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Abstract
Models explaining household decisions assume that the member’s bar-
gaining process, although unknown, leads to efficient outcomes. The
empirical literature has not been able to reject this hypothesis when
tested in several datasets, including those from poor, rich and emerg-
ing countries. This paper presents Monte Carlo simulations to show
that the methods used for testing are inadequate for two reasons.
First, the performance of the test statistic, and in particular the Type
II error, depends on the algebraic formulation of the restriction to be
tested. Second, none of the formulations dominate the other alterna-
tives. These two factors prevent us from concluding whether there is
enough evidence supporting the assumption of efficient intrahousehold
allocations. Alternative approaches to validate the test are discussed.
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“[The simplicity of the data needed] suggests, more generally, that testing
‘collective’ models of household behavior may not be as difficult a task as it

was sometimes suggested.” -Bourguignon, Browning, Chiappori, and
Lechene (1993, p. 152).

1 Introduction

Models of household behavior have departed from the unitary framework de-

veloped by Becker (1991) towards models where bargaining among members

takes place in order to allocate resources such as labor supply (Chiappori,

Fortin, and Lacroix 2002), consumption (Attanasio and Lechene 2002) or

human capital investments (Thomas 1990). While the exact nature of the

bargaining remains unknown and a matter of debate1, collective models of

household behavior are built under one critical assumption: the decision is in

the Pareto frontier (Browning, Bourguignon, Chiappori, and Lechene 1994).

The empirical evidence can not reject the null hypothesis of efficiency, despite

having been evaluated in different regions and in poor and rich countries2.

Does this mean that intrahousehold allocations are indeed efficient? To an-

swer this question, this chapter analyzes the validity of the methods used to

test for efficiency in intrahousehold allocations.

I use Monte Carlo simulations to explore the performance of the statistical

tests used in the literature. Because the null hypothesis of efficiency has not

been rejected, I explore the power function of the test to measure the Type

1See Manser and Brown (1980), McElroy and Horney (1981), and Chiappori (1988,
1992) for alternative approaches.

2See Table 1 below.
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II error: the probability of failing to reject a false hypothesis.

The efficiency assumption derived from collective models of household

behavior imposes a nonlinear restriction on the parameters of the house-

hold member’s labor supply or consumption demand. Thus, the marginal

rate of substitution between spouses’ earnings (or between two distributional

factors) is the same across goods (or spouses’ labor supply functions). As

mentioned in the opening quote, the relative simplicity of the data required

to implement the test allows researchers to use widely available standard

household surveys.

Also, the test can be easily done by using Wald statistics. This statistic

does not require a second estimation of the model under the null hypothesis,

as opposed to the Likelihood Ratio and Generalized Method of Moments.

However, it is this simplicity of the Wald method that complicates deriving

robust conclusions about the assumption of efficiency.

There is a vast literature suggesting that this method, while simple to

implement, is not adequate for nonlinear restrictions. The nonlinearity of the

restriction allows for different, although equivalent, algebraic formulations.

For example, testing for λ1 = 1/λ2 is equivalent to λ1λ2 = 1.3 Unfortunately,

the numerical value of the Wald statistic is not invariant to the choice of the

formulation.4

I extend the current literature on the performance of the Wald statistic

3Under the null, λ2 can be close, but never equal to zero.
4See for example Phillips and Park (1988) and more recently in Dufour (1997) and

Hansen (2006).
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for nonlinear restrictions by analyzing a model of multiple equations instead

of a single equation used by Gregory and Veall (1985), Lafontaine and White

(1986) and Hansen (2006). By implementing Monte Carlo simulations for

the particular form of the nonlinearity of the restriction imposed by efficient

collective models of household bargaining I am able to test the validity of

the current findings in the literature.

The results suggest that failing to reject the efficiency of intrahousehold

allocations could be generated by the used of an inadequate test. Different

algebraic formulations of the Wald statistic have different power functions.

Most importantly, I show that none of the explored formulations dominates

the other for all specifications and sample sizes.

