Table 1: Empirical evidence for the hypothesis of efficient intrahousehold allocation

Author	Data	Commodity	Variable	Method	Formula	Result
Bourguignon et al (1993)	France	Consumption	NL income§	Wald	Ratio	Accepted
Thomas and Chen (1994)	Taiwan	Consumption	NL Income§	Wald	Ratio	Accepted
Chiappori, Fortin, and Lacroix (2002)	USA	Labor supply	Sex ratio†	GMM	n.a.	Accepted
Thomas, Contreras, and Frankenberg (2002)	Indonesia	Health	$\mathrm{Assets}_{\ddagger}$	Wald	Multiplicative	Accepted
Quisumbing and Maluccio (2003)	Bangladesh, Indonesia Ethiopia and South Africa	Consumption	Assets	Wald	Ratio	Accepted
Rangel and Thomas (2005)	Ghana and Senegal	Consumption	Land	Wald	Multiplicative	Accepted
8NL Income=Non-labor income. †Sex ratio a	nd divorce laws. ‡Assets at m	larriage				

Agüero, J. (2008)

 Table 2: Size: Percentage Rejection at the 5% Asymptotic Level

Case	$\boldsymbol{\beta} = (\beta_1, \beta_2, \beta_3, \beta_4)$	Test	n = 20	n = 30	n = 50	n = 100	n = 500	n = 1000
Ι	$\beta_1 = 1, \beta_2 = 1$	W^M	.116	.093	.073	.062	.052	.052
	$\beta_3 = 1, \beta_4 = 1$	W^R	.061	.055	.052	.050	.050	.051
II	$\beta_1 = 2, \beta_2 = 0.1$	W^M	.125	.097	.078	.067	.053	.051
	$\beta_3 = 12, \beta_4 = 0.6$	W^R	.212	.205	.196	.164	.096	.081
III	$\beta_1 = 3, \beta_2 = 0.6$	W^M	.122	.097	.077	.063	.052	.051
	$\beta_3 = 2, \beta_4 = 0.4$	W^R	.018	.013	.014	.022	.039	.044
IV	$\beta_1 = 2.5, \beta_2 = 0.5$	W^M	.120	.095	.076	.063	.052	.052
	$\beta_3 = 0.5, \beta_4 = 0.1$	W^R	.153	.155	.151	.137	.091	.077
V	$\beta_1 = 1, \beta_2 = 0.05$	W^M	.113	.092	.075	.063	.053	.052
	$\beta_3 = 1.5, \beta_4 = .075$	W^R	.042	.032	.026	.019	.007	.002

Note: The frequencies were constructed from 100,000 replications.

Figure 1: Power function: Rejections at the 5% Asymptotic Level (Case I, $\beta_4=\gamma)$

Figure 2: Power function: Rejections at the 5% Asymptotic Level (Case III, $\beta_4 = 0.4\gamma$)

Figure 3: Power function: Rejections at the 5% Asymptotic Level (Case IV, $\beta_4=0.1\gamma)$

