreme values of a range of possible values, or numerical values bracketing the real
value, In either event, it would be anachronistic to introduce here the modern notion of
magnitudes of error. )

60 Syidas s.v. Eratosthenes, quoted in Thomas 1951: vol. 2, 261, For discussion of
Eratosthenes and Greek mathematics, see Heath 1921 and Heath 1932

64 Qi the Equilibriven of Planes 1 and 1; Floating Bodies 1 and 11 and Measurentent of
a Circle.

62 Quadrature of the Parabola; On the Sphere and Cylinder 1 and 11; Ot Spirals, and
On Conoids and Spheroids. Dosithios maintained Archimedes' connection with Alexan-
drian astronomy.
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thenes as an eminent philosopher who "gives due honor to mathematical inquir-
jes" (uabfuacy Secapiov):

I have thought fit to write out for you and explain in detail in
the same book the peculiarity of a cestain method, furnished
with which, you will be able to make a beginning in the in-
vestigation by mechanics of some of the problems of
mathematics.83

Archimedes recommended the use of the mechanical method for discovery and
the geometric method for demonstration. Eratosthienes used the latter €0 calculate
the size of the earth by means of the shadow cast by a gnomon at noon of the
summer solstice at two points on the same meridian. An upright gnomon at Syene
(near contemporary Aswan in Egypt) cast no shadow; a similar gnomon at Alex-
andria cast a shadow of a fiftieth of a circle (7.2°). Given a distance between the
two points of 5000 stades, Eratosthenes used the geometry of similar triangles to
calculate the circumference of the earth as 250,000 stades. The description comes
from a contemporary account by Cleomedes, "On the Circular Moveinent of the
Heavenly Bodies” {c. 200 BC).64 1t probably derives from an account of Fratos-
thenes by the Stoic Posidonius (135-51 BC), the teacher of Cicero.t5 Cleomedes
notes that Eratosthenes' method depends on a geometric argument and describes
it as follows:

Let us suppose, in this case also, first that Syene and Alex-
andria lie under the same meridian circle; secondly, that the
distance bBetween the two cities is 5000 stades; and thirdly,
that the rays sent down from different parts of the sun upon
different parts of the earth are parallel: for the geomeiers
proceed on this assumption. Fourthly, let us assume that, as
is proved by the geometers, straight lines falling on paraliel
straight lines make the alternate angles equal, and [ifthly that
the arcs subtended by equal angles are similar, that is, have
the same proportion and the same ratio to their proper cir-
cles — this also being proved by the geometers,

But the ares are similar since they are subtended by equal
angles. Whatever ratio, theyefore, the arc in the bowl of the

63 Archimedes, Meth.; Praet., Archim. ed. Heiberg (1880-1881): it, 426, 3-430, 22; cf.
Thomas 1951: vel. 2, 220-223.

64 This dating is from Bowen and Todd 2001, Bowen has suggested (persenal com-
munication) that Cleomedes may have structured or recast Eratosthenes' argument to draw
out its function as an ephodos, a procedure for gaining knowledge about matters not
directly accessible through ebservation and measurement (of which there are many i
Cleomedes' treatise.) As a Stoic, Cleomedes was clearly concerned with ephodoi and his
reportage of Eratosthenes’ argument may reflect that intesest.

63 Cf, Lloyd 1987; 231£f, and Lioyd 1973: 49-50.
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sundial has to its proper circle, the arc reaching from Syene
to Alexandria has the same ratio. But the atc in the bowl is
found to be the fifticth part of its proper circle. Therefore the
distance from Syene to Alexandria must necessarily be a fif-
tieth part of the great circle of the earth. And this distance is
5000 stades. Therefure the whole great circle is 250,000
stades. 86

Thus, in Figure | (below) AB is the Alexandria gnomon (sundial), with a right
angle at A and a shadow jength of AC; EF is the Syene gnomon, with a right
angle at E and no shadow {because of summer solstice); CB and EF are paraliel;
D is the center of the earth; the angle at B is 7.2° (one fiftieth part of a circle); the
angle at D is 7.2° (by the properties of similat trianglies); AE is 5000 stades (a
conventional figure, discussed below). Thus one right triangle was formed by the
gnomon at Alexandria (AB) and its shadow (AC), the other by the 5000 siades
between Syene and Alexandria (EA) and the radius of the earth (ED). The angle
(a) at the center of the earth (D) was the same as that of the angle at the tip of the

Alexandria gnomon (B). The key ratio is:

| :50 = 5000: CE

whete CE = the circumference of the Earth.

Figure 1: The Calculation of Eratosthenes

A Alfexandria

E Syene

66 Cleomedes, De ot circulari corporum caelestiunt 3. 10. 59, ed. Ziegler in Thomas
1951 vol, 2, 267-269.
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Several specifically quantitative assumptions complicate our interpretation of this
account.57 One is that Syene and Alexandria are on the same meridian; actually,
Syene is 3° east of Alexandria. A second is the claim that Syene was 5000 stades
from Alexandria. Cleomedes does not say how the latter figure was obtained. On
the one hand, there is no evidence to decide whether the 5000 stades was a meas-
ured quantity; on the other, there is no evidence of any standardization of the
stade.58 The degree of accuracy of Eratosthenes’ measurement depends primarily
on the length of the stade. The most accurate result comes from the value for the
siade of 157.2 m. (deduced from Pliny); the value of 166.7 m. probably used by
Eratosthenes produces a less accurate result.69 :

These Greek scientists had influential positions and wealthy patrons. Aris-
tarchus was a pupil of the head of the Peripatetic school. Archimedes was a
friend and kinsman of Hiero of Syracuse.”0 Eratosthenes enjoyed the patronage
of the Ptolemies.7! Both Hiero and the Ptolemies had an ongoing practical inter-
est in the measurement of terrestrial distances, but that knowledge was not sig-
nificant to the legitimation of their authority.72 Archimedes’ considerable reputa-
tion in his own lifetime was due, neither to his astronomy nor his mathematics,
but to his invention of war engines at the explicit behest of King Hiero of Syra-
cuse.”3

67 CF, Lloyd 1973: 232n61-64, Fischer 1975: 152-167, Goldstein 1984: 411-416, and
Goldstein and Bowen 1983: 330-340. )

68 There has been several efforts to determine the length of the stade, given contlicting
remarks by later authors, Some scholars argue that the 5000 stades was not a measure-
ment, but a round number based on the number of days it took to march or sail from one
point to the other, time values already traditional by Eratosthenes' time (Cf. Goldstein
1984: 411-412). Other scholarship has pointed to the existence of more accurate astrof-
omy in the Hellenistic world, for example, Diller 1949 and Drabkin 1942-1943,

69 For the various values scholats have given for the stade, see Gulbckian 1987.

70 Plutarch, Marceltus xiv.7, Thomas 19511 vol. 2, 22-23.

71 Suidas, s.v. Fratosthenes, Thomas 1951 vol. 2, 260-261.

‘ 72 This is not to siy that maps and geography were not of interest to Greek rulers, ever
since Herodotus' (5.49) account of how Aristagoras of Miletus tried to use a map to per-
suade Cleomenes of Sparta to attack Asia Miner on behalf of the lonians. Greek cartogra-
phy began with Eratosthenes, who applied a coordinate system to the surface of the earth
and reached its beight with Ptolemy (fl. 120-170 AD) For a comparative treatment of the
origins of Greek and Chinese geography and cartography, see Needham 1959: 526-527.

73 According to Plutarch (Marcellus 14}, "These machines [Archimedes] had designed
and contrived, not as matters of any importance, but as mere amusements in geometry; in
compliance with King Hiero's desire and request, some lietle time before.”
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" III Chinese Terrestrial and Celestial Measurements

The precediﬁg discussion suggests that Greek mathematicians and astronomers
may have been more interested in mathematical demonstration than the "counting
weighing and measuring” of such concern to Koyré. 7 Now let us turn to Chinese
measurements of the size of the earth and its distance from the sun. What tech-
niques were used lo measure terrestrial and celestial distances? What was being
measured, and why?

