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Summary
The potato/tomato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) has been a major pest of 
solanaceous crops for decades. This pest can cause damage to crop plants by direct feeding and, as has 
been  recently discovered, by transmitting the bacterial pathogen Candidatus Liberibacter psyllaurous 
(a.k.a. Ca. L. solanacearum). Many studies have been conducted to determine the relationship of this pest 
to plant injury and to develop management strategies to alleviate the damage caused by this pest in a wide 
variety of solanaceous plants. Studies in the past decade have documented substantial genetic variability 
in this invasive species, enhanced our rapidly-evolving understanding of the interactions between the 
insect and the pathogen it carries, and improved our appreciation of the invasive potential of the pest. This 
review seeks to provide a comprehensive update to B. cockerelli life history, relationship to plant  
diseases, and the current state of management strategies against B. cockerelli.
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Introduction

When Karel Sulc first described Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) in 
1909 from individuals collected on peppers (Capsicum sp.) in Boulder, CO, USA, he 
inferred that due to the large number of nymphs observed on plants, this insect may 
become a destructive pest (Sulc, 1909). In 1915, B. cockerelli was recognized as a plant 
pest for the first time by damaging the ornamental False Jerusalem Cherry (Solanum 
capsicastrum) in San Francisco and Sacramento, CA, USA, to the point where control 
measures were necessary (Compere, 1915). In 1927, the full potential of how destruc-
tive B. cockerelli could be was realized when many state-wide outbreaks of ‘psyllid yel-
lows’ (PY) occurred on potatoes (Solanum tuberosum L.) starting in Utah and then 



88	 C.D. Butler and J.T. Trumble / Terrestrial Arthropod Reviews 5 (2012) 87–111

spread to many other Rocky Mountain states (Richards et al., 1927; Richards, 1928). 
This new disease was ascribed to the feeding behavior of B. cockerelli (most scientists 
speculated that the psyllid was releasing a toxin) and caused the heaviest yield losses yet 
recorded for potatoes in the USA, often leading to the complete destruction of the crop 
in psyllid-infested areas (Linford, 1928). A more devastating outbreak of B. cockerelli 
and PY than the 1927 epidemic occurred in 1938 (Anonymous, 1929; Jensen, 1939; 
Morris, 1939). In the years after the 1938 outbreak, B. cockerelli was managed almost 
exclusively by insecticides (Pletsch, 1947; Wallis, 1955; Cranshaw, 1994).

In 1994, a new potato defect was discovered in Mexico and later named ‘zebra chip’ 
(ZC) (Munyaneza et al., 2007a). This disease was later found to be transmitted by 
B. cockerelli (Munyaneza et al., 2007a, 2007b) and caused by the bacterium Candidatus 
Liberibacter psyllaurous (a.k.a. Ca. L. solanacearum) (Hansen et al., 2008; Liefting 
et  al., 2009). ZC became a serious problem for the potato industry as it was more 
insidious than PY; even late season infection with ZC renders tubers unmarketable 
and thus causes significant losses at harvest, often after the full costs of crop produc-
tion. Thus, B. cockerelli regained prominence as a key, serious pest of solanaceous crops 
such as potato, tomato (Solanum lycopersicum L.), peppers, and eggplant (Solanum 
melongena L.) in North and Central America (Cranshaw, 1994; Crosslin et al., 2010). 
In recent years, B. cockerelli has also invaded New Zealand as pest of solanaceous green-
house crops, and outdoor potatoes and tomatoes (Gill, 2006; Davidson et al., 2008). 
Currently B. cockerelli is causing substantial economic losses across a wide geographic 
range.

