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The evaluation of verbal models 
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This paper proposes an operational method for evaluating verbal models. The 
method is based on a statistical technique in which the performance of the verbal 
model is compared to the performance of an alternative simple random choice 
model. The method is demonstrated by using experimental data to evaluate Yager's 
model (1978; 1984) of fuzzy probabilities. 

Introduction 

A verbal model is a model that allows for linguistic rather than numerical variables, 
and for causal relationships between the variables to be formulated verbally rather 
than mathematically (Wenst0p, 1976). Examples for such include Kickert's model 
(1979) in which Mulder's theory of power is reformalized verbally, Wenst0p's (1976) 
deductive verbal models of organizations, and Yager's (1979; 1984), Kwakernaak's 
(1978; 1979), and Zadeh's (1968; 1981) models of fuzzy probabilities (Zwick & 
Wallsten, 1989). 

A fundamental issue in the theory of modelling is validation of a model. In the 
conventional modelling exercise this rarely consists of more than the calculation of 
some accuracy measure between the model and the data. However, with verbal 
models this approach encounters several difficulties. Several authors (Wenst0p, 
1975; Yager, 1978; Tong, 1980) have discussed methods for comparing linguistic 
values--empirical and predicted--for validation purposes. However, these tech- 
niques suffer from several problems that will be discussed next. 

Tong's (1980) evaluation of fuzzy (verbal) models derived from 
experimental data 

Tong evaluates a verbal model in terms of its complexity, accuracy and uncertainty. 
Complexity is measured by the number of linguistic relations that make up the 
model. Accuracy is measured by a distance function (squared error, or an absolute 
difference) between the de-fuzzified output of the verbal model and the non-fuzzy 
measured data. Finally, uncertainty is measured by either the non-probabilistic 
entropy of the membership function of the model's output set (A), or by a function 
of the cardinality of A. As was emphasized by Tong (1980), these indices are 
appropriate in some contexts, but they are not necessarily a general solution. 
Especially problematic is the de-fuzzification, which may be achieved in several 
ways, with no published evidence to suggest that any method is superior. Secondly, 
it may not be a trivial task to impose an ordering on the models on the basis of such 

149 
0020-7373/88/070149 + 09503.00/0 �9 1988 Academic Press Limited 



150  R. ZWICK 

measures. Finally, his technique lacks any statistical foundation. It is not clear, using 
these indices, whether one model is significantly better than another, or whether the 
observations are reasonable under the hypothesis that the model is valid. 

Yager's (1978) linguistic models and fuzzy truths 

Yager (1978) introduced a technique for validating fuzzy set models that is based 
upon the concept of compatibility between two fuzzy subsets of the same universe. 
The application of his methodology results in a linguistic truth value (i.e. true, 
almost true, more or less true, false, etc.), which measures the validity of the model 
for a piece of data. 

Assume that we have a proposition (statement or equation) p & X is F (where F is 
a fuzzy subset of U). The truth value of this proposition is defined to be the degree 
of consistency of p with some observed data that is expressed as a reference 
proposition r (Bellman & Zadeh, 1976). Thus: 

V(p) = C(p, r) 

where V(p) is the truth value of p with respect to r, and C is a consistency function 
which maps ordered pairs of propositions and reference statements into truth values. 
Assume now that r, our reference proposition, is itself a verbal proposition of the 
form: 

r ~ X  is G 

where G is a fuzzy subset of U. In this case the truth value of p becomes a linguistic 
truth value defined as: 

s = F(G) 

where F(G) is a fuzzy subset over the unit interval defined (Zadeh, 1977) as: 

l F(G) = k F----~J for all ueU. 

For example, let p & John is old, and let r ~ John is close to 70. Then if we define 
old as: 

F=old={-~0"40"50"60"70"80"9-- 1 1~0} 
40 50 60 70 80 90 

and close to 70 as: 

G=closeto  7 0 = ~ 0  __0"2 0.4 __0"8 1 0.8 0.4 0.__22~ 
(30 40 50 60 70 80 90 100J 

then the truth of p with respect to r is given by 

s  0 . 2 0 - 4 0 . 8  1 0.80~4} 
0.5 0-6 0.7 0.8 0.9 - " 

s could be expressed using linguistic approximation as "near  0.8". 
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This technique suffers from several problems. It is ad hoc, lacks a firm 
foundation, and lacks a statistical theory to back it up. The compatibility measure 
itself that is being used in this technique is problematic. Usually F(G)4= G(F), 
which is an undesirable property in the models testing context. For example, why 
should the truth value of a model that predicts that "John is old" given that in 
reality John is "close to 70" be different from the truth value of a model that 
predicts that "John is close to 70" given that in reality "John is old". A second and 
more severe problem is the fact that F(F) cannot be interpreted, in most cases, as 
"absolutely true" as should be expected if the reference proposition is exactly what 
the model predicts. 