Warring States and Han texts from the third and second centuries BC provide
examples of several kinds of terrestrial and celestial measurement and calcula-
lion. An initial difficulty is that these measurements and calculations are not
attributed to specific individuals and appear in a range of texts, including the
Guanzi & F-, the Classic of Mountains and Seas 11 18 & (Shanhai jing), the
Springs and Autumns of Master Lii & & % fk (Li Shi chungiu) and the
Huainanzi i 8 175 A very different method of calculation of the dimensions
of the earth applies ratios and the properties of similar iriangles (more on this
distinction later) to measurements of the length of the shadows cast by upright
posts called gnomons, taken under carefully controlled circumstances. Gnomon
measurements are used to calculaie both the size of the earth and the distance
from the earth to the sun in both the Huainanzi and in a first-century BC mathe-
matical work, the Gromon of the Zhout [dynasty] or Zhoubi suanjing B E
(henceforward the Zhoubi), which also includes a calculation of the diameter of

the sun.70

Geodesy by Direct Measurement

The first five books of the Shanlai jing describe the mountains of the five cardi-
nal regions of the earth. This section ends with a statement attributed to the sage
king Yu that the world contains 5370 named mountains, over 64,056 [i of inhab-
ited land,”7 and

74 [n putting the issue thus 1 do not mean to suggest any inherent opposition between
demonstrationy and measurement. At issue is the extent to which one may have taken
precedence over the other.

75 The Guanzi dates trom the fifth to first centuries BC; the Lii Shi chungiu from the
third and the Huginanzi to the second. For dating of these texts, sce Loewe (ed.) 1993.
For controversies surrounding dating of the Shanhas jing, see Fracasso 1983: 665-667.

76 For this translation and tor dating of this text, see Necdham 1939, vol. 31 19-20 and
Cullen's (1996) iranslation of the Zhowbi snanjing B 8 B @ Needham translates the
title as Arithmetical Classic of the Gronion and the Circular Paths of Heaven. For prob-
lems concerning the title and its translation, see Cullen 1996 xi and 163-172.

77 Qne /i H! was equal to 576 meters and 180 zhang . One zhang equalled two
“steps" b 45 or ten "eet" chi . One foot equalled ten “inches" crn 5t or one hundred
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EH o ENCEAFE EEIEATL
WokzmEBEATFR  FhkBEBNTFHR

[The extension of] heaven and easth is 28,000 {i from east Lo
west and 26,000 /i from north to south, The mountains from
which rivers tlow cover 8000 /i and into which rivers flow
“cover 8000 IRk

This passage gives no indication of how these measurements were taken, but as
the passage continues, it becomes clear that the context for these distances is
economic. These areas of land are divided into sources of grain and sources of
metal: ‘

Those that produce copper number 467, while those that
produce iron number 3690. This is the way Heaven and
Earth have divided up the land for plapting grain and pro-
vided sources for weapons and money. Capable rulers will
have more than enough, while those who are stupid will suf-
fer shortages.” :

The same passage appears in the Guanzi, in a passage where Duke Huan [of Qi]
asks about "methods involving the earth." Guanzi replies with the discourse as-
cribed to Yu in the Shanhai jing. The next discourse in the Guanzi elaborates the
successful methods of the sage kings, which depended on economic factors, but
also on the measurement, and demarcation, of territory:

Huang Di questioned Bogao saying “I wish to mold the

~ world inlo one family. Is there a way to do this?” Bogao re-
sponded by saying “I suggest that you cut down the sedge
grass and erect boundary markers (shn .78

fen 57

18 Shanhai Jing jiaozhu 1 it 58 4 vk, 50 179-180. Cr Cheng et al. 1985; 144; Fra-
casso 1983: 691.; and Rickett 1985; 422, These chapters have been taken as a separate
wgrk, the Classic of Mountains (Shan jing 11t 48) or the Classic of the Mowntains of the
Five Treasurics (Wuzang shanfing £ 1 . .

19 Shanhai jing, 5: 180; cf. Cheng et al. 1985 144; Fracasso 1983: 091 and Rickett
1085: 422,

80 Guanzi & F- (Sibu beivao ed.), 23: 1b; Rickett 1985: 423, There is debate about

whether this term refers to markers for mineral deposits or anti i i
arkers al deposits o to planting grain. See Rick
1985; 423n10. P °f e
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The Lii Shi chungiu supplements this information by elaborating

... what lays within the Four Ends measures 597,000 1i from
cast to west and 597,000 i also from south to north.8)

Both the Shanhai jing and Huainanzi contain accounts of how the sage king Yu
measured these distances. According to the Huainanzi:

ﬁﬁﬁkﬁ%ﬁ%@i%ﬁ@’:ﬁiﬁz
FHER LT HEE - FUZSELBEETH
E DB FHER LT HE

The Emperor [Yu] then ordered Taizhang w walk from the
eastern extremity [of the world] to the western extremity:
two hundred thousand (yi), three myriad (wan), three thou-
sand, five hundred [233,500] /i and 75 steps; afier this he
ordered Shu Hai to walk from the northern extremity to the
southern extremity: two hundred thousand, three myriad,
three thousand, five hundred [233,500] fi and 75 steps.§2

The Shanhai jing provides a more complete account, with a different set of
measurements, a more detailed method for obtaining them and varying accounts
of whe ordered them:

FhSTsaEBEFHE > LETEAT
ATH - BuLETRE AFRERL - —

HEHEZ . —BREE+tHALTAEY ©

The Emperor ordered Shu Hai to step from the eastern ex-
tremity [of the world] to the western extremity: five hundred
thousand (y#), ten ten-thousands (xugrt), nine thousand, eight
hundred [519,800] steps. Shu Hai held counting rods in his
right hand and his left hand pointed north of Qing Qiu.
Some say Yu ordered Shu Hai. Some say five hundred thou-
sand (yi), ten myriad (wan), nine thousand, eight hundred
[519,800] steps &

81 L Shi chungin 2 1% ¥& 5K (Sibu beiyao ed.y, X1I: 3a. Cf. Wilheln 1928: 159 and
Fracasso 1983; 691-692. ‘

82 Hyginanzi ilt: i T (Zhuzi jicheng ed.), 4: 56; cf. Fracasso 1983: 692. The bu 3 or
step was a double stride, conventionally reckoned at about 2 meters. At 180 zhang JC per
i and 2 bu per zhang, there were 360 bu per /i

83 Shanhai jing, 9: 258; cf. Cheng et al. 1985: 172. This is based on the value of yi as
105 or 100,000, 1t has also been taken as HO* or 100,000,000 (Needham 1959: 87). Wan
A5 “mysiad" and xuan §8 “ten-thousand” denote the number 10,000. For wan as the place-
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It may be useful to think of these accounts as of proto-measurement, but the term
requires some clarification. Consider the following passage from Hesiod's
Theogony, which describes the distances between Heaven, Earth and Tartarus in
the following terms:

... a brazen anvil falling down from heaven nine nights and
days would reach the earth upon the tenth: and again, a bra-
zen anvil falling trom earth nine nights and days 3

The Huainanzi and Shanhai jing measurements improve upon this in several
respects. They restrict themsclves to humanly accessible locations (unlike
Heaven or Tartarus); the "steps” of the Huainanzi and Shanhai jing purport to be
actual measurements that could have been made by actual persons. This is not to
say that they were real measurements, or that these "measurements’ had any
observational basis. A “step" was hardly a consistent unit of measure (until it
became standardized during the Qin dynasty), and other Qin and Han texts con-
tain examples of imaginery data that sound like direct measurements, but proba-
bly are not. Nonetheless, the use of a calculating device (the counting rods) and
the importance assigned to the accurate measurement and demarcation of terri-
tory attest to the early importance accorded to geographical measurement. Tech-
niques for accurate measurement of the area and directional orientation of land
were clearly central aspects of these quasi-mythical accounts of the establishment
of royal power.