The rest of the paper is organized as follows. In section 2, I present the

restrictions imposed by efficient models of collective bargaining. Section 3

reviews the empirical implementation for testing the model, which implies

evaluating a nonlinear restriction. The econometrics of nonlinear restrictions

is analyzed in section 4. The Monte Carlo simulations are presented in section

5. Given the low performance of the Wald statistic I also discuss possible

alternatives to overcome the low power of those tests that do not require the

estimation of the model under the null hypothesis. Section 6 summarizes the

findings of this paper.
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2 The test for efficient allocations

Here I consider the case of a household formed by only two individuals, in-

dexed by i = 1, 2 but the analysis could be extended for more household mem-

bers.5 Each member has a twice-continuously differentiable utility function

ui(ci, `i) where ci = (c1
i , . . . , c

J
i ) represents a vector of privately consumed

goods indexed by j and `i is leisure. In the collective model the household

problem is to assign consumption and leisure for each member given a vector

of prices (p = p1, . . . , pJ), wages (wi), non-labor income (yi) and their unit

of labor endowment. Formally the problem is presented in equation (1)

max
c1,c2,`1,`2

u1(c1, `2) (1)

s.t. p · (c1 + c2) =y1 + y2 + w1h1 + w2h2 [a]

u2(c2, `2) ≥u2(φ) [b]

In this problem, restriction [a] is the typical budget constraint.6 Re-

striction [b] implies that member 2’s utility will not be less than his reser-

vation utility ū2(φ) (i.e., the value of his outside option). This reservation

utility is allowed to change with the exogenous parameters of the model

(p, w1, w2, y1, y2) but it can also change with other distribution factors ζ =

(ζ1, . . . , ζK) such as sex ratios and divorce laws (Chiappori, Fortin, and

5The model considered here is static. For dynamic versions of collective models see
Mazzocco (2004) and Dubois and Ligon (2005). See also Udry (1996) for examples on the
production side.

6Throughout this paper I assume the existence of interior solutions.
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Lacroix 2002). Hence φ = φ(p, w1, w2, y1, y2, ζ).

Under the assumption of efficiency, the problem in (1) can be seen as a

two-stage problem (Chiappori 1992). In the first stage the household decides

how to distribute its non-labor income. The solution is a set of transfers θ =

(θ1, θ2). The transfers depend on the parameters of the model so θi = θi(φ)

and they add up to the household non-labor income so θ1 +θ2 = Y = y1 +y2.

In the second stage, each member maximizes their own utility given the prices

(including wages) and the transfers. The solution of this problem is a set of

household demands and labor supply equations expressed also as a function

of the transfers θi for i = 1, 2 as follows:

cj = cj
1 + cj

2 = gj
1(p, w1, w2, Y, θ1) + gj

2(p, w1, w2, Y, θ2) j = 1, . . . , J (2)

1− `i = hi(p, w1, w2, θi) i = 1, 2 (3)

where the transfers θi are not constant but functions as defined above.

The test of efficient intra-household allocations is derived by evaluating

the impact of non-labor income (or any other distribution factor) on the

demand functions or individual labor supply function in equations (2) and

(3), respectively.

For example, the test can be constructed by looking at the ratio of (non-

labor) income effects (∂cj/∂yi) for i = 1, 2 holding Y constant. Note that

∂cj

∂y1
= ∂θ1

∂y1

[∂gj
1

∂θ1
− ∂gj

2

∂θ1

]
and the expression in brackets cancels out when divided
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by ∂cj/∂y2. Thus, efficient allocations imply

ηj =
∂cj/∂y1

∂cj/∂y2

=
∂θ1/∂y1

∂θ1/∂y2

. (4)

The test relies on the fact that the right hand side of (4) does not depend

on commodity j, hence should be the same across consumption demands as

follows,

η1 =
∂c1/∂y1

∂c1/∂y2

=
∂cj/∂y1

∂cj/∂y2

= ηj ∀j = 2, . . . , J (5)

As will be clarified below, some studies, suspecting the endogeneity of

non-labor income, used distributional factors to test for efficiency. In that

case condition (5) is given by

ηj =
∂cj/∂ζ1

∂cj/∂ζ2

=
∂θ1/∂ζ1

∂θ1/∂ζ2

∀j (6)

Thus, as in equation (4), ηj represents the marginal rate of substitution

between both member’s earnings or between two distributional factors in the

sharing rule (i.e., the right hand side of equations (4) and (6)).

This fact has been exploited by Chiappori, Fortin, and Lacroix (2002),

Browning, Bourguignon, Chiappori, and Lechene (1994) and Bourguignon,

Browning, Chiappori, and Lechene (1993) to recover the sharing rule (which

is not observable) up to a scale transformation.

A rejection of (5) or (6) is considered evidence against the hypothesis

that allocations are efficient. Otherwise, we cannot reject the efficiency of
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intra-household allocations. The intuition for this result is that member’s

earnings (holding total earning constants) or distributional factors affect the

labor supply or consumption decisions through only the location chosen on

the Pareto frontier.7

The requirements on the type for data to test for efficient intrahousehold

allocations is not extreme. As discussed by Bourguignon, Browning, Chi-

appori, and Lechene (1993) leading to the opening quote of the chapter, all

that is needed is a cross sectional survey with information about consump-

tion. The data does not need to have a complete labor supply model and

the test can be performed with or without assignable goods. This simplicity,

together with the relevance of opening the black box about how household

decisions are made, has motivated researchers to test this hypothesis in coun-

tries around the world.8 In the next section I briefly summarize evidence from

papers testing for the efficiency of intrahousehold allocations.

3 Evidence of efficiency tests

Most studies implement the test for efficiency introduced above using a set

of equations on labor supply or Engel curves. Without loss of generality let

7The model in (1) can be expressed also as problem where a weighted average of
each member’s utility function is maximized subject to the household budget constraint
in [a], where the weights are given by the sharing rule θi. In this case, an equivalent
interpretation of (5) is that member’s earnings or the distributional factors affect the
household decision “through the implicit weighting of each spouse’s utility” (Chiappori,
Fortin, and Lacroix 2002, p. 44).

8However, it is clear that when using non-labor income to test for efficiency instrumental
variable methods are preferred due to endogeneity problems.
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us assume that the linear system has two equations as follows, for a sample

of n households i = (1, . . . , n)

x1
i = α1 + β1s

1
i + β2s

2
i + δ1zi + ε1

i (7)

x2
i = α2 + β3s

1
i + β4s

2
i + δ2zi + ε2

i

where x1
i and x2

i could represent individual labor supply or the household

consumption of two goods, zi refers to vector of variables affecting the deci-

sion such as prices, individual wages and other preference parameters (such

as age, education, household composition, etc.). The parameters of interest

are β1, β2, β3 and β4 as they represent the marginal impact of s1
i and s2

i .

These two variables can be seen as distribution factors or non-labor income

as discussed above.

Testing the hypothesis of efficiency implies η1 = η2 from equation (4).

Using the model in (7) this is represented by evaluating the null hypothesis

H0 :
β1

β2

=
β3

β4

(8)

H1 :
β1

β2

6= β3

β4

Table 1 below presents a summary of the literature testing for the null
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hypothesis of efficiency in the household using the collective model.

As shown there, the test for efficiency has been implemented in rich and

poor countries, from Asia to Europe, from Africa to North America. It has

also been done using consumption goods, labor supply and health-related

outcomes. Notably, in all cases the null hypothesis of efficient intrahousehold

allocation has not been rejected once.

It is important to note that all but one study uses the Wald statistic

to evaluate the null hypothesis of efficiency. As explained below this choice

might be driven by the simplicity of the test: only one (unrestricted) esti-

mation of the model is needed. This contrasts with the requirement of other

statistics where estimations of restricted and unrestricted models are needed.

The nonlinearity of the restriction makes it possible to be written using

two equivalent algebraic expressions. Let gR(β) = β1/β2 − β3/β4 the ratio-

type expression and gM(β) = β1β4 − β3β2 the multiplicative version. Most

papers in Table 1 used gR(β). Only Thomas, Contreras, and Frankenberg

(2002) and Rangel and Thomas (2005) used gM(β). They do so because

they are concerned about the performance of nonlinear restrictions of the

Wald statistics. As I will show later, neither of the two algebraic expressions

evaluated for the hypothesis of efficiency is preferred over the other when

considering the power of the test.
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4 The econometrics of nonlinear tests

The Wald test is a popular choice among researchers because of its simplicity.

It requires to estimate the model only once, unlike the Likelihood Ratio or

Generalized Method of Moments (GMM) statistics where the parameters

need to be estimated for the restricted and unrestricted models. However,

its simplicity comes with a cost in the case of nonlinear restrictions. This

is important because testing for the efficiency of intrahousehold allocations

relies on a nonlinear function of the parameters as shown in equation (8).

Consider the following example for a nonlinear restriction for a single

equation. Let H0 : gR(λ) = λ1 − 1/λ2 = 0 and an equivalent formulation

using the multiplicative form H0 : gM(λ) = λ1λ2− 1 = 0. Gregory and Veall

(1985) present Monte Carlo evidence where the size of the test differs for

different formulations of the null hypothesis. Using simulations for gM(λ)

and gR(λ), the authors show that the size of the test is sensitive to the

choice of the algebraic formulation of the nonlinear restriction. The first

formulation gR(β) has a systematic higher Type I error compared to the

second one (gM(β)). The authors present limited information about the

power of the test. They conclude that no formulation is preferred regarding

Type II error.9

9The differences in the numerical value (and the distribution) of the test is related to
the fact that as λ2 gets closer to zero there is an approximate violation of the continuity
assumption for the test. Note that under the null, λ2 can approach but never be equal to
zero, so the problem is rooted at the continuity problem more than the non-existence of
the derivative at λ2 = 0.
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In a related paper, Lafontaine and White (1986), use Monte Carlo sim-

ulations to show that it is possible to obtain any Wald statistic to either

reject or not the null hypothesis by merely altering the algebraic formulation

of the same nonlinear restriction. Phillips and Park (1988) use Edgeworth

expansions to formally show that the Wald statistic is not invariant to the

formulation of the nonlinear restriction. This property has also been stud-

ied by Critchley, Marriott, and Salmon (1996). These papers have mainly

focused on the implications for single equation models.10

Nelson and Savin (1990) point out an additional possible problem with

nonlinear restrictions using Wald statistics. In particular, they show that the

power of test can be nonmonotonic: it increases at small deviations from the

true value but decreases for higher deviations.

The particular nature of the restriction derived from the efficient collective

model of household behavior requires multiple (instead of single) equations

and a nonlinear restriction not commonly analyzed in the literature. Below I

describe the model used to produce a Monte Carlo experiment for the specific

case of testing efficiency in the allocations within the household.

5 Monte Carlo simulations

To show the size and power performance of the Wald statistic with nonlinear

restrictions I use the following model

10Dagenais and Dufour (1991) proposed a formal proof for more general frameworks.
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x1
i = α1 + β1s

1
i + β2s

2
i + ε1

i (9)

x2
i = α2 + β3s

1
i + β4s

2
i + ε2

i (10)

with E(ε1
i |si) = E(ε2

i |si) = 0. In the simulations I generate s1
i , s

2
i , ε

1
i and

ε2
i mutually independent, iid, and distributed N(0, 1). This specification is

the multiple equation counterpart of Gregory and Veall (1985) and Hansen

(2006). Without loss of generality, in the simulations I set α1 = 0 = α2.

I consider two formulations of the Wald statistic based on the following

two hypotheses

HR
0 : gR(β) = 0 with gR(β) =

β1

β2

− β3

β4

and

HM
0 : gM(β) = 0 with gM(β) = β1β4 − β3β2.

WM and WR, respectively, denote the corresponding Wald statistics to the

two formulations of the null hypothesis where

W t = gt(β̂)′(G′
tVnĜt)

−1gt(β̂) t = M,R (11)

Ĝt =
∂

∂β
gt(β̂).
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The estimates were constructed using the Eicker-White covariance ma-

trix following what is commonly done in the empirical application of collec-

tive models.11 Similar to Hansen (2006) I calculate the finite sample size of

asymptotic 5% tests, with sample sizes n = {20, 30, 50, 100, 500, 1000}, from

100,000 Monte Carlo replications, hence the standard error for the estimated

rejection frequencies is close to 0.0007.

5.1 Size

I first evaluate the size of the test. The simulations are conducted using

equations (9) and (10) imposing the nonlinear restriction that β1β4−β3β2 =

0. The results are presented in Table 2.

First, in almost all specifications the size of the distortion is statistically

different from 5%. With a .0007 standard error for the replications, frequen-

cies outside the .049 and 0.51 interval can be considered as distorted. Also,

unlike the single-equation case, the distortions are on both sides: some spec-

ifications reject more than 5% of the cases and other much less than 5%.

Hence, the Type I error is of considerable magnitude.

Second, as expected, the Wald statistic is not invariant to the formulation

of the test. This discrepancy holds also as we increase the sample size, with

the only exception when all the parameters are equal to one.

Third, WM performs better than WR for all specifications as the sample

11Likewise in (11), Vn = (S′S)−1Ω̂n(S′S)−1, where S = I2 ⊗ s with s = [s1, s2]; Ω̂n =∑n
i=1 sis

′
iε̂

2
i with ε̂i = xi − s′iβ̂, where β̂ are the OLS estimates equation by equation.
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Table 2: Size: Percentage Rejection at the 5% Asymptotic Level

Case β = (β1, β2, β3, β4) Test n = 20 n = 30 n = 50 n = 100 n = 500 n = 1000

I β1 = 1, β2 = 1 WM .116 .093 .073 .062 .052 .052
β3 = 1, β4 = 1 WR .061 .055 .052 .050 .050 .051

II β1 = 2, β2 = 0.1 WM .125 .097 .078 .067 .053 .051
β3 = 12, β4 = 0.6 WR .212 .205 .196 .164 .096 .081

III β1 = 3, β2 = 0.6 WM .122 .097 .077 .063 .052 .051
β3 = 2, β4 = 0.4 WR .018 .013 .014 .022 .039 .044

IV β1 = 2.5, β2 = 0.5 WM .120 .095 .076 .063 .052 .052
β3 = 0.5, β4 = 0.1 WR .153 .155 .151 .137 .091 .077

V β1 = 1, β2 = 0.05 WM .113 .092 .075 .063 .053 .052
β3 = 1.5, β4 = .075 WR .042 .032 .026 .019 .007 .002

Note: The frequencies were constructed from 100,000 replications.

size increases. Recall that Thomas, Contreras, and Frankenberg (2002) and

Rangel and Thomas (2005) used WM citing evidence from the single-equation

literature to choose WM over WR. Note also that as β4 decreases, WM rejects

the null hypothesis just above the 5% level, while WR either overrejects or

underrejects depending on the specification.

However, for the intrahousehold literature is the power, not the size of

the test that matters because the testing for the efficiency in the allocations

requires a no rejection of the null hypothesis. Simulations for the power

function are presented next.
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5.2 Power function

To evaluate the power (Type II error) of the nonlinear test I simulate the

model described in (9) and (10) where β1β4 − β3β2 6= 0. This is obtained by

generating data where, by construction, the null hypothesis of efficiency does

not hold. Deviations from the null hypothesis are generated by changing the

parameter β4 from the values on Table 2, keeping the other three parame-

ters constant. In particular the parameter β4 was scaled up (and down) by

γ ∈ (0.5, 0.75, 0.9, 0.95, 1.0, 1.05, 1.1, 1.25, 1.5). Clearly, when γ = 1 the sim-

ulations are the same as when evaluating the size of the test. For example,

in Case IV the set of parameters is β4 = 0.1γ but with β1 = 2.5, β2 = 0.5

and β3 = 0.5 (kept fixed) as in Table 2.

The results of these simulations are presented in Figures 1 to 3 where the

frequency of rejections of the null hypothesis (vertical axis) is plotted against

different values of γ (horizontal axis)12. For the test to have high power the

rejection should increase rapidly as we deviate from the γ = 1 (where the

null hypothesis of efficiency holds). Failure to do so will imply a failure to

reject the efficiency hypothesis when we know, by construction, that it does

not hold.

The main result is that for all specifications, the power of the test varies

with the formulation of the null hypothesis. The exceptions are found in

Figure 1 where β4 = γ but just for n ≥ 500, for all other cases, the choice

12Due to space limitation, the power function for Cases II and V are not included here
but reinforce the findings of this section.
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Figure 1: Power function: Rejections at the 5% Asymptotic Level (Case I,
β4 = γ)
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of the algebraic expression for the efficiency test may alter the conclusion of

the test.

A second result from these simulations, and unlike the discussion for

the size of the test, is that WM (the multiplicative form) is not always the

preferred formulation compared to WR (the ratio form). In particular, for

small β4 WM dominates WR but this advantage decreases as the sample size

increases (figures 2 and 3). When n ≥ 500 and for γ > 1 it is WR that has

a smaller Type II error. Only when all β’s are equal to one, Figure 1 shows

that WM is preferred to WR but just for small samples. For n ≥ 500 that

difference disappears.
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Figure 2: Power function: Rejections at the 5% Asymptotic Level (Case III,
β4 = 0.4γ)
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Also, it is important to note that the magnitude of the Type II error is

not symmetric. WR tends to show a lower Type II error when γ > 1 while

the strength of WM appears to take place for γ < 1.

Finally, for the range of deviations from the null hypothesis, γ ∈ (0.5, 1.5),

the percentage of rejections barely reaches the 95% level. That level is

reached only when n = 500 and when β = γ (Case I) or β = 0.4γ (Case

III), while for β = 0.1γ (Case IV) the percentage of rejections reached was

found in only 40% of the replications with n = 500 and 53% with n = 1000.

The implications of these results for testing the null hypothesis of effi-

ciency in intrahousehold allocations are discussed next.
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Figure 3: Power function: Rejections at the 5% Asymptotic Level (Case IV,
β4 = 0.1γ)

.0
5

.4
.6

.8
1

.0
5

.4
.6

.8
1

.5 .75 1 1.25 1.5 .5 .75 1 1.25 1.5 .5 .75 1 1.25 1.5

n=20 n=30 n=50

n=100 n=500 n=1000

Wald Mult Wald Ratio

gamma

5.3 Discussion

The Monte Carlo simulations shown above suggest that we can not conclude

that failing to reject the null hypothesis of efficient intrahousehold allocations

actually implies that the allocations are indeed efficient. The Wald statistic,

which is widely used to evaluate the null hypothesis, is not invariant to the

formulation of the restriction.

Most importantly, from this experiment it is clear that there is no one

formulation that can be considered better “behaved” when considering the

Type II error of the test. This could explain why we do not see any difference
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in the outcome of the test from those authors using the WR formulation

compared to the few using WM .

How then can we adequately test for the efficiency hypothesis? I consider

here alternatives that do not require re-estimation of the model under the null

hypothesis. The first and simplest alternative is to perform both formulations

to understand how sensitive the results are. Second, Andrews (1989) proposes

a methodology to check the power of the test performed introducing what he

calls an inverse power function.

Suppose that one is interested in testing the null hypothesis H0 : λ = 0

versus H1 : λ 6= 0. The first step is to find a region with threshold c > 0 such

that {λ : |λ| > c}. When the null hypothesis cannot be rejected it implies

that with significant level, say 5%, |λ| is less than c. If c is “close” to zero,

then the test provides evidence that |λ| is zero or “close enough,” as desired.

Then Andrews proposes to find the region where the probability of Type

II error is high, for example bigger than 0.5. That region is defined by

{λ : 0 < |λ| ≤ b} for b ∈ (0, c). Andrews’s (1989) contribution is to tabulate

the values for b and c for different tests, including the Wald statistic. The

implementation is simple as one only needs an estimate of g(β̂) and its stan-

dard error. With this information one can compute b and c and determine

whether these values (b and c) are “close enough” to the desired value.

Another possibility is to calibrate the Monte Carlo experiment to match

the moments of the data under study. In that sense the researcher can

evaluate how and whether the performance of the different formulations of
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the null hypothesis affect the performance of the Wald statistics for their

particular case under study. The difficulty to extend those results to other

contexts precluded this paper to explore such an option, as the goal is to

have a general understanding of the behavior of the Wald statistics.