In what follows I will present a model testing technique that is based on both 
statistical and logical grounds, and that is especially suited to verbal models. 

Model testing technique 
The problem of evaluating models by testing their empirical consequences has both 
statistical and logical aspects. The statistical problems are those of determining how 
well the model fits the data. However, in the social sciences "scientific laws" do not 
assert deterministic invariance, and seldom will a model demonstrate a perfect fit to 
the data. Consequently the emphasis shifts from "factually true" to "usefulness" 
and "efficiency" (Zimmerman, 1985). To determine the usefulness and efficiency of 
a model we need to compare it to an alternative simpler model, and to show that the 
addition in complexity is compensated by significant improvement in predictive 
power. In the numeric-response models, established techniques such as linear 
regression or correlation can be used. However, these techniques are not easily 
transferrable to linguistic models. The current technique is an adaptation of the 
classical techniques to the realm of verbal models. 

Let VM be a verbal model and let O be the set of all possible verbal states of 
nature. A verbal state of nature is a fuzzy subset of an appropriate universe of 
discourse. For example, let VM be Yager's probability model (the probability of a 
fuzzy event given a crisp random crisp variable). In this case O is the vocabulary set 
of a specific individual the model is trying to simulate. In this work, O will be 
considered to be finite and known. The verbal model predicts one of the n possible 
verbal states of nature in O. The proposed technique compares the model to an 
alternative simple baseline model, which uses a uniform random process to predict a 
verbal state of nature in O. 

An important issue with regard to the baseline model concerns the unit of analysis 
to which the equal likelihood assumption should be applied. Namely, should each 
phrase (in O) be considered equally likely, or should the uniformity assumption be 
applied to equivalent classes (synonyms)? I adopt the second approach. Thus, the 
unrestricted baseline model randomly selects an equivalence class, rather than a 
phrase, as the predicted response. As a result, the phrases themselves are not 
equally likely, but each equivalence class of synonyms is. 

The following procedure can be used to determine equivalence classes. Using the 
membership function representation of each verbal state of nature in O, compute 
the pairwise distances between all words using the best similarity index for the 
specific context at hand (Zwick, Carlstein & Budescu, 1987). Then use the distance 
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matrix to cluster the verbal states of nature (using any one of several cluster analysis 
techniques). Unfortunately, there are no satisfactory methods for determining the 
number of population clusters for any type of cluster analysis (Everitt, 1979). 
Consequently, I recommend that the analysis be repeated with different levels of 
clustering and that the effect on the model testing results be observed. 

To determine the quality of the verbal model, observe its behaviour along several 
trials (say m) and compare the predicted outcomes with the observed ones. This can 
be accomplished by computing the distances between the predicted and the 
observed response clusters using the appropriate similarity index, where distance is 
defined to be the average distance between the observed response and the members 
of the predicted cluster. In addition, for each trial, find the discrete sampling 
distribution of the distances between a randomly selected cluster and the observed 
response, which is simply the set of all possible distances from the observed 
response to the set of all clusters in O (call this random variable X~). The 
unrestricted baseline model assumes that responses are independent. Hence, under 
the unrestricted baseline model assumption we have a sequence of m independent 
random variables, {Xi}i%l, the mean and standard deviation of which are known. 
According to the Liapunov version of the central limit theorem (Rao, 1975, p. 107): 

i = l  

Ym-- c,,, 

tends to the standard normal. Where 

E(Xi)=~i, and Cm= �9 . 
i 1 

Based on this approximate sampling distribution we can compute the probability 
of the standardized observed mean distance (or a smaller value) under the 
unrestricted baseline model assumptions. A small probability value indicates that 
the tested model is out-performing the unrestricted baseline model, while a sizeable 
probability value indicates that the tested model does not improve prediction 
beyond the performance of a random unrestricted baseline model. Any verbal 
model should pass the initial test to deserve further consideration. 

To investigate further the predictive power of the tested models, the number of 
clusters from which the baseline model is allowed to randomly choose a predicted 
response is successively restricted. The restriction mechanism is analogous to an a 
priori piece of information regarding the rough location of the observed data. 
Clearly the predictive power of the unrestricted baseline model depends on the 
number of clusters in O. Few clusters increase the random baseline hit rate, making 
it harder for the tested model to distinguish itself. I recommend that the analysis be 
carried out sequentially, eliminating at each stage the cluster that is the farthest 
away from the observed one in the previous stage. At each stage, the approximate 
sampling distribution of the standardized mean distance under the restricted 
baseline model can be computed and the probability of the observed mean distance 
can be determined. The analysis can be reported by the number of clusters that are 
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eliminated before the model tested ceases to out-perform the restricted baseline 
model (p > 0-05). 