Taxonomy and distribution

Bactericera cockerelli has two common names: the potato psyllid and the tomato psyllid 
(ESA, 2011). Bactericera cockerelli was originally described as Trioza cockerelli by Sulc 
(1909). In 1910, Crawford erected a new psyllid genus Paratrioza, and in 1911 Trioza 
cockerelli was assigned to Paratrioza. In 1997, when the genus Paratrioza was syn-
onymized with the genus Bactericera as defined by combinations of adult, nymphal 
and egg characters, B. cockerelli also changed families from Psyllidae to Triozidae 
(Burckhardt and Lauterer 1997, Hodkinson 2009). Morphological descriptions of 
B. cockerelli can be found in Crawford (1911, 1914), Essig (1917), Ferris (1925), and 
Tuthill (1945). Tuthill (1945) and Burckhardt and Lauterer (1997) list the synonyms 
for B. cockerelli as well.

Bactericera cockerelli is endemic to North America with the distribution of this insect 
in the USA including Arizona, California, Colorado, Idaho, Kansas, Minnesota, 
Montana, Nebraska, Nevada, New Mexico, North and South Dakota, Oklahoma, 
Oregon, Texas, Utah, Washington, and Wyoming (Pletsch, 1947; Cranshaw, 1994; 
Munyaneza et al., 2009, 2010). Additionally, B. cockerelli can be found in the Canadian 
Provinces of Alberta, British Columbia, Ontario, and Saskatchewan (Pletsch, 1947; 
Wallis, 1955; Ferguson et al., 2002), as well as Mexico, and in several countries in 
Central America at least as far south as Guatemala and Honduras (Tuthill, 1945; 
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Pletsch, 1947; Jackson et al., 2009; Crosslin et al., 2010). In the early-2000s, B. cock-
erelli invaded New Zealand and has spread throughout this country (Gill, 2006; 
Davidson et al., 2008; Teulon et al., 2009).

Life history

Bactericera cockerelli is a polyphagous insect with a wide host range exceeding 20 plant 
families and is able to oviposit and complete development on more than 40 host spe-
cies (Knowlton and Thomas, 1934; Wallis, 1951). The relative importance of host 
plants for B. cockerelli relates to the abundance, preference and proximity to agricul-
tural areas (Wallis, 1955). In the North Platte Valley of Wyoming and Nebraska, an 
important non-economic host is matrimony-vine (Lycium barbarum L.) (Wallis, 1946, 
1955). In a scientific note by Knowlton (1933), adult B. cockerelli were reported to be 
able to survive for a considerable length of time (i.e., 17-96 days) on various plant spe-
cies in which nymphs were not able to successfully complete development. This host 
feeding may contribute to the successful survival of adult psyllids during the winter 
months. In general, Bactericera cockerelli can survive well on, and appears to prefer, 
plant species in the family Solanaceae (Wallis, 1955).

However, despite these observations by Knowlton (1933), most researchers hypoth-
esize that adult migrations provide the primary mechanism by which B. cockerelli 
arrives in agricultural crops. Glick (1939) collected B. cockerelli by airplane in Mexico 
at altitudes up to 1200 m suggesting that this species can migrate via air currents. 
Evidence of this is also noted by Papp and Johnson (1979) as B. cockerelli have been 
found on the alpine snowfields in the Sierra Nevada Mountains in California.

Romney (1939) found spring breeding populations of B. cockerelli on Lycium ander-
sonii Gray and Lycium macrodon Gray in southern Arizona, and on Lycium spp. in 
southern Texas. Breeding on these plants occurs from January to May with peak popu-
lations building in April and early May after several generations have been produced 
(Romney, 1939). By the middle of June, adults move out of these habitats, and are not 
seen again until a large influx of adults move back to these habitats in late October to 
early November (Romney, 1939). Observations by Romney (1939) and using infor-
mation regarding the migration patterns of other insect species such as the beet leaf-
hopper, Circulifer tenellus (Baker) and the psyllid Heteropsylla mexicana (Crawford) 
suggests that B. cockerelli from breeding populations in southern Arizona migrate north 
and west of the Continental Divide, while B. cockerelli populations in southern Texas 
migrate north and east of the Continental Divide. However, populations of B. cocker-
elli can occur much further south on the east coast area of Mexico (Pletsch, 1947). 
Thus, the possibility exists that primary overwintering sites may be in both the USA 
and Mexico. Wallis (1946) found that B. cockerelli does not overwinter in Wyoming 
and Nebraska, and the arrival of psyllids observed during the early potato crop in 
May  and June provides circumstantial evidence of B. cockerelli migration. Recent 
genetic data based on inter simple sequence repeat (ISSR) markers by Liu et al. (2006) 
support that B. cockerelli populations were of two groups, one from western  