Also, one could use bootstrap methods to derive the 1%, 5% and 10%

critical values for either formulation of the null hypothesis. This will have

the advantage of being tailored to the data under study and does not require

the computation of the standard error of g(β̂) as in the case using Andrews’s

(1989) inverse power function. This proposal is somehow close to the “cor-

rected” Monte Carlo distribution discussed by Lafontaine and White (1986).

Their method finds correct critical values via replications of the simulated

data. Finally, one could use the Lagrange Multiplier test, which requires

estimating the model only once: under the null hypothesis. Hence, the test

is invariant to the formulation of the hypothesis as desired.

5.4 Approaches with instrumental variables

The simulations used here assumed that the regressors s1
i and s2

i are exoge-

nous. However, in the empirical literature some few articles recognize the

endogeneity of these or other variables. Then instrumental variables (IV)

are used to estimated the parameters of the model. This paper does not

evaluate the performance of the Wald statistics when IV methods are used.

Nonetheless, it is possible to infer that the performance will be close to the

evidence presented here, if not worse. Dufour (1997) notes that IV estimates
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can be seen as nonlinear combinations of the underlying parameters of the

model.13 As the parameters of the first stage approaches zero (as in the

case of weak instruments) the performance of the test on the parameters of

interest could suffer from the same problems as discussed earlier in the case

of the Wald statistic for single equations with nonlinear restrictions. Hence,

one should expect that the results shown here will hold in the case of IV.

In the case when regressors are not exogenous, GMM methods can be

considered (Newey and West 1987). In the literature of intrahousehold allo-

cations, they have been implemented only by Chiappori, Fortin, and Lacroix

(2002). GMM statistics have the advantage of being invariant to the formu-

lation of the hypothesis (Hansen 2006), however it requires two estimations:

one for the unrestricted model and one for the restricted one. While Du-

four’s (1997) paper did not address the case of GMM estimations, one could

suspect that his conclusion may apply to this case as well. However, note

that Hansen (2006) shows that theoretically GMM statistics are invariant to

the formulation of the null hypothesis.

6 Conclusions

This paper critically reviews the existing literature on intrahousehold allo-

cations. The challenge to the efficiency hypothesis from this paper has been

based on methodological grounds. However there is a growing literature sug-

13I would like to thank Bruce Hansen for this reference.
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gesting that the assumption of efficiency might not be correct due to the

existence of information asymmetries between spouses (Ashraf 2005, Gold-

stein and Udry 1999).

The empirical work evaluating the null hypothesis of efficient collective

household models cannot reject it, even when tested in poor, rich or emerging

countries and regions.

I argue in this paper that such a consistent result can be explained by

the choice of the statistic used to test the nonlinear hypothesis implied by

the model. In particular, I show that the Type II error of the Wald statis-

tic for nonlinear restrictions in multiple equations depends on the algebraic

formulation of the null hypothesis. But unlike the results from the Type

I error, none of the formulations considered behaves better in all settings.

This finding reduces the certainty about the efficiency of household decisions

observed in the literature.

The results presented here come from Monte Carlo simulations. The next

step is to take existing data and compute the simulations using the moments

from that data and then evaluate the performance of the test. This could be

complemented by using the Lagrange Multiplier statistic in addition to the

Wald statistic. The econometric approach of this paper requires a theoretical

model of household decisions allowing for asymmetric in order to complement

the findings of this paper.

The paper also presents possible solutions in order to evaluate, for the

particular data under study, whether the power of the test used is valid. I

24



also proposed bootstrap methods to derive the “correct” critical values for the

test. All of these alternatives can be easily implemented and do not require

additional estimation of the model under the alternative. I also proposed the

use of the Lagrange multiplier test that unlike the Wald statistic is invariant

to the formulation of the restriction but it is computed only once (under

the null). Whether using these proposed alternatives or other GMM-based

statistics used to test the hypothesis of efficiency, it seems clear that testing

‘collective’ models of household behavior may not be as simple a task as has

been suggested.
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