Lybbert et al (2004, EJ) Table 1

	(1)		(2)	
Variable	Estimate	Std Error	Estimate	Std Error
Intercept	-0.17 **	(0.064)	0.026	(0.075)
m _{jt}	0.55^{**}	(0.071)		
High Rain {0,1}			-0.25 **	(0.059)
Medium Rain {0,1}			-0.20 **	(0.062)
H_{jt}			-0.00004	(0.001)
H_{jt-1}			-0.001	(0.0004)
$H_{it} \times$ High Rain			-0.00004	(0.001)
$H_{it} \times Med$ Rain			-0.00016	(0.001)
$\vec{H_{it}}$	0.0032**	(0.0004)	0.0027**	(0.0005)
$H_{il}^{2}(\div 1000)$	-0.0040 **	(0.0007)	-0.0032 **	(0.0008)
$H_{it}^{h} \times \text{High Rain}$	-0.0017 **	(0.0004)	0.0006	(0.001)
$H_{it} \times Med$ Rain	-0.0012 **	(0.0004)	0.0004	(0.001)
$H_{ii}^{2} \times \text{High Rain}(\div 1000)$	0.0010	(0.0011)	-0.0031 **	(0.0014)
$H_{ii}^{5} \times \text{Med Rain}(\div 1000)$	0.0008	(0.0010)	-0.0016	(0.0012)
Yabello {0,1}	0.045	(0.078)	0.073	(0.081)
Mega {0,1}	-0.18*	(0.090)	-0.14	(0.093)
Arero {0,1}	-0.075	(0.084)	-0.093	(0.086)
Number of observations	834		834	
Noncensored Values	494		494	
Right Censored Values	2		2	
Left Censored Values	338		338	
Log Likelihood	-183.11		-185.30	

Total Livestock Mortality Model Estimates

*(**) indicates statistical significance at the 10% (1%) level.

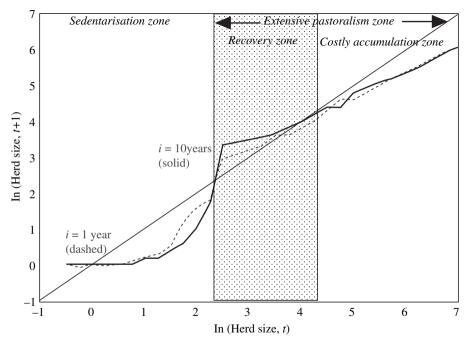

Mortality rate

Fig. 3. LOESS Estimates of Mortality Rates, Conditioned by (a) Average Community Herd Size and (b) Own Herd Size

Period t + 1Quantile Period t Quantile Period t + 5Quantile Period t Quantile Period t + 10Quantile Period t Quantile 3

Table 4 Cattle Herd Size Transition Matrices (count of household-year pairs)

_

Nadaraya-Watson estimates using Epanechnikov kernel with bandwidth (h = 1.5)

Fig. 4. Nonparametric Estimates of Expected Herd Size Transition Functions

Herd Recovery Rates in the Wake of Adverse Shocks(%)

	<15 ex post	>15 e	>15 ex post	<15 ex post	>15 ex post	: post	<15 ex post	>15 ex post	v post
Herd Size:	I	<75 ex ante	>75 ex ante		<75 ex ante Shock Intensity	>75 ex ante		<75 ex ante	>75 ex ante
Years until 95% recovery		>25% loss			15-25% loss			5-15% loss	
1	5.9	17.4	8.3	23.1	46.6	15.4	47.1	58.3	31.5
2	5.9	17.4	8.3	11.5	13.8	11.5	14.7	13.5	16.7
3	23.5	13.0	8.3	19.2	6.9	15.4	5.9	8.3	7.4
4	5.9	13.0	0.0	7.7	6.9	7.7	5.9	4.2	3.7
U	0.0	4.3	16.7	0.0	5.2	3.8	5.9	5.2	3.7
6	0.0	0.0	0.0	3.8	1.7	0.0	2.9	3.1	0.0
7	0.0	4.3	8.3	0.0	0.0	0.0	0.0	0.0	1.9
x	17.6	4.3	0.0	0.0	3.4	0.0	0.0	0.0	0.0
6	0.0	4.3	0.0	0.0	1.7	0.0	0.0	0.0	0.0
10	0.0	0.0	8.3	3.8	0.0	3.8	0.0	0.0	0.0
% right censored:	41.2	21.7	41.7	30.8	13.8	42.3	17.6	7.3	35.2
N:	17	23	12	26	58	26	34	96	54

Table 5