90	 C.D. Butler and J.T. Trumble / Terrestrial Arthropod Reviews 5 (2012) 87–111

North America and the other from central USA and eastern Mexico. Liu et al. (2006) 
also found that there was genetic transfer between these populations. To date, the 
northernmost overwintering site known is in coastal Ventura County, California 
(Trumble, unpublished).

There is often great variation from year to year regarding the numbers of B. cockerelli 
found on economic and non-economic host plants (Wallis, 1946). Bactericera cockerelli 
is considered to be a ‘temperature-zone’ species (Knowlton, 1933; List, 1939), mean-
ing this species life history characteristics are severely impacted by extremely hot or 
cold conditions. In the laboratory, the optimum range for B. cockerelli development is 
rather narrow (Wallis, 1946). Individuals reared at 26.7°C exhibit the best survival, 
development, and oviposition, with reductions in these life history characteristics at 
32.2°C (List, 1939). Temperatures at 38.8°C for one or two hours are lethal to eggs 
and nymphs, and adult stop laying eggs (List, 1939); however, the data provided by 
List (1939) were not statistically analyzed. Romney (1939) believes the combination 
of high temperatures and/or the decline in the quality of host plants contribute to 
B. cockerelli leaving spring breeding sites. The temperature results agree with observa-
tion in agricultural fields (Wallis, 1946). Further research suggests that factors playing 
a role in B. cockerelli numbers in the field are related to temperature, size of the spring 
migration, and the size of crop plants. Larger plant canopies may shade B. cockerelli 
from the hot summer temperatures above 32.2°C as the temperature within the plant 
canopy is several degrees cooler, which can allow optimal development of populations 
(Wallis, 1946).

Essig (1917) described the life cycle of B. cockerelli in California. In California,  
B. cockerelli now appears to consistently overwinter (Liu et al., 2006). Essig (1917) 
found that winters were passed on evergreen host plants or sheltered places. Adults 
begin to lay eggs and could be found in southern California on wild host species in 
April (Essig, 1917; Jensen, 1954). Generations can vary from three or more in 
California with all life stages found from May until the end of November (Essig, 1917). 
Jensen (1954) provides further evidence of B. cockerelli populations increasing on wild 
host species in southern California and then moving northward in the spring, as well 
as the return of B. cockerelli to Lycium spp. host plants in November.

Description of life stages

Egg.  Bactericera cockerelli eggs are yellow, oblong in shape and attached to the leaves 
of the host plant with short stalks (Pletsch, 1947) (Figure 1A). The average length and 
width of a B. cockerelli egg is 0.3 mm and 0.1 mm, respectively, with the length of the 
stalk being 0.2 mm (Compere, 1916; Lehman, 1930; Pletsch, 1947). Eggs that are not 
fertilized do not hatch (Lehman, 1930). Eggs are deposited on the upper and lower 
surfaces of leaves, and most abundantly on the young apical leaves (Knowlton and 
Janes, 1930), but this varies with the host crop (Butler and Trumble, 2011a; Butler 
personal observation). Eggs can take from 3-15 days to hatch, and exhibit a 1:1 sex 
ratio of females to males (Pack, 1930; Knowlton and Janes, 1930).
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Nymph.  Development in the Hemiptera is of the hemimetabolous type, in which 
the adult stage is preceded by stages that are similar in appearance, but without wings. 
Bactericera cockerelli has five instars, and completion of development can vary from 
12-44 days with an average of 15.4 days (Knowlton and Janes, 1930; Pack, 1930; Yang 
and Liu, 2009). The first four instars require an average of 2.4-2.8 days to complete 
development, but the fifth instar averages 4.9 days to complete (Knowlton and Janes, 
1930). The range of the size of each instar can be found in Pletsch (1947). The nymphal 
stage is often where the greatest natural mortality occurs (Abdullah, 2008). Host plant 
and geographic origin can have an impact on nymphal growth and development of  
B. cockerelli (Liu and Trumble, 2007; Yang and Liu, 2009). First instar nymphs are pale 
yellow with an orange-colored head and abdomen, and as development occurs the 
color changes to a pale yellowish-green or can still remain yellowish-orange (Essig, 
1917) (Figure 1B). Nymphs prefer the abaxial leaf surface and seldom move (Lehman, 
1930).

Adult.  After the last nymphal molt, adults are initially pale green or light amber, but 
soon become darker with considerable variation in the degree and intensity of colors 
(Essig, 1917; Lehman, 1930; Knowlton and Janes, 1930) (Figure 1C and D). The 
length of the adult body can vary from 1.3-1.9 mm (Essig, 1917; Lehman, 1930; Liu 
and Trumble, 2007). The adult life span can range from 16-97 days, however like all 
insects; developmental rates vary with temperature (Knowlton and Janes, 1930; 

Figure 1.  Life stages of the potato psyllid. (A) eggs; ( B) nymphs; (C) red color morph of adult; (D) 
brown color morph. Picture credit: Michael Lewis.
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Lehman, 1930; Davis, 1937; List, 1939; Yang and Liu, 2009; Yang et al., 2010). The 
following conditions can also impact adult life history characteristics: 1) host plant, 
2) geographic origin of populations, 3) sex and, 4) whether the measurement were 
conducted under field or laboratory conditions (Liu and Trumble, 2007; Yang and Liu, 
2009; Yang et al., 2010).

Odorant sex attraction has been studied by Guedot et al. (2010) and they found that 
females and males of B. cockerelli emit odors that attract males; this was the first study 
to document male-male attraction within the Psylloidea. Adult females can lay eggs 
three days after emergence with a preoviposition period that can vary from 3-25 days 
(Knowlton and Janes, 1930; Abdullah, 2008). The ovipositon period lasts an average 
of 21.5-27.8 days (Knowlton and Janes, 1930; Davis, 1937), and ovipositing females 
can usually deposit 5-50 eggs during 24 hours. After a single mating, which lasts on 
average 6 minutes, B. cockerelli females produce fertile eggs for up to 27.8 days 
(Knowlton and Janes, 1930). Adult females can lay on average up to 330 eggs over her 
lifetime (Knowlton and Janes, 1930).

Adult B. cockerelli feed primarily of the underside of leaves of host plants (Eyer and 
Crawford, 1933). However, some individuals have been observed to feed on the upper 
surface of leaves as well as stems and petioles (Knowlton and Janes, 1931; Eyer and 
Crawford, 1933; personal observation). Based on the histology of feeding punctures of 
B. cockerelli, this insect, like aphids, are phloem-feeders (Eyer and Crawford, 1933). 
When B. cockerelli probes a plant, penetration through the leaf epidermis and into the 
leaf is intercellular through the spongy mesophyll until the stylets reach the phloem 
parenchyma cells, which is the region of the leaf where the most extensive feeding 
occurs (Eyer and Crawford, 1933). Penetration of the xylem occurs only occasionally 
(Eyer and Crawford, 1933; Butler, 2011).

Endosymbionts

Mutualistic associations between psyllids and intracellular bacteria or endosymbionts 
are common (Baumann, 2005). Endosymbionts are localized intracellularly in special-
ized host cells called bacteriocytes or mycetocytes that may constitute a larger structure 
called a bacteriome or mycetome (Buchner, 1965; Nachappa et al., 2011). The myce-
tome of B. cockerelli was described by Rowe and Knowlton (1935). Psyllid endosymbi-
onts fall within two categories: primary (P) (obligatory and those that aid in psyllid 
nutrition) and secondary (S) (facultative and those with functions less clear than  
P endosymbionts, and those that vary among populations) (Hodkinson, 2009). Within 
the mycetomes of B. cockerelli can be found the P endosymbionts Candidatus Carsonella 
ruddii and two strains of Wolbachia (Liu et al., 2006; Nachappa et al., 2011); and the 
S endosymbiont Candidatus Liberibacter psyllaurous (Hansen et al., 2008) (to be dis-
cussed later).

Psyllid yellows

In 1927, a destructive outbreak of a potato disease severely affected the potato crops in 
Colorado, Idaho, Montana, Utah and Wyoming with some fields exhibiting 100% 



	 C.D. Butler and J.T. Trumble / Terrestrial Arthropod Reviews 5 (2012) 87–111� 93

infection of plants (Richards et al., 1927; Richards, 1928). The early potato crop and 
home garden plots were described as ‘complete failures’ due to the affected plants pro-
ducing few if any marketable tubers, and the late planted potato crops were not free 
from the disease either (Richards et al., 1927). Ensuing research found feeding by the 
nymphs of B. cockerelli associated with the diseased plants and suggested the name for 
this new disease as ‘psyllid yellows’ (PY) (Richards, 1928). Economic estimates in Utah 
alone in 1927 suggest that 25-30% of the total potato crop valued at ca. $750,000 was 
lost due to PY. In the growing season after 1927, additional outbreaks of PY were 
noted in various section of the USA with varying degrees of severity (Richards, 1929; 
Richards et al., 1933). However, in 1938, one of the worst outbreaks of PY occurred 
in Colorado, Montana, Nebraska, and Wyoming as well as several reports of infection 
in California (Anonymous, 1929; Jensen, 1939; Morris, 1939). Even with insecticide 
applications, end of the year losses attributed to PY for potatoes ranged from 25-75% 
in the states affected (Anonymous, 1939). In western Nebraska alone, a 25% yield loss 
of potatoes equaled 27,200 metric tons (Hill, 1947). Other infestations that occurred 
after 1939 appeared to have been managed by new insecticides that were developed, 
including DDT, and the elimination of alternative breeding hosts such as matrimony-
vine (Hill, 1947; Pletsch, 1947; Wallis, 1955; Cranshaw, 1994).

PY disease is systemic, and the entire plant becomes infected (Carter, 1939). Plant 
symptoms of PY include a reduction in growth, erectness of new foliage, chlorosis or 
reddening/purpling of leaves, basal cupping of leaves, shortened and thickened inter-
nodes, enlarged nodes, aerial tubers, premature senescence and plant death (Pletsch, 
1947; Cranshaw, 1994). The marginal yellowing and upward rolling or cupping of 
younger leaves is a diagnostic character of PY (Richards et al., 1933). Histology of the 
diseased plants by Eyer and Crawford (1933) and Eyer and Miller (1938) found large 
deposits of starch granules in the cortex and pith of the stems and petioles as well as 
phloem necrosis in stems, stolons, and roots. Other reports found decreased nitrates/
nitrogen, chlorophyll, and carotene contents, and decreased starch contents in tubers 
of PY diseased plants (Eyer, 1937; Schaal, 1938; Carter, 1973).

PY diseased potatoes and tomatoes exhibit significant decreases in yields. Tubers 
from potato plants infected with PY are tiny, misshapen, flabby, and have a rough skin 
(Lindford, 1928; Cranshaw, 1994). These tubers often have associated with them vari-
ous defects such as early sprouting, weak sprouts, and significantly smaller plants 
(Metzger, 1936; Cranshaw, 1994). In tomatoes, foliar symptoms are similar to those of 
potatoes and fruit set, size, texture and yield can be significantly decreased due to PY 
(Cranshaw, 1994), with losses reaching 80% (Liu and Trumble, 2007).

In general, the nymphal stages of B. cockerelli are the life stage that produce the PY 
disease, and it appears they are inherently toxigenic (Cranshaw, 1994). Through 
repeated tests, Richards (1931) and Richards et al. (1933), found that densities as high 
as 1,000 B. cockerelli adults per potato plant, failed to produce PY symptoms. However, 
Daniels (1954) found that adults were able to produce disease symptoms on tomato 
seedlings. Richards (1931) found that fewer than 15 nymphs did not induce uniform 
disease symptoms in potatoes, but with higher infestations, symptoms appear in  
4-6 days. Potato plants may resume a healthy, normal appearance if nymphs are 
removed 5-10 days after the appearance of first symptoms, but this does not always 
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happen (Richards, 1931; Arslan et al., 1985). For tomatoes, relationships regarding the 
number of nymphs per plant and the resulting damage threshold can vary among cul-
tivars; however symptoms of PY will appear when at least 8 nymphs feed on 2 week old 
tomato plants (Liu and Trumble, 2006). Additional studies by Liu et al. (2006) found 
that the tested tomato cultivars also exhibit differing recovery potentials, and as a con-
servative measure recommend treating tomato cultivars when the number of psyllids 
approach 10 nymphs per plant for a period of 5 days.

Through grafting experiments on potatoes, PY has proven capable of being trans-
mitted to healthy plants; however, succeeding grafts result in a gradual recovery of 
plants (Daniels, 1954; Cranshaw, 1994), which suggest that a pathogenic microorgan-
ism is not involved with PY and supports the ‘toxin’ hypothesis. The identification of 
this ‘toxin’ still remains unknown (Abernathy, 1991).

Zebra chip disease

‘Zebra chip’ (ZC) disease was first documented in potato fields near Saltillo, Mexico, 
in 1994 (Munyaneza et al., 2007a). ZC-affected potatoes exhibit the following above-
ground symptoms: stunting, chlorosis, swollen internodes of the upper growth, prolif-
eration of axillary buds, aerial tubers, browning of the vascular system, leaf scorching, 
and early plant death (Munyaneza et al., 2007b) (Figure 2 A-B). Symptoms of the 
infected tubers are shown through the entire tuber from the stem end to the bud end 
and include enlarged lenticels of the underground stem, collapsed stolons, brown 
lesions of the vascular ring, necrotic flecking of internal tissues, and occasionally streak-
ing of the medullary ray tissues (Munyaneza et al., 2007a). Chips that are processed 
from infected tubers exhibit severe dark brown streaking, thus the name ‘zebra chip’, 
which causes the rejection of fresh and processing potatoes for market (Munyaneza  
et al., 2007a) (Figure 2C). The color changes are most evident following frying, but 
can often be detected in fresh tubers. Additionally, ZC-infected tubers sprout signifi-
cantly less than ZC-free tubers or do not sprout at all; if they do sprout, hair sprouts or 
weak plants are produced that have significantly decreased survival (Henne et al., 2010; 
Munyaneza et al., 2007a). Furthermore, the physiological effects of ZC infection on 
the potato tuber include significantly increased levels of tyrosine, phenolic compounds, 
salicyclic acid and ion leakage as well as altered mineral content in ZC-affected tubers 
compared to ZC-free tubers (Navarre et al., 2009; Miles et al. 2009, 2010).

In the USA, ZC was first identified in commercial fields in Pearsall and the lower 
Rio Grande Valley in Texas in 2000 and since that time ZC has been recorded in 
Arizona, California, Colorado, Kansas, Nebraska, Nevada, and New Mexico (Secor 
and Rivera-Varas, 2004; Munyaneza et al., 2007a). In the 2004-2006 potato growing 
seasons, economic losses due to ZC to both potato producers and processors in numer-
ous locations in the USA and Mexico often led to the abandonment of fields resulting 
in losses exceeding millions of dollars (Munyaneza et al., 2007a). In Texas alone, ZC 
has been responsible for a reduction in potato hectarage by > 20%, and is estimated to 
be responsible for a loss of $25 million during the 2004-2006 outbreaks (CNAS, 2006; 
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Figure 2.  Damage associated with Candