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Refocusing of a qubit system coupled to an oscillator
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Abstract. Refocusing, or dynamical decoupling, is a coherent control technique where the internal dynamics of a quantum
system is effectively averaged out by an application of specially designed driving fields. The method has originated in
nuclear magnetic resonance, but it was independently discovered in atomic physics as a “coherent destruction of tunneling”.
Present work deals with the analysis of the performance of “soft” refocusing pulses and pulse sequences in protecting the
coherence of a qubit system coupled to a quantum oscillator.

Introduction and background

Quantum coherent control has found way into many applications, in-
cluding nuclear magnetic resonance (NMR), quantum information
processing (QIP), spintronics, atomic physics, etc. The simplest
control technique is dynamical decoupling (DD), also known as re-
focusing, or coherent destruction of tunneling. The goal here is to
preserve coherence by averaging out the unwanted couplings. This
is achieved most readily by running precisely designed sequences of
specially designed pulses [1].

In a closed system this can be analyzed in terms of the average
Hamiltonian theory in the “rotating frame” defined by the controlling
fields [2]. To leading order, the net evolution over the refocusing pe-
riod is indeed described by the Hamiltonian of the system averaged
over the controlled dynamics. For an open system, the dynamics as-
sociated with the bath degrees of freedom can be also averaged out, as
long as they are sufficiently slow. This can be understood by noticing
that the driven evolution with periodτ = 2π/
 shifts some of the
system’s spectral weight by the Floquet harmonics,ω → ω + n
.
With the average Hamiltonian for the closed system vanishing, the
original spectral weight atn = 0 disappears altogether, and the di-
rect transitions with the bath degrees of freedom are also suppressed
as long as
 exceeds the bath cut-off frequency,


>
∼ ωc [3].

For aclosed system, the refocusing can be made more accurate
by designing higher-order sequences, where not only the average
Hamiltonian (k = 1), but all the terms of orderk ≤ K in the Mag-
nus (cumulant) expansion of the evolution operator over the period
τ are suppressed. The corresponding simulation can be done effi-
ciently by constructing time-dependent perturbation theory on small
clusters [4]. The quantum kinetics of the correspondingopen sys-
tem with order-K DD, K ≤ 2, was analyzed by one of the authors
using the non-Markovian master equation in the rotating frame de-
fined by the refocusing fields [5]. This involved a resummation of
the series for the Laplace-transformed resolvent of the master equa-
tion near each Floquet harmonic, with subsequent summation of all
harmonics.

The results of Ref. [5] can be summarized as follows. With
K ≥ 1 refocusing, there are no direct transitions, which allows an
additional expansion in powers of the small adiabaticity parameter,
ωc/
. In this situation the decoherence is dominated by reactive
processes (dephasing, or phase diffusion). WithK = 1, the bath
correlators are modulated at frequency
. This reduces the effective
bath correlation time, and the phase diffusion rate is suppressed by
a factor∝ ωc/
. With K = 2 refocusing, all 2nd-order terms in-
volving instantaneous correlators of the bath coupling are cancelled.
Generically, this leads to a suppression of the dephasing rate by an
additional factor∝ (ωc/
)2, while in some cases (including single-
qubit refocusing) all terms of the expansion in powers of the small
adiabaticity parameter(ωc/
) disappear. This causes anexponen-
tial suppression of the dephasing rate, so that an excellent refocusing
accuracy can be achieved with relatively slow refocusing,


>
∼ ωc.

The conclusions in Ref. [5] were based on the analysis of the
oscillator bath with a featureless spectral function, with the cut-off
frequencyωc serving as the only scale describing the bath correla-
tions. They do not apply in the presence of sharp spectral features
which appear if the controlled system is coupled to a local high-Q os-
cillator. On the other hand, the situation where the controlled system
is coupled to a local oscillator mode is quite common. This situa-
tion is realized in atomic physics, where the oscillator in question is
the cavity mode, while the continuous-wave (CW) excitation is used
to suppress the coupling. In several quantum computer designs,
nearly-linear oscillator modes are inherently present (e.g., mutual
displacement in ion traps, or QCs based on electrons on helium).
Finally, there are suggestions to include local high-Q oscillators in
the QC designs to serve as “quantum memory” or “quantum infor-
mation bath” [6].

In this work we consider refocusing of a qubit system where the
spectral function of the oscillator bath has a sharp resonance. More
specifically, we include the resonant mode in the system Hamilto-
nian, and consider the quantum kinetics of the resulting system in
the presence of a featureless low-frequency oscillator bath driven
by the refocusing pulses applied to the qubits only. Such a system
can be analyzed with the help of the general results [5], as long as
one is able to construct aK = 1 or K = 2 refocusing sequence
to decouple the oscillator and other degrees of freedom. To this
end, and having in mind sequences of soft pulses, we consider the
analytical structure of the evolution operator for a closed system of
arbitrary complexity, where one of the qubits is driven by a single
one-dimensionalπ -pulse. An analysis of any refocusing sequence is
then reduced to computing an ordered product of evolution operators
for individual pulses. We illustrate the technique by analyzing the
controlled dynamics of a qubit coupled to an oscillator. One of the
constructed sequences provide orderK = 2 qubit refocusing for any
form of qubit-oscillator coupling, and was also shown to provide an
excellent decoupling in the presence of a thermal bath.

Single π-pulse

Consider a qubit with generic couplings,

HS = σxAx + σyAy + σzAz + A0, (1)

whereσµ are the qubit Pauli matrices andAν , ν = 0, x, y, z are
the operators describing the degrees of freedom of the rest of the
system which commute withσµ, [σµ, Aν ] = 0. The qubit evolution
is driven by a one-dimensional pulse,

HC = 1
2σxVx(t), 0<t<τp, (2)

where the fieldVx(t) defines the pulse shape. The evolution due to
the pulse is dominant; the unitary evolution operator to zeroth order
in HS is simply

U0(t) = e−iσxφ(t)/2, φ(t) ≡

∫ t

0
dt ′ Vx(t

′). (3)
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When acting on the spin operators, this is just a rotation, e.g.,
U0(t)σyU

†
0 (t) = σy cosφ(t) + σz sinφ(t). SupposeVx(t) be sym-

metric,Vx(τp − t) = Vx(t), π -pulse,φ(τp) = π , and it additionally
satisfies the first-order self-refocusing conditions ≡ 〈sinφ(t)〉p =

0, where〈f (t)〉p denotes the time-average over pulse duration.
Then, the evolution operatorX ≡ U0(τp) expanded to second order
in τpHS reads

X(2) = −iσx − τp(Ax + σxA0) +
i

2
τ2
p{A0, Ax}

+
i

2
τ2
pσx(A

2
0 + A2

x) + τ2
pα

(

A2
y + A2

z + iσx [Ay, Az]
)

+τ2
pζ

(

[A0, σyAz − σzAy ] + i{Ax, σyAy + σzAz}
)

. (4)

Hereα ≡ 〈θ(t − t ′) sin[φ(t)−φ(t ′)]〉p, ζ ≡ 〈θ(t − t ′) cosφ(t ′)〉p
parametrize the evolution properties of the pulse at second order.
The values of the parameters computed for some pulse shapes are
listed in Tab.1.

Common pulse sequences

Transforming Eq. (4) appropriately, we can now easily compute the
result of application of any pulse sequence. In particular, theπ -
pulseX applied along the−x direction can be obtained from(−X)

with a substitutionα → −α. As a result, e.g., the expansion of
the evolution opeator for the one-dimensional sequenceXX can be
written as

XX = 1 − 2iτp(A0 + σxAx) − 2τ2
p(A0 + σxAx)

2 + O(τ3
p),

or it can be re-exponentiated as evolution with the effective Hamil-
tonian

HXX = A0 + σxAx + O(τ2
p). (5)

The corresponding calculation with the usual finite-width pulses
(e.g., Gaussian) wheres �= 0 produces a correction to the effective
Hamiltonian already in the leading order,

δHXX = s(σzAy − σyAz) + O(s2τp).

This can be corrected by constructing a longer sequence, e.g.,
XXXX. Returning to pulses withs = 0, we list the expansions
computed for several two-dimensional sequences:

HXYXY = A0 + τp

(

iα

2
[Az, Ay ] −

i

2
[A0, σxAx − σyAy ]

−
α

2
σy(A

2
x + A2

y) +
1 + 4ζ

4
σz{Ax, Ay}

)

+ O(τ2
p), (6)

HYXYXXYXY = A0 −
ατp

2

(

σy(A
2
x + A2

z) + i[Ay, Az]

)

, (7)

HYXYXXYXY = A0 + O(τ2
p). (8)

Table 1. Parameters of several common pulse shapes. The first line
represents the “hard”δ-function pulse,G001 denotes the Gaussian
pulse with the width 0.01τp, while Sn andQn denote the 1st and
2nd-order self-refocusing pulses from Ref. [4].pulse s ≡ 〈sinφ(t)〉p α/2 ζ

πδ(t − τp/2) 0 0 0.25
G001 0.0148978 0.00735798 0.249979
G010 0.148979 0.0653938 0.247905
S1 [4] 0 0.0332661 0.238227
S2 [4] 0 0.0250328 0.241377
Q1 [4] 0 0 0.239889
Q2 [4] 0 0 0.242205

Atom in a cavity example

Consider an atom placed in a lossless cavity with a single resonant
mode. The resonance part of the Hamiltonian can be written in
the form (1), whereAx = g(b + b†), Ay = ig(b − b†), Az = 0,
A0 = ( b†b, g is a coupling constant, and( is the cavity frequency
bias. Contrary to the conclusions of Ref. [7], such a coupling cannot
be suppressed with any one-dimensional pulse sequence.

On the other hand, the two-dimensional four-pulse sequence (6)
provides a leading-order refocusing of the coupling. The subleading-
order correction is present (the order of the sequence isK = 1), and
it is not particularly small even for 2nd-order self-refocusing pulses
with s = α = 0. The eight-pulse sequences (7) and (8) have equal
accuracy with 2nd-order pulses but the 2nd-order accuracy of the
latter sequence is also retained with 1st-order pulses.

After tracing out the oscillator degrees of freedom, we can apply
the results of Ref. [5] and expect the two 2nd-order sequences to
provide an excellent refocusing accuracy even in an open system, as
long as the refocusing rate is sufficiently high. We confirmed this
expectation by a numerical simulation, where the bath was modeled
as a classical correlated random field.

Conclusions

The main result of this work is the expansion (4) and the classification
of the corresponding parameters in Tab.1. This allows an explicit
computation of the error operators associated with refocusing in
systems of arbitrary complexity. We illustrated the approach for
several sequences applied to a qubit coupled to an oscillator. The
8-pulse sequence (8) provides 2nd-order refocusing for any form of
the coupling between the qubit and the oscillator.
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