E X A M P L E  

This example uses the data of a single subject to validate Yager's model (1979, 1984) 
of fuzzy probability. Full details, as well as the application to a much larger body of 
data, can be found in Zwick & Wallsten (1989). 

Yager's model (1984) 
Consider the data in the top part of Fig. 1. What are the chances that a randomly 
selected person from this population will be very old? 

Yager (1979) noted that intuitively the probability of a fuzzy event (A) should be 

P O,OI 
Equally likely 

0 50 I00 

Age 

What are the chances that a randomly 
selected person will be Very O/d ? 

a-Very I-Good chance 
b-Not 2-Likely 
c- Quite 3-Probable 
d-Rother 
e-Fairly 4-Doubtful 
f-Highly 5-Unlikely 
g-Somewhat 6-1rnprobable 
h-Extremely 7-Slight chance 
i-Pretty 

FIG. 1. Probability estimation trial (from Zwick & Wallsten, 1989). 
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a fuzzy subset itself. Hence, he assumed that for each possible numeric response, 
subjects evaluate the truth values of the propositions: " the probability of A is at 
least p " ,  and "the probability of A is at most p " ,  and combine these evaluations 
through the min rule. The evaluations are accomplished by imagining or mentally 
simulating different possible crisp events (A~'s) associated with the linguistic term 
defining event A. Formally, let A be a fuzzy subset of ~ ,  and let P be a crisp 
probability measure defined on s then using the extension principle, and following 
Zadeh's (1981) work on fuzzy cardinality, Yager defined the following three 
probabilities: 

(1) t~FGPfA)(P) = sup{o~lP(A~) ~ p } ,  pe[O, 1] 

I.tFGe(A)(p) should be interpreted as the truth value of the proposition: " the 
probability of A is at least p" .  

(2) I~FLPr = 1 -- ~Fam.a)(P) = sup{c~lP(~io~) --> 1 --p} 
O~ 

ItFae(.~)(p) should be interpreted as the truth value of the proposition: " the 
probability of not-A is at least p " ,  and IZFLP~A)(p) as the truth value of the 
proposition: " the probability of A is at most p" .  

(3) FEP(A)  = FGP(A)  Cl FLP(A)  

where #FEP(A)(P) is the truth value of the proposition: " the  probability of A is p" .  

Model validation 

Twenty subjects were tested for five sessions of approximately 1 to 1.5 hours each. 
Sessions 2 and 3 were one integral unit broken into two parts due to the lengthy 
nature of this unit. Similarly, Sessions 4 and 5 were an integral unit. In what follows, 
Sessions 2 and 3 will be referred to as Part 1, and Sessions 4 and 5 as Part 2 of the 
experiment. Part 2 was a replication of Part 1. Session 1 was for practice, and Parts 
1 and 2 were for data collection. The practice and four data sessions were scheduled 
generally two days apart. The experiment was controlled by an IBM-PC with stimuli 
presented on a colour monitor and responses made on the keyboard. 

During all sessions, subjects worked through five types of tasks comprising: (1) a 
probability estimation task (PE); (2) a linguistic probabilities scaling task (LPS); (3) 
a linguistic ages scaling task (LAS); (4) a linguistic probabilities similarity judgment 
task (SIM), and (5) a probability estimation-scaling task. Trials from all tasks were 
presented in all sessions in an intermixed random order. 

The probability estimation task was the core task of the experiment in which 
subjects were instructed to estimate the probabilities of certain events given the 
information presented on the screen. Figure 1 is an example for such a trial that is 
relevant to Yager's model. Subjects were instructed to respond by choosing one of 
seven primary terms, or by combining one primary term with one or two of nine 
modifiers. The objective of the scaling tasks (tasks 2 and 3) was to establish the 
subject's membership function for various linguistic probabilities and age phrases. A 
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TABLE 1 
Subject 8's  vocabulary at the 99 .9% clustering level 

Cluster 1 
Likely 

Cluster 2 
Probable 
Quite probable 
Rather good chance 

Cluster 3 
Good chance 
Fairly good chance 
Pretty good chance 
Improbable 
Rather improbable 
Somewhat improbable 

Cluster 4 
Fairly improbable 
Quite improbable 
Fairly slight chance 

Cluster 5 
Slight chance 
Pretty slight chance 
Rather slight chance 
Somewhat slight chance 

Cluster 6 
Doubtful 
Fairly doubtful 
Pretty doubtful 
Quite doubtful 
Quite quite doubtful 
Rather  doubtful 
Somewhat doubtful 
Very doubtful 
Extremely improbable 
Very slight chance 

Cluster 7 
Unlikely 
Extremely unlikely 
Fairly unlikely 
Highly unlikely 
Quite unlikely 
Rather unlikely 
Somewhat unlikely 

TABLE 2 
Subject 8's observed versus predicted responses in Task PE by part and problem 
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Distance between 
observed and 

Observed Predicted predicted 

Problem Part 1 Part 2 Cluster Part 1 Part 2 

1 Somewhat slight chance (5) Pretty slight chance (5) 5 0.001 0.001 
2 Fairly improbable (4) Rather improbable (3) 3 0.093 0.000 
3 Extremely unlikely (7) Extremely unlikely (7) 7 0.000 0-000 
4 Somewhat slight chance (5) Somewhat slight chance (5) 4 0-085 0-085 
5 Slight chance (5) Extremely improbable (6) 2 0-707 1.000 
6 Rather doubtful (6) Somewhat doubtful (6) 6 0-020 0.023 
7 Somewhat improbable (3) Fairly doubtful (6) 6 0-513 0.016 
8 Fairly doubtful (6) Rather doubtful (6) 5 0-189 0.189 
9 Fairly doubtful (6) Fairly doubtful (6) 6 0-016 0.016 

10 Fairly doubtful (6) Rather doubtful (6) 6 0-016 0.020 
11 Quite improbable (4) Fairly improbable (4) 2 0.475 0.496 
12 Somewhat improbable (4) Fairly improbable (4) 4 0-088 0.000 
14 Improbable (3) Somewhat slight chance (5) 4 0.065 0.088 
15 Somewhat slight chance (5) Quite improbable (4) 3 0.346 0.083 
16 Somewhat doubtful (6) Fairly doubtful (6) 6 0-023 0.023 

Numbers in parentheses show the clusters to which the phrases belong (see Table 1). 
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direct magnitude estimation technique was used. The objective of the similarity task 
was to choose the best similarity index between membership functions within a 
subject (see Zwick et al., 1987). See Zwick & Wallsten (1989) for a full description 
of all tasks and all data analysis. 

Table 1 presents the clustering structure of Subject 8's vocabulary, and Table 2 
presents Subject 8's predicted versus observed responses (by parts) in the probabil- 
ity estimation trials that were relevant to testing Yager's model. (There were 15 
different problems presented once in each part.) In parenthesis beside the observed 
response is the cluster to which the response belongs (see Table 1). Column 4 
presents the model's predicted cluster. The right-most two columns of Table 2 
presents the distances between the predicted and the observed response clusters. 
For Subject 8 the mean distance (across parts) between observed and predicted 
responses was found to be 0-156 (see Table 2). Under the unrestricted baseline 
model's assumptions the probability of finding such a distance (or a smaller one) is 
extremely low (P < 0-0001). This indicates that Yager's model predicts Subject 8's 
responses much better than the unrestricted baseline model. 

To further investigate the predictive power of the tested models, the number of 
dusters from which the baseline model was allowed to randomly choose a predicted 
response was successively restricted. 

Table 2 reveals that in 15 cases Yager's model correctly predicts the response 
cluster. In nine cases Yager's model is off by only one level of probability expression 
(namely predicting a response cluster that is adjacent to the observed one), in three 
cases by two levels, in two cases by three levels and in one case by four levels. This 
indicates that, for Subject 8, Yager's model correctly captures the general location 
of the response if not the exact expression. I sequentially carried out the analysis 
demonstrated in Table 2, eliminating at each stage the cluster that is the farthest 
away from the observed one in the previous stage. For example, with regard to 
Subject 8's data (see Table 1), in the first stage duster 1 (likely) was eliminated from 
problems for which the observed response cluster was 4, 5, 6, or 7. Cluster 7 was 
eliminated from problems for which the observed response cluster was 1, 2, or 3. In 
stage two, the next most distant cluster from the observed response cluster was 
eliminated and so on. In all cases, the predicted response cluster (by the tested 
model) was defined to be the cluster in the restricted vocabulary that is the closest to 
the predicted function. At each stage, the approximate sampling distribution of the 
standardized mean distance under the restricted baseline model was computed and 
the probability of the observed mean distance was determined. Even after 
eliminating all but three clusters (the observed response cluster plus two others) 
from Subject 8's vocabulary, Yager's model still out-performs the restricted baseline 
model (P = 0-03). Only after eliminating all but two clusters does Yager's model 
cease to out-perform the restricted baseline model (P = 0.65). Note that this is 
strong support for the ability of Yager's model to predict Subject 8's responses. 

Conclusion 

The purpose of this paper is to introduce a technique for validating verbal models. 
This technique can be used only in the case where the set of all possible outputs of 
the model is finite and known. The advantage of this technique is its statistical 
properties. 
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