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Refocusing of a qubit system coupled to an oscillator
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Abstract. Refocusing, or dynamical decoupling, is a coherent control technique where the internal dynamics of a quantum
system is effectively averaged out by an application of specially designed driving fields. The method has originated in
nuclear magnetic resonance, but it was independentlyised in atomic physics as a “coherent destruction of tunneling”.
Present work deals with the analysis of the performance of “soft” refocusing pulses and pulse sequences in protecting the
coherence of a qubit system coupled to a quantum oscillator.

Introduction and background The conclusions in Ref5] were based on the analysis of the
cillator bath with a featureless spectral function, with the cut-off

cluding nuclear magnetic resonance (NMR), quantum informati figuencywe serving as th_e only scale describing the bath correla-
processing (QIP), spintronics, atomic physics, etc. Thepkist tions. They do not apply in the presence of sharp spectral features

control technique is dynamical decoupling (DD), also known as r‘gh'Ch apg)ea;: 'fthﬁ cohntr?jlleg sygeml IS corl:pled;o a Iocalllhlgh-Q 0s-
focusing, or coherent destruction of tunneling. The goal here is_qgator.l dnt eolt erl an_”,t esnuztlo_nw eret econtroTﬁ_ system
preserve coherence by averaging out the unwanted couplings. Thidupr'e to a local oscillator mode Is quite common. This situa-

is achieved most readily by running precisely designed sequence%? IS rgallzed n atqmlc physps, where the oscnlator!uegpor} IS
specially designed pulses][ the cavity mode, while the continuous-wave (CW) excitation is used

. . to suppress the coupling. In several quantum computer designs,
In a closed system this can be analyzed in terms of the average " . :
o ) . . AN - nearly-linear oscillator modes are inherently present (e.g., mutual
Hamiltonian theory in the “rotating frame” defined by the controlling. S ;
isplacement in ion traps, or QCs based on electrons on helium).

f|.e|d§ [.]' To Ieadlng.order, the net evplunpn overthe refocusing PE; lly, there are suggestions to include local high-Q oscillators in
riod is indeed described by the Hamiltonian of the system averagﬁe QC designs to serve as “quantum memory” of “quantum infor
over the controlled dynamics. For an open system, the dynamics as-. g q y q

. . mation bath” p].
sociated with the bath degrees of freedom can be also averaged out, ? this work we consider refocusing of a qubit system where the

long as they are sufficiently slow. This can be understood by noticin X )
that the driven evolution with period = 27/ shifts some of the sgectral function of the oscillator bath has a sharp resonance. More

system's spectral weight by the Floguet harmoniess o + nS2. specifically, we include the resonant mode in the system Hamilto-

. o L ian, and consider the quantum kinetics of the resulting system in
With the average Hamiltonian for the closed system vanishing, the . .

. . . € presence of a featureless low-frequency oscillator bath driven
original spectral weight at = 0 disappears altogether, and the di-

rect transitions with the bath degrees of freedom are also suppre%%%té]beerzl;:;clu:g:jgvml]sﬁ]se?]%IT“e:f iﬁéheeﬂgfgsrggﬂﬁses{:f:na Z);stem
as long a2 exceeds the bath cut-off frequen€&y< wc [3]. Y P 9 - 9

Quantum coherent control has found way into many applications,

§ and having in mind sequences of soft pulses, we consider the
analytical structure of the evolution operator for a closed system of
itrary complexity, where one of the qubits is driven by a single

E-dimensiona’r-pulse. An analysis of any refocusing sequence is

Hamiltonian ¢ = 1), but all the terms of ordér < K in the Mag-
nus (cumulant) expansion of the evolution operator over the per
T are suppressed. The corresponding simulation can be done §

c:ently b¥ co$ﬁtruct|ng t|mei(-_dep_endefn;perturbatlon(;heory ON SMAdn reduced to computing an ordered product of evolution operators
tcustertshi]. d ;%JSH?E 2|net|cs 0 tI € c(;)rt:espon :Tfn Sy;o‘r; for individual pulses. We illustrate the technique by analyzing the
€m with oraer , X = 2, Was analyzed by oneé ol In€ authorg, o) 1eq dynamics of a qubit coupled to an oscillator. One of the
using the non-Markovian master equation in the rotating frame Shstructed sequences provide orEler= 2 qubit refocusing for any

fined by the refocusing field$]. This involved a resummation Ofform of qubit-oscillator coupling, and was also shown to provide an

t_he series for the Laplace-trans_form_ed resolvent of the mas_ter e%’ellent decoupling in the presence of a thermal bath.
tion near each Floquet harmonic, with subsequent summation of al

harmonics. Single r-pulse

The results of Ref.q] can be summarized as follows. With id bit with . i
K > 1 refocusing, there are no direct transitions, which allows Sypnsider a qubit with generic couplings,
additional expansion in powers of the small adiabaticity parameter, Hs = 0, Ax + 0yAy + 0.A; + Ao, (1)
wc/ Q2. In this situation the decoherence is dominated by reactive . . )
processes (dephasing, or phase diffusion). \ith= 1, the bath Whereo, are the qubit Pauli matrices antl,, v = 0, x, y, z are
correlators are modulated at frequezyThis reduces the effectivetn® operators describing Fhe degrees of freedom Of_ the rest of the
bath correlation time, and the phase diffusion rate is suppresse&l‘??m which commute withy,, [0, A,] = 0. The qubit evolution
a factoroc we/ Q. With K = 2 refocusing, all 2nd-order terms in-'S driven by a one-dimensional pulse,
volving instantaneous correlators of the bath coupling are cancelled. Hc = 30, Vi(t), O<t<t), )

Generically, this leads to a suppression of the dephasing rate by an i ) .
additional factorx (we/ ©2)2, while in some cases (including singleVhere the fieldv, () defines the pulse shape. The evolution due to
qubit refocusing) all terms of the expansion in powers of the smie pulse is dominant; the unitary evolution operator to zeroth order

adiabaticity parameteioc/ ) disappear. This causes axponen- N Hs is simply
tial suppression of the dephasing rate, so that an excellent refocusing

1
—ioy 2 _ ,
accuracy can be achieved with relatively slow refocusiag; wc. Uo(t) = e '7* 02, ¢(1) = /0 dt' Vo(t'). ®3)
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When acting on the spin operators, this is just a rotation, e 4tom in a cavity example
Uo(t)ayUg(t) = 0, C0S¢ (t) + o Sing(t). Suppose/, (t) be sym-
metric,V,(t, —t) = V. (t), m-pulse¢(r,) = =, and it additionally
satisfies the first-order self-refocusing conditios (sing(¢)), =

Consider an atom placed in a lossless cavity with a single resonant
mode. The resonance part of the Hamiltonian can be written in

_ t — io(h — bt _
0, where(f (1)), denotes the time-average over pulse duratioie form (), whereA, = ¢(b +b"), A, = ig(b—b'), A, =0,

_ T . . . .
Then, the evolution operatéf = Up(t,) expanded to second orde 0= Ab'b, gisacoupling ct_)nstant, amd Is the cavity frequency
in ¢, Hs reads bias. Contrary to the conclusions of Refl,[such a coupling cannot

be suppressed with any one-dimensional pulse sequence.
On the other hand, the two-dimensional four-pulse sequef)ce (
provides aleading-order refocusing of the coupling. The subleading-
i, 5 5 5 ) by order correction is present (the order of the sequenkess1), and
570 (Ag+ 4D + Tp“(Ay + A7 +ioy [Ay, Az]) it is not particularly small even for 2nd-order self-refocusing pulses
) . with s = & = 0. The eight-pulse sequencé3 &nd @) have equal
+Tpf< [Ao.0yA; —0:Ay] +i{Ar, 0y Ay + UzAz})~ (4) accuracy with 2nd-order pulses but the 2nd-order accuracy of the
] latter sequence is also retained with 1st-order pulses.
Hereo = (6 — 1) sin[¢ (1) —p(N])p, ¢ = (6t —1') cosp(1)) After tracing out the oscillator degrees of freedom, we can apply
parametrize the evolution properties of the pulse at second orges. results of Ref.  and expect the two 2nd-order sequences to
The values of the parameters computed for some pulse shapeg@jde an excellent refocusing accuracy even in an open system, as
listed in Tab.1. long as the refocusing rate is sufficiently high. We confirmed this
expectation by a numerical simulation, where the bath was modeled
as a classical correlated random field.
Transforming Eq.4) appropriately, we can now easily compute the .
result of application of any pulse sequence. In particularthe COnclusions

pulseX applied along the-x direction can be obtained frotd-X)  The main result of this work is the expansidh4nd the classification

with a substitutionn. — —a. As a result, e.g., the expansion oby the corresponding parameters in Tab.This allows an explicit
the evolution opeator for the one-dimensional sequenkecan be computation of the error operators associated with refocusing in

written as systems of arbitrary complexity. We illustrated the approach for
Ty 1 o 5.2 2 3 several sequences applied to a qubit coupled to an oscillator. The
XX =1-2it)(Ado+0rAo) — 27, (Ao + 0:A0)" + O(r)), 8-pulse sequenc&) provides 2nd-order refocusing for any form of

or it can be re-exponentiated as evolution with the effective Hanffl€ coupling between the qubit and the oscillator.
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Table 1. Parameters of several common pulse shapes. The first line
represents the “hard$-function pulse,Ggo1 denotes the Gaussian
pulse with the width @1z,, while S, and Q,, denote the 1st and

2 puigg s = é E%E;ﬁsp o{/E ¢
0

7d(t —1,/2) 0 0.25
Goo1 0.0148978 0.00735798 0.249979
Go1o 0.148979 0.0653938 0.247905
S1[4] 0 0.0332661 0.238227
S> [4] 0 0.0250328 0.241377
0114 0 0 0.239889
02 [4] 0 0 0.242205