Geodesy by Calculation Based on Gnomon Measurements

Accounts of techniques for calculating distances based on measurement of a
shadow cast by a gnomon and on the properties of right triangles appear in the
third book of the Huainanzi and in the Zhoubi, which includes discussions on the
properties of right triangles and the use of gnomons. Shorter variations on these
techniques occur in the Mezi & F, the Rites of Zhou or Zhouli [E 78 and the
Nine Chapters on the Mathematical Art ot Jiuzhang suanshu J1, = B i

They all assumed some kind of round heaven over a square (and flat) earth.85
In the gaitian # 7 theory, which inforims the Zhoubi, heaven covered earth like
the canopy of a chariot; that is, a square within the circle of an umbrella-like
hemisphere, defined by an axis mundi at its center. Earth and heaven were paral-
lel planes, in some versions flat, in others shallow arcs or hemispheres. The pur-

value term for 104, see Needham 1939: 83 and 87.
84 Hesiod, Theegony, 720.

85 For a discussion of the antiquity of these beliefs, see Allan 1991, For the Han con-
text, see Major 1993; 32-43.
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pose of gaitian-oriented gnomon measurements of the Zhoubi was to measure the
distance between these two planes (or arcs), the "height of heaven."80

Several flaws in the gaitian theory, including its inability to account for sun-
rise and sunset, led to its rejection in favor of the huntian & & theory, in which
heaven was a sphere surrounding the square flat earth.B7 Although the Huainanzi
probably predates the gaitian-oriented Zhoubi, it cannot be classed clearly under
either theory. Cullen suggests that it predates either theory and may be the earli-
est known Chinese aitempt at a quantitative empirical cosmology.38 If so, this
would present a serious challenge to Koyrés claim. I

Huainanzi 3 ends with a section on the use of gnomons to calculate terrestrial
and celestial distances. It is probably a later addition and not part of the original
Huainanzi text. It gives directions for a series of gnomon techniques, beginning
with detecmination of the directions of sunrise and sunset, and thence of the car-
dinal directions.8? These preliminaries are followed by methods "to know the
breadth and length of east, west, north and south," effectively a more refined
technofogy for the measurements originally ascribed in the Shanhai jing to the
orders of the legendary sage king Yu. The following discussion seems to assume
that the sun’s journey begins at the point in heaven paralle! and at the eastern
extremity of the earth, allowing the construction of a triangle formed by an ob-
server, the rising (or setting) sun and the easternmost (or westernmost) paraliel
extremity of the earth:

BME LR 2 BB LTIRME T &
e hESEKSTHROBBLREEIE I
B AARE c ATERIILE B E G o ML

86 The competing huntian theory (which replaced the gaitiqn theory by the second
century AD) also exerted an important influence on the Zhoubi. See Cullen 1996: 35-39
and Henderson 1984.

87 The gaitian theory was unable to account for the interval between the sun's sefting
in the west and ising in the east. According to the "Discourse on the Vault of Heaven” or
Ciongtian lun 75 F #i of Yu Xi i E (c. 265 AD) “the sun turns round the pole [of
heaven], disappearing at the west and returning from the east, but neither emerges from
nor goes below [lit. enters] the earth." (Needham 1959: 211.) Wang Chong - ¢, a pro-
ponent of the gaitinn theory, attempts to explain the appatent rising and setting of the sun
as an optical illusion for any particular observer, caused by the sun moving closer and
further away as heaven rotates with the sun attached to its underside, See Lun heng 3 i
(Sibu conghan ed.), 11: 8- 10 Cullen 1996 Gl.

88 Cylten 1976: 108-109; Major 1993; 270-271.

89 Variations on these passages appear in the Mozi (Mozi yinde 2 T g| 4, Shanghai:

Guji, 1982}, 35: 6-7, the "Antificer’s Record" (Kaogong ji ¥ T. {0 of the Zhonli & 1

(Sibu congkan ed.), 12: 15b, and the Zhoubi suan jing FE 4% L 4% (ed. Qian Baocong $§
9 ¥ in Suanjing shishu B 18 + &, Beijing: Kexue, 1963): 56. Cf. Cullen 1976, sec-
tions a-c. Both the original article and the version reprinted in Major (1993) use the same
section divisions.
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¢d) If you wish to know the figures for the breadth and
length of east, west, north and south set up four gnomons to
make a right-angled figure one fi square. More than ten days
before the spring or autumn equinox sight along the north-
ern gnomons of the square on the sun from its first appear-
ance to ils rise above the horizon, Wait for [the day when]
they coincide. When they coincide they are in line with the
sun. Each time take a sight on it [the sun} with the southern
gnomons, and take the amount by which it is within the for-
ward gnomons as the divisor, Divide the whole width and
divide the length [between) the standing gnomons in order
to know the measurements east and west trom here,%®

A more modest terrestrial calculation in the Jiuzhang suanshu helps us clarify the
ambiguities of the last sentence. In that example, a square of four gnomons is
used to calculate the distance between an observer and a tree (something that
could be measured directly, terrain allowing). The left gnomons are aligned with
the tree, it is sighted from the rear right gnomen (cong fou you biao wwhH
), and appears within the front right gnomon (as in Figure 2, below).?! In addi-
tion to pmv'iding'an answer (333 chi and 3.3 cun), the text also describes the
method:

MRS —~LARSE  DITEE - Bk
il — o
Square the one zhang [= 10 chi = 100 cun] and make it the

dividend [shi]. Using the three cun as divisor {fa], divide the
dividend by the divisor.%

90 Huainanzi, 3; 53-54, translation skightly modified from Cullen 1976: 116. My dis-
cussion follows Cullen's sections.

91 The square is 1 zhang (10 chi) in length. The tree appears 3 cun within the forward
right gnomon. The distance is calculated as 333 chi, 3 1/2 cun. .

92 Jiuzhang suanshu i, % B fif (ed. Qian Baccong £§ T¥ 7 in Suanjing shishu, Bei-
jing: Kexue, 1963), 9: 257; Cullen 1976: 117,
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Figure 2: Measuring the Distant Tree according to the Huainanzi
and Jiuzhang suanshu
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This exposition clarifies the technique for measuring the breadth of the cardinal
directions. It has three compenents. The first is to set up the gnomons in the cor-
rect alignment. This means both orienting the square correctly along a north-
south and east-west axis and taking the measurement when the sun is correctly.
aligned with it, An observer at the northwest sights along the northern two gno-
mons to ascertain the time that they are in ine with the sun (see Figure 3, below).
The second was to measure the distance of the sun within the "forward gnomon"
(the castern) at sunrise. An instruction to "take a sight on it with the southern
gnomons" presumably meant that one observer stood at the southwest gnomon
and a second proceeded due north {rom the southeast gnomon until he was di-
rectly between the southwest observer and the sun, Once this distance was meas-
ured it was possible to compute the distance to the eastern limit from'the north-
west gnomon, The passage continues:

BEEHE o A RSP B H B
-i#ﬁﬁ)\?ﬁfﬁ=f1ﬁﬁtﬁ‘iﬁﬁ]\?ﬂl°%ﬁ.Elﬁ
Ao NIRRT WA A < bR
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(e) Suppose that the rising sun enters one inch within the
forward gnomons. This implies that for an inch one gets one
§i. One i contains 18,000 inches, so one gets 18,000 /i east-
wards from here to the sun, [Suppose] one observes the sun
just as it sets, and it sets haif an inch within the forward
gnomon: then for half an inch one gets one /i. Dividing the
number of inches in a fi by half an inch, one gets 36,000 4.
Divide, and then [you have} the number of Ii westwards
from here. Add them, [and you have] the number of Ii east
and west, which is the diameter of the extreme limits.?}

In summary, four gnomons A B C and D are set up so in a square so that the lines
AD and BC point straight north-south and AB and CD straight east-west. An
observer at A sights along B to the sun to ascertain the lime that the northern two
are in Jine with the sun (Y). The procedure is:

. Measure CX (distance of the sun within the eastern gnomons). Presumably,
one observer stood at D and a second proceeded north on the line CB until
he was directly between the observer at D and the sun. This allows use of the
propesties of the similar right triangles DAY and DCX to compute AY, the
distance to the eastern limil.

2. CD and AD ave each { £ (by selup).

3 CX_AD
T CDh AY
4, SX_limch 1= 18,000 inches)

co i 13,000
5. AY=18,0004

6. A similar measurement for the distance to the west is taken at sunset. Pre-
sumably one observer stood at C, the second proceeded notth on the line DA
until he was directly between the observer at C and the sun.

7. Given a measurement of 1/2 inch within the forward gnomon, the ratio is 1/2
inch to | I The same calculation yields 36,000 4.

8. The sum of the two yields the number of /i east and west, the diameter of the
extreme limits,

93 Huginanzi, 3; 54, translation stightly modified from Cullen 1976: 119, (Figure 3is
also based on Cullen's exposition.)
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Figure 3:
Huainanzi

Caiculation of the Eastern Limit according to the

Y
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O

Eastern limit of
N (square) earth

This computation of the dimensions of the earth as 54,000 li east-west is larger
by an order of magnitude than the Shanhai jing measurement of 519,800 steps or
1443 (194

This caleulation, like the hypotheses of Aristarchus, is flawed by an incorrect
a priori and a disinterest in actual measurement. The introductory “suppose that”
(jiashi) suggests the use of hypothetical data, as do the implausible measurement
of half-inch and inch distances from a distance of one /.95 Even more impostant
is the unjustitied equivalence between one inch and one i measuring east (shi
cun de yi li ye it <F 18 — HL 1) and between a half inch and one I measuring
west. As Cullen points out, the actual distance between the earth and sun of 93
million miles or 300 million /i would put the sun within the forward gnomons at a
distance of six hundred thousandths of an inch (0.00006 inches).%6

94 This calculation is based on an understanding of the number yi where 1 yi = 100
thousand. Altermatively, it 1 yi = 100 million (500,019,800 steps), the number is
1,388,944 fi.

95 Culten 1976: 119ni2.

96 Cullen 1976: 119.
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From Measurement to Calculation: Celestial Distances

The Huainanzi and the Zhoubt also describe the use of gnomons 0 calculate the
height of the sun, or the height of heaven, the last gnomon calculation described
in Huainanzi 3:

BHF s EEs - LI ElAE TR -/
DR - bR R HRAAT - 2T
Wk A BNRER  REH O -8
“RTEE—-TE BH W@ e A
HREQT BRAWLZET AL MX
B o HfERARTHEHEED

(k) To find the height of heaven, set up gnomons | zhang
[ten feet] high and 1000 /i apact due notth-south. Measure
their shadows [at noon] on the same day. The north gnomon
[shadow] is two feet, and the south gnomon {shadow] is one
foot nine inches. Thus a thousand li due south shorten the
shadow by one inch and twenty thousand Ji due south there
is no shadow at all. This is directiy below the sun. A two-
foot shadow corresponds to a height of 1 zhang [10 feet] so
for each unit southwards one rises five units. Therefore if
one takes the number of /i from this position south to the
subsolar point and multiplies by five, making 100,000 I,
this is the height of heaven. Supposing the shadow is equal
to the gnomon, then the height is equal to the distance.”?

The Zhoubi calculation starts with an eight foot (chi) gnomon at noon of the
summer solstice whose shadow measures one chi six cu. In the Zhoubi and
clsewhere, the components of a right triangle are described as the hook (gou )
or /), thigh (gut Ji¥) and bowstiing (xian 2%7); these correspond to what, in mod-
ern parlance, we would call the base, altitude and hypotenuse of a right triangle.
Later I discuss several issues that arise from this terminology.

The 6 chi hook (BX) and 8 chi thigh (AX) of the gnomon and its shadow (tri-
angle AXB) correspond to the 60,000 I hook (BD) and 80,000 & thigh (CD} of
the triangle formed by the sighting point (B), the sun (C) and the point whete the
sun casts no shadow (D). Its thigh is the distance from the earth to the sun, as
shown in Figure 4, below.

97 Huginanzi, 3: 54, modilied slightly from Cullen 1976: 123, This technique is alse
discussed in detajt by Needham 1959: 225.
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Figure 4: The Height of Heaven according to the Zhoubi suanjing
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B{0. The gnomon is the thigh. The exact shadow is the hook.
One thousand # due south the hook is one chi five cun. One
thousand fi due north the hook is one chi seven cto. As the
sun goes further south, the shadow grows [correspondingty]
longer,”®

98 Zhoubi, |: 26; ¢f. Cullen 1996; #B10. Henceforward references to Cullen’s transla-
tion are given by his section numbering. These transiations at points diverge from, but are
alt substantiafly indebted to it, as is Figuce 4.
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Thus a thousand fi of terrestrial distance corresponds to a cun change in the
shadow length. A bamboo sighting tube one cun in diameter and eight chi long is
used to sight the sun just when the gnomon's shadow reaches six chi in length and
the sun exactly covers the bore of the sighting tube:

mitE s BAFTTEE - WULDE
WoooLR SR . R E R TS TR
woo L EEH ) HIAKEE -

BJ!. From this you can observe that 80 cunt {of distance]

corresponds to (1) one cun of diameter. Therefore take the

~ hook as the head [shou, starting point] and the gnomon as

* the thigh. From the bi to the subsolar point is 60,000 /i to

where the gnamon has no shadow. From this point directly
upward to the sun is 80,000 /5.0

The passage concludes with a summary of this regular correspondence:
FE: BEEAR GZHGT T

B12. The method dictates: for a gnomon 8 chi in length, 2
ctn of decrease or increase in the thigh is 1000 [£.100.

Although the gnomon measurements of terrestrial and celestial distances use the
same techniques, there is an important difference between them. The terrestrial
measurements replicate the accounts of direct measurement in the Huainanzi and
elsewhere. Terrestrial distances can, in principle at least, be measured directly,
rather than calculated, and the Lexts above ¢laim to have done so. The use of
gnomon measurements to calculate celestial distances presents a different case as
there is no alternative form of direct measurement available.

The Zhoubi is explicit about this difterence. The text begins with a discourse
between the Duke of Zhou ] %% and a certain Shang Cao 1% & in which the
Duke asks for instruction. His stated reasons for needing it begin from, and am-
plify on, the activities of the sages in measuring terrestrial distances:

BRI ARRNG  HALERRIRRHE
s R ST ST B0 R A RS
a4 19 8 7 G 2

Al have heard, Sir, thal you exce! in numbers. May 1 ask
how Bao Xi laid out the successive degrees of the circum-

99 Zhoubi, 1 26; of. Cullen 1996: #B11.
100 Zhoubi, 1: 34; cf. Cublen 1996: #B12.
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ference of heaven in ancient times? Heaven cannot be scaled
like a staircase, and earth cannol be measured out with a
footrule. Where do the numbers come from?40!

This passage is interesting for several reasons. Figst, it provides a 1‘ati0ngle for t!le
need for calculation, rather than direct measurement. In ihe case of celestial
measurements, it is obvious that the direct measurement of distance s :meossible.
Applying the same reasoning to terrestrial measurement, however, 18 a subtler
point, Shang Gao’s introductory exposition ends:

S mEE MRER Bwipra e Wil
Wi e R B SRR A EAE
He

A7. Therefore those who have cotrect knowledge of the
Eacth are wise but those who understand Heaven are sages.
Wisdom comes from the hook. The hook comes from the
[carpemer's] square, 1t i through [relations with] numbers
that the [carpentet’s] square regulates the myriad {hings.!02

Shang Gao now recounts & discourse in the ancient past. where one Rong Fang
#5 7 asks a master Chen Zi 8 -F whether his dao comprchem.is an l.mderstand?
ing of (among other things): The height and size of the sun (zhi ri zhi gao dq 3l
H Z & ), its nearest and farthest distances [from earth], and the__(ﬁillmensml}s
of the world {from north to south] (tiandi ghi guangnuto Fih 7 i ?_tg): 103 TI’}[S
introduction also clearly positions ihe calculations in the Zhoubi within a dis-
course of sagacity. Further, it claims a higher level of knowiedg.c for those who
have gone beyond terrestrial measurement, which can be done directly, to celes-
tial, which must be done by calculation. 104

10} Zhioubi, 13 13; ¢f. Cullen 1996: #AL

102 Zhoubi, 1; 23; cf. Cullen 1996: #A7.

03 Zhoubi, 1; 23-24; cf. Cullen 1996: #B1. The commentary takes tigndi as "the
world" ("the length and breadth of east, west, norih and south") rather than "heaven and
earth.” .

104 An alternative interpretation is that those who know heaven have higher know-
edge simply because heaven is more noble thai carth. In this view, neither heaven not
carth can be measured directly, since ane is too high and the other too vast, As a resull,
any numetical desctiption must come trom indirect measurcme‘nts anc.l gqlculations. I am
rateful to an anonymous reader for EASTM for pointing out this possibility.
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Accumulating Trysquares and the Pythagorean Theorem

The first section of the Zhoubi contains a demonstration of a method it describes
as ji ju f& #3 or "accumulating trysquates," 105 (Cullen uses the term "rysquare”
as a translation for ji £, the carpenter's square.)

W S R BB (IS A e BE
ok, ko e BT AR MR P
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A3, Therefore fold a trysquare so as to make the hook three
in breadth, the thigh four in extension, and the diameter five
in length. Make a square around its outside, and halve it to
one trysquare. Placing them round together in a ring, one
can forn three, four and five. The two trysquares have a
combined length of twenty-five. This is called the accumula-
tion of trysquares.!0

It ends by linking its method to the rule of the sage king Yu:

W 2 B BGA R FE LB AT A e

Thus we see that what made it possible for Yu to set the
reatm in order was what numbers engender. 17

This passage explains how to calcufate the distance between the end points of a
right-angled figure whose dimensions are three and four, The components of the
figure can be drawn easily and its dimensions measured directly, Cheng-Yih
Chen's explanation of this passage in contemporary terms describes it as a dissec-
tion method demonstration of the Pythagorean theorem, 108 Some of the difficul-
ties of that explanation are discussed below.

A second Zhoubi passage uses the "secumulating trysquares” method to cal-
culate a distance that cannot be measured, that is, the distance from the earth to
the sun:

105 Joseph Needham (1959: 22) translates this term as "piling up the rectangles.”

106 Zhoubi, 1: 14; cf, Cullen 1996: #A3.

W07 Zhoubi, 1: 14; cf. Cullen 1996: #A3.

108 Chen Cheng-Yih glosses the gougu method as the “gougrt (Pythagorean) theorem”
andl translates the central section very ditferently: "eircumscribe it by half-rectangles so as
W form a square plate. Then {he 3-4-5 relation can he established, since the total ditfer-
ence between [the square plate] and the two rectangles is an arca of 25. [This method of
proof] is called ‘piling up the rectangles™ (Chen 1987: 35-36). This translation and analy-
sis anaclhronistically assumes the Pythagorean theoren. For a more extensive account of
the history of interest in right triangles in early China, see Lam Lay-yong 1984: 87-112.
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Bil. If we require the oblique [xi¢] distance [from our posi-
tion] to the sun, take [the distance to] the subsolar point as
the hook, and take the height of the sun as the thigh [base
and altitude]. For the hook and thigh multiply each by itself
[ge zicheng], combine [bing], and then extract the toot [kai

Fang) 1

In other words: square both base and altitude, add them and take the square root,
which gives the oblique distance to the sun.

Expositions of these passages by Needham, Chen and others seem to make
the tacit assumption that their authors used and understood the properties of simi-
lar triangles and the Pythagorean theorem. Indeed, such a view dates hack to the
initial transmission of Euclidean mathematics 10 China, and Matteo Ricei's col-
laborator Xu Guanggi's & J; £ attempts to compaie waditional Chinese and
Fuclidean methods of triangular measurement, incuding a study of the properties
of right triangles titied Gougu vi 5§ & Uliteraily, Principles of Hook and
Thigh).11%

Recent scholarship has raised other interpretations and possibilities. Were the
correspondences described in the passages the corresponding sides of similar
triangles, or were their authors simply using analogical reasoning and positing
"sorrespondenices” between the lengths of gnomon shadows and celestial dis-
tances? Did these texts even employ a notion of a triange as a type of plane fig-
ure?

In his recent translation of the Zhoubi, Cullen shifts from others’ and his own
prior use of the term "similar triangles” to describe the reasoning of the Chinese
gnomon texis and argues that the Zhoubi does not calculate the dimensions of the
similar triangles, but telies on ratios among similar categories. In this view, the
Chinese authors used the measurements of gnomon shadow jengths, not as part of
mathematical calculations, but rather as instances of the corresponding "catego-
ries” of chi and Ii. In Zhoubi BLL, six chi cortespond to eight chi as 60,000 i
correspond to 80,000 [i. Thus the distance o the sun is not measured but inferred
trom a rule of 1 chi to 1000 Li. Cullen suggests that this method of "calculation”
:s more verbal than computational, more of a Saussurean syntagm than mathe-
matical thinking.11! This interpretation would seemn to explain this passage as a

109 Zhaubi, 1: 26; cf. Cublen 1996: #B11. ‘

110 Hashimoto 1988: 12-13. The more genesal comparison appears in a text titled the
Cetiang yitong il 2 %13 or Simiarity and Difference in {Chinese and Western Meth-
ods of] Mensuration ol 16§7.

111 Cytlen 1996: 77-79. Nor is the situation eatirely transparent on the Greek side. For
discussion of diverse notions of "ratio” in Greek mathematical thinking, see Fowler 1991.
For the role of mathematics and cosmography in Plato's view of science, see Mourelatos
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demonstration by analogy, rather than a mathematical demonstration according to
prevailing Western usage.!!2

Quite aside from the problem of similar triangles, we must also consider the
stfltus of any kind of triangle in these texts. The Zhoubi terms for the components
of a right triangle identified what we would now call the base, aftitude and hy-
potenuse of a right-angled triangle — gou or hook, gu or thigh, and xian or bow-
string, as well as the combination of hook and thigh to make the right angle of the
trysquare (jue 55). Zhoubi A3 uses the term diameter, jing %, normally ti?e diame-
ter of a circle, for what the commentary identifies as xian, the hypotenuse.

Zhao Shuang #8 7% (third century AD}, the first commentator on the Zhoubi
adds explanatory essays and diagrams to each of these passages.! 13 The first one,
between BL1 and B12, discusses the relations between the base, altitude anci
hypotenuse of right triangles. It includes an illustrative diagram, titfed the "Bow-
string Diagram” 3% [ (ian f) in which a right triangle is inscribed within a
square on a grid (Figure 5). The square's lower left side forms the hypotenuse of
5;_1t is labeled: "bowstring [hypotenuse] 5" (xian wit 57 f1). The other two sides
of t.he unnamed figure are labelled similarly "hook [base] 3" (gou san /] 7Z) and
"thigh [altitude] 4" (gu si i [0).444 Whilst the passage uses terms for th;_circle
(uan [B) and square (fang 77), neither the Zhoubi nor Zhao Shuang's commen-
tary uses a term for a whole triangle, right or otherwise (sanjico = - Fj or sanjiao

xing = %)

1991: 23-25.

L12 |y recent years, a considerable body of scholarship has addressed the question of
whether and in what manner Chinese mathematics contained notions of demonstration
and proof, and the nature and degree of philosophical reflection in Chinese mathematical
works. For an assessment af some of the broader problems of comparative mathematics
see Cullen 1995. The question of demonstration and proof is tfurther explored in a scrics:
of studies by Karine Chemla (1991, 1992, 1997 and 1999).

“3.Most of his commentary is straightforward exposition of terminology. The major
eg)(ceptmn is fm;rl;:xtended essays and four diagrams. The first two of the essays and dia-

rams appear following the two pass : al wi C ati y ]
grams 1[9}57 " cuﬂenb] e 690_7?‘53 apes that deal with accumulating trysquares, Cf.

L14 Zhoubi, 13 18; Cullen 1996: 205,
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Figure Five: The Bowstring Diagram as added by Zhao Shuang to
the Zhoubi suanjing
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As Cullen remarks about the Zhoubi:

The problem is that at no point does the text compare one
tiangle with another, and indeed it containg no noun corre-
sponding to our ‘riangle’ at all. Plane figures bounded by
three straight lines just do not figure as a unit of dis-
course.!15

This observation applies not only to the gnomon mensurements in the Huainani,
but also to the propositions on geometry in the Molist Canon, Mohist geometry
starts with definitions of the circle and square, and uses both, but does not refer
to a triangle.!'6 And there is curiously little discussion in the’ secondary literature
of when the concept of a triangle first entered Chinese mathematical (or other}
discourse. 17 Whether or not the Zhoubi authors had an abstract concept of "tri-
angle," it is clear that they knew how to use them. The emphasis in the Zhoubi
passage on the importance of "accumulating trysquares” and the evidence of
7Zhao Shuang's commentary suggest that the Chinese authors undersicod the use
of the Pythagorean theorem. ‘

The Jiuzhang suanshu or Nine Chapters on the Mathematical Art also gives
many examples of calculations using various kinds of solid figures with triangular

L5 Cullen 1996: 77-78.

L$6 Mozi, 40: 1-10. These passages are coherently reconstructed in Angus C. Graham's
Later Mohist Logic, Ethics and Science (Graham 1978: 301-316). Nor does the term
appear in the Heainanzi gnomon measuremment passages, or elsewhere in the Huainanzi.

117 f. Needham 1959: 25-31 and passiny; Graham 1978; Chen 1987; and Martzleff
1987 (trans. Wilson, 1997): 132-133 and passin.
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taces, even though it never uses the word "triangle” (sanjiao X ). 118 Tts first
chapter, "Surveying Fields" (Fang fian + {H), contains 38 examples of calcula-
tions of the areas of fields of different shapes, including rectangular shapes and
trapezoids, circles, irregular fields and “tablet shaped fields," gui tian + H, in
the shape of an isosceles triangle." 119 Its last chapter, “"Hook and Thigh" (Gougu
&) 1), uses 24 examples to elaborate the properties of right triangles, but these
are described in terms of hook, thigh and bowstring. 120 None of these examples
use a specific term for triangle, though it does use explicit terms for several trian-
gular solids. Bienao i 3% is a right-triangular base pyramid with one lateral edge
perpendicular to the base; giandy 57 % is a right prism with a right triangular
base; and yangma 5 H is a rectangular-base pyramid with one lateral edge per-
pendicutar to the base.!2!

These considerations present suggestive evidence that early Chinese mathe-
malics, and possibly Chinese culture more broadly, did not use an explicit con-
cept of a triangle. The circle and the square are the two plane figures that appear
consistently in the Zhoubi, the Mohist canon, and in Chinese cosmology, which
seemed to have no need for a triangie. An explicit concept of triangle is not nec-
essary to demonstrate the Pythagorean theorem; contempotary mathematicians
frequently do it by means of graph coordinates.122 At first glance, its absence
might appear to weaken the apparent analogy between the Chinese and Greek
gnomon measurements. However, references to either triangles or similar trian-
gles are also absent from Cleomedes’ account of Eratosthenes’ method, which
refers, not to the side of a right triangle, but rather to the "arc in the bowl of the
sundial” (the segment AC in Figure 1, above). In other words, according to Cle-
omedes at least, Gratosthenes relies, not on the properties of similar triangles, but
on the properties of similar sectors of a circle.123

118 The authorship and early history of the Jiuzhang suanshit are unclear. It seems to
have been current in the early years of the Later Han and was considered a Han book by
its third century commentator Liv Hui £ %, probably containing mathematical know!-
edge dating back to the Warring States.

VS Jiughang suanshu, 11 93-94 and 99-111. For gui tian see Jiuzhang suanshu, 1:
101-102, examples 25-26. .

120 Jiughang suanshu, 9: 241-238. The Sea Island Mathematical Manuaf or Haidao
suanjing 1 £ 48, also ascribed to Liu Hui, contains further descriptions of the use of
triangutation in the measurement of distant (tertestrial) objects. See Needham 1939: 30-
49.

120 Jiuzhang suanshu, 5. The text uses thesc terms in problems 14 {(giandu), 15
(yangma) and 16 (bienao). Liu Hui introduces them in his commentary in problems 10,
14, 15, 17 and 18 (giands), 10, 12, 15, £6, 17 and 8 (yangma), and 15 and 17 (bierao).
See also Wagner 1979 and Lloyd 1996: 152-153n22. A commentary by the Song poly-
math Shen Gua {7, §5 (1031-1095) in the Hanyu da cidian 7 3 K 5 # (vol. L1, 1069)
notes the Jiuzhang swanshu as the locus classicus for the term.

122 fohn C. Baez, personal communication.

123 1 am gratelul to an anonymous reader for EASTM for calling attenticn to this
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Metaphors of Quantification and Precision

Rath the Chinese and Greek material seem to show some disregard for exact
measurement, but there is a striking and perhaps significant difference between
the Greek and Chinese scientific contexts. Metaphors of quantification and preci-
sion appear across the spectrum of Chinese Warting States philosophical and
political thought so repeatedly that they may function as what Sarah Allan and
others have described as "root metaphors.” (Allan uses the work of A. C. Graham
to argue that philosophers’ conceptual schemes rely on "pre-logical” patterns of
names and categories.)124 Before the term gui ju #i A, "compass and square,”
lost most of its literal meaning and came to mean "morally well regulated,” meta-
phors of the accuracy of craftsmen's measuring tools expressed a wider range of
notions that included moral and technological advancement, innovation, human
relations, skilt and natural world. 125

Mozi % F compares the mandate of heaven to the wheelwright's compass
and the carpenter's square. The metaphor is one of accurate fit.126 Mencius 3 1
makes an anafogy between the "perfection of squares and circles” of the compass
and square and the sage's "perfection of human relationships.}27 Xunzi & +
analogizes the certainty they provide (as to squareness and rounduess) to the
junzi's & - use of the rites, and distinguishes its standards from the arguments
of the like of Hui Shi B i and Deng Xi &[ #/7.128 Zhuangzi 4t F- equates "real
skill" with throwing them away, but still speaks in terms of them.129 The Shang
Jun shu % B & argues against turning away from the clear standards estab-
lished by the former kings in favor of private assessments.130 Han Fei ¥ 3
treals them as correctives to wrongdoing. Models and distinctions, calibrations
and measurements were established because: "Once calibrations and measure-

point. Cleomedes' description merely assumes that (1) straight lines falling on parallel
straight lines make the alternate angles equal; and (2) the arcs subtended by equal angles
have the same proportion and the same ratio to their proper citcles. The latter assumption,
rather than the properties of similar right triangles {CAB and EAD in Figure 1), is the
basis for the ratios of 1, 50, 5000 and the circumference of the earth.

124 Allan 1997: 13-14; Graham 1992; Lakoti and Johnson 1980: 3, 18, 22.

125 Cr. Bodde 1981: 1341

126 Mozi. 26: 41. For translation, see Mei 1929: 140. CF. Mozi 3 T, 4:2-3,2T: 63-67
and 28: 44-45 (Mei 1929: 13, 149 and 156) and Graham 1978: Canons, 316,

12T Mengzi, 4A: 2, in Lumyu yinde. Mengzi vinde 3 36 51 50 & T gl &
(Shanghai: Guji, 1986). CI. 4A: 1, 6A; 20 and 7B: 5.

V28 Cf. Xunzi vinde Hj F 5| {5 (Shanghat: Guji, 1980), L: 1-2, 11: 43 and 19: 32-34.
Cf. Knoblock 1988, 1990 and 1994: vol. 1, 135, vol. 2, 55, and vol. 3, 61, respectively.

129 Zhuangzi yinde § F 51 % (Shanghai: Guji, 1982), 8: 13, 9: 5 and 10: 26. For
transtation, see Graham [986b: 201 and 2{M4, and 209.

(30 Shang Jun shie 77 41 & (Zhuzi jicheng ed ) 14: 24-25. CL Duyvendak 1928: 262.
Cf. Shang Jun shu 4; 10 and 24: 39, cf, Duyvendak 1928: 205 and 318
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ments have been made true, there is no chance for a Bo Yi to slip from what is
right, or for a Robber Zhi to do what is wrong."13!

This tendency continues into the Han. Dong Zhongshu # {if# & makes the
analogy between the compass and square, which are necessary to draw circles
and squares correctly, and the dao of the former kings, which is a "compass and
square” for the world.!32 The Huainanzi makes an analogy between the "six,
measwres” (fiu du 75 &), the six precision measurement instruments, and heaven,
earth and the four seasons: Heaven and the plumb-line or inked cord (sheng i),
Earth the water level (zhun i), spring the compass (gué 1), summer the balance
(heng 1), autumn the carpenter's square (u #) and winter the weights (guen
}%).133 A similar analogy in the "Five Phases Produce Each Other" (wuxing
xiangsheng 11 7T 4B 7L:) section of the Chungiu fanly 3 7% %% % compares
them to the five phases: (1) wood, spring, the east, the compass, birth; (2) fire,
summet, the 50“!]1, the carpenter’s square, growth; (3) earth, summer-end, the
center, the plumb-line, maturation; (4) metal, aututnn, the west, the weights, de-
struction; and (5) water, winter, the north, the balance, storage. 134

A more extended example appears in the memorial of the Han physician
Chunyu Yi ¥ F 7F, who uses a similar analogy in his account of his system ot
medical diagnosis.!35 He invokes a tacit metaphor of accuracy as a mark of the
aclivities of the sage kings and asctibes the invention of vessel theory and accu-
rate prognostic techniques to the sages of antiquity. '

By establishing compass and square, suspending weights
and balances, applying the inked cord, and harmonizing yin
and vang {the ancient sages] distinguished the vessels of the
body and named each, in mutual resonance with heaven and
earth, and blended together in the body. As a consequence,
thereaiter people made distinctions among the Hundred .
Ailments by distinguishing between them [the pulses].
Those who have this technique of prognostication are able to
distinguish between them; those who de not consider them
the same, 136

131 Han Feizi jishi % 9 5 % #2 (ed. Chen Qiyou [ #F A, Beijing: Zhonghua
shuju, 1958) 26: 492. Cf. Liao 193%: vol. 1, 267. Cf. Hanfeizi, 6: 88 and 27: 498 (Liao
1939: vol. 1, 45 and 270).

132 Chungiu fanlu 3 TX % %, atributed to Dong Zhongshu, in Chiungiu fanlu jinzhu
Jinyi BB B B 4 3 4 3% (Taibei: Shangwu, 1984), [ 11

133 Huainanzi (Zhuzi jicheng ed.), 5: 86-87; cf. Vogel 1994: 139. Needham (1962: 15-
17) translates feng as steefyard and guan as balance.

134 Chungiu fanly, 13: 334-340.

135 Cf. Raphals 1998k: 7-28 and Sivin 1995: 177-204. _

136 Shiji W 2 (Beijing: Zhonghva, £959), 105: 2813; cf, Bridgman 1955: 45. My
translation is indebted to Elisabeth Hsu.
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Sina Qian structures this biography around a defining incident in Chunyu's life:
Charges brought against him to the Han throne, his reprieve through the memo-
rial of his daughter Ti Ying #% 4% and hus subsequent memorial on the merits of
his medical practices and prognostic abitity.137 In the memorial he claimed the
ability to predict accurately which illnesses were fatal and which curable. No

explicit notion of precision is specified in this passage, which reads:
A BB ERBREE 0 E AT

He understood who would live ot die, was decisive about
dubious cases, and certain about what could be cured. 138

He acknowledges that his prognosis is not perfect.139 Nonetheless, the force ot
his rhetoric is to ¢laim that, in the treatment and diagnosis of disease, he is able
"to use pulse diagnosis to distinguish between life and death with infallible re-
sults."140 This claim justifies his withholding treatment in certain cases and
represents pulse diagnosis as a technique that separates him from potentially
competing physicians, based on qualitative claims for accuracy.

Nor was Chinese interest in quantification restricted to the use of metaphors
of precision and accuracy as a philosophical ideal. To mention a few oft-repeated
examples: dating and recording of celestial and human events, the standardization
of measurements, the decimalization of weights and measures, and the early pres-
ence of o wide range of instrumentation including sliding calipers, rain gauges,
astrolabes and water clocks.!4! To these we can add an early interest in and use
of sociological quantitative methods, most obviously, the population census and
collection of other demographic data, starting in the Qin. Other human "quantifi-
cations” include the precise gradations of punishments in legal codes and the
ranking of moral qualities. A striking example of the latter is the tabulations of
Gujin renbiao 5 5 A 2 or "Table of Ancient and Modern Persons” that com-

prises the twentieth chapter of the Han History & &, which ranks 1955 persons -

according to nine grades of intellectual and moral worth.142 As Christoph

137 This incident is dated to 167 BC, during the reign of Han Wen Di (r. 180-157 BO).
The biography consists of arguments by Ti Ying, by Chunyu Yi and by Sima Qian. Ti
Ying's argument against mutilating punishments persuades Xiao Wen, not only to release
her father, but to change the law. They are repeated verbatim at Lienii zhuan %) %7 {8
(Sibit beivao ed.) 6,16 and are a very interesting example of argumentation by women.
See Raphals 1998 and 19980,

138 shiji, 103: 2794,

439 Shiji, 105: 2817,

140 3 93 0 71 4045 B0 RS 1. Shji, 105: 2796,

(41 Cf. Bodde 1981: 138-141.

142 This ninefold classification of 1955 individuals trom legendary times to the Qin
dynasty was begun by Ban Gu B [ (32-92 AD) and completed by his sister Ban Zhao $f
B3 (d. circa 125 AD).
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Harbsmeier points out, this table is also important evidence of the early sophisti-
cation of the Chinese concept of a class (fei #1), a notion of fundamental impor-
tance to the history of science.!43

IV Quantification in Ancient Science Reconsidered

The foregoing discussion suggests several interrelated issues that are important
for a nuanced understanding of measurement, calculation and quantification, both
in Chinese and Greek science and in the broader context of claims for the Scien-
tific Revolution. We need to understand the effects of a priori assumptions and
the roles of competing theories and perspectives if we are to understand the mi-
crohistory of either contexi, let alone for any comparison. Taken together, the
Greek and Chinese evidence indicates that talk of an antinomy between quantilies
and categories is very problematic and that the whole notion of quantification
needs to be nuanced and clarified.

In Koyié's account, the "inaccuracies” of both the Chinese and Greek calcula-
tions are simply evidence for lack of quantitative measurement. Misguided focus
on "accuracy” obscures important questions of us whether or what observations
or measurements were actually attempted because it overlooks important distinc-
tions in kinds and sources of "inaccuracy.” First, false assumptions can introduce
inaccuracies into calculations based on relatively accurate observational data and
otherwisé sound mathematical reasoning. The Greek and Chinese gnomon calcu-
lations attest to the importance of a priori assumptions in affecting or determin-
ing results, The Chinese assumption of a flat earth made an accurate determina-
tion impossible, and the “inaccuracy” is not a result of poor measurement or
quantification. By contrast, the Greek assumption that the sun was, for practical
purposes, infinitely distant from the earth, was not the major source of error in
Eratosthenes' calculation. The accuracy of his measurement depends primarily on
the length of the stade, Second, inaccuracies can be evidence for genuine at-
fempts at accurate measurement, as distinct from purely qualitative methods of
analysis such as humoural theories. A third kind of inaccuracy resulis from genu-
inely inaccurate measurement, OF RO measurement at all. Both the Chinese and
Greek authors apply similar mathematical techniques to data that is, to varying
degrees, conventional or idealized. Yet Aristarchus’ use of conventional or ideal-
ized numbers in ratios is a very different kind of quantification from Archimedes'
attempts at actual observational data.

It may be more uscful to view both the Chinese and Greek calculations as
elements in ongoing cosmographical speculations over such questions as the
shape of the earth, the shape of the cosmos, the movements of the sun and earth,
and how or whether to measure the distance between them. Competing Greek

143 Harbsmeier 1998: 218, For further discussion of this issue, see Raphals 2000.
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cosmographies differed over whether the earth revolved around the sun or the sun
revolved around the earth, and the magnitude of the distance between the two.
They agreed, however, that the two were far apart and that the earth was a sphere.
The Chinese cosmographies that informed the Zhoubt and Huainanzi calculations
all posited some kind of round heaven over a square (and flat!) earth. They dif-
fered over the details of the round heaven, and whether the earth was square, but
not whether it was ffat.14 This Chinese cosmological consensus op a tlat earth
disallowed consideration of the carth's curvature. (Nonetheless, the accuracy of
the Chinese measurements is comparable to those of Aristarchus.)

The Greek and Chinese gnomon calculations also retlect the differing status
of apodeixis in Chinese and Greek philosophy and science. The Chinese authors
were concerned with the universality of their demonstrations, but their formula-
tion did not proceed from axioms.!43 By contrast, Archimedes' description of his
method is explicit. It is useful for initial investigation, but, more importantly, for
the demonstrative proof that follows it:

For cestain things first became clear to me by a mechanical
method, although they had to be demonstrated by geometry
afterwards because their investigation by the said method
did not furnish an actual demonstration. But it is of course
easier, when we have previously acquired, by the method,
some knowledge of the questions to supply the proof than it
is 10 find it without any previous knowledge. /46

However useful the mechanical method might be for investigation, and for other
practical purposes, in Archimedes’ view it was no substitute for the "demonstra-
tion" of formal proof. (The texts discussed earlier do not use it.)

The foregoing discussion has questioned the apparent similarity of Chinese
and Greek understandings of triangles and the properties of similar triangles.
There is suggestive evidence that the earty Chinese mathematicians may not have
had an explicit concept of a triangular plane figure, cven though they clearly
identified the parts of triangles and knew how to use thein in practical contexts,

By contrast, triangles were central to Greek mathematical thinking, beginning
with the cosmology of the Timaeus. Plato argues that the four ultimate constitu-
ents of matter are solid bodies, that solid bodies are bounded by plane surfaces,
that all rectilinear planes are composed of triangles, that all triangles can be bro-
ken down into two kinds of right triangle. "All triangles originate from two trian-
gles" (i Bt wpiywva mavra ik Buoiv GpxeTa tprycavow) — the use of the dual is

144 Cullen 1976: 108,

145 Recent publications by Geofirey Lloyd have described this difference at length, es-
pecially Lloyd 1996 and Lioyd 1998,

146 Archimedes, Meth., Prael., Archim., ed. Heiberg (1880-1881), i, 426. 3-430, 22,
trans. Heath 1912: 13, CL Mugler 1971 vol. 3, 83-84 and Lloyd 1998: 355.
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striking — the isosceles and the scalene.!47 He goes on to identify the four ulti-
mate constituents of matter with four regular solids constructed out of triangles:
the tetrahedron (fire), cube (earth), octahedron (air) and icosahedron (water).148

It is also noteworthy that the Chinese and Greek calculations seem (o refer 1o
different properties of similar triangles. Eratosthenes’ calculation is based on their
identical angles; the Chinese calculations (or correspondences) are based on an
understanding of the proportionality of their line lengths. Angles are not dis-
cussed, nor even named.

The problem of the status of triangles in China and Greece illusirates the limi-
tations of treating categories and quantities as mutvally exclusive modes of ex-
planation and forcing the evidence into one or the other mold. The categorical
extreme assigns them to qualitative and non-measurable categories, ignoring the
possibility that they may be actual measurements. Another problem is that "ap-
plying categories” does not reguire or explain the development of the gnomon
measuring technique. If these were simply "categories," why create the triangle or
"trysquare” of the gnomon and its shadow, rather than simply asserting them, as
in other Han correlative cosmological texts? The quantitative extreme treats
numbers indiscriminately as observational data, without regard to where they
come from or how they are verified. Most discussions of Chinese gnomon meas:
urements tend toward the quantitative extreme. They assume the existence of the
abstract concepts of a triangle, similar triangles, and the Pythagorean theorem,
and further that the namerical values were actual measurements.!4? This ap-
proach masks differences in how numerical measurements involving triangles
were used. There is a tautological element to this antithesis between quantities
and categories. Defining the Scientific Revolution as a shift from categories to
quantities introduces a polarity that the microhistories do not bear out.

V Conclusions

Generalizations break down both within and between the two cultures, but over-
all, the Greek and Chinese mathematicians surveyed here seem to have been
more interested in ratios and proportions than in measurement. The Greek
mathematicians show a consistent preference for epideictic demonstration and the
properties of numbers and ratios; they differ considerably in their interest in ob-
cervation and measurement. Claims for an early Chinese empiricism also seem to
break down upon close reading of the texts. This Greek picture, however, is

147 Plato, Timaeus, 53d.

148 Plato, Timaeits, 53e-55¢.

149 Cf. Needham 1959, Cullen 1976 and Chen [987. By conteast, Dmitri Panchenko
has argued that the extreme inaccuracy of the Chinese 1 inch per 1000 /i ratio suggests
that it was a garbled translfation of some other ratio from some other cuiture (personal
communication). See alse Panchenko 1993: 387-414.
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skewed by its focus on foundational theories of mathematics and astronomy. The
high-precision skills of sixth and fifth century Greek architects and engineers and
the temples and structures they created suggest a different picture of highly guan-
titative applied, it not theoretical, geometry.

A striking and perhaps significant difference between the Greek and Chinese
scientific and philosophical contexts is the extent to which metaphots of crafts-
men's measuring tools appear as metaphors across the spectrum of Chinese War-
ring States philosophical and political thought. These metaphors, in particular the
"compass and square” expressed a range of notions of moral and technological
excellence, and were put to the service of a wide range of arguments. These
analogies are so pervasive as to suggest that accurate measurement and precision
functioned as root metaphors in early China. These metaphors contain an
interesting tension beiween precision and accuracy. In their later "Confucianized"
usage of good order and moral rectitude, they clearly refer to accuracy. Yet it
seems Teasonable to suggest that the focus of their initial usage was on precision,
since precision and exactitude of measurement, rather than accuracy, was what
the actual practices of real craflsmen reguired.

The foregoing examples show important ditferences in techniques, goals,
conceptual foundations and contexts for Greek and Chinese gnomon measute-
ment calculations. They show the limitations of both unnuanced compatison and
of a history of science constructed on contrasts betweeri distinct world views of
ancient and modern science.
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% om ok

Ii seems that the works of the late Professor Yabuuti Kiyosi B9 & have nc
been fully translated into either Chinese or Western languages. Parts of his majo
works are available in Chinese, thanks to Du Shiran i 7 45, In the West, hi
work has been discussed in several articles, but most of them are quite sketch
overviews. His analysis of Western influence on Chinese astronomy has bee:
translated by Benno van Dalen, while his small popular account entitled Chines
Mathematics was recently translated into French, which has led readers in the
country to consider him a historian of Chinese mathematics.

When 1 visited Joseph Needham for the first time in 1957, Volume 3 of Sci
ence and Civilisation in China (Cambridge: Cambridge University Press, 1954
hereafter abbreviated SCC) was in galley proofs. I noticed a grave omissior
Needham had overlooked the significance of Chinese calendrical science, sayin,
"althongh there is a very large literature, still growing almost daily, on the Chi
nese calendar, its interest is, we suggest, much more archaeological and historice
fhan scientific,” and “the whole history of catendar-making is that of successiv
attempts to reconcile the irreconcilable, and the numberless systems of interca
tated months, and the like, are thus of minor scientific interest.” (SCC, 3: 390).

I told him that calendrical science was central to Chinese exact science, am
that Yabuuti was spending his whole life exploring it by thoroughly studying th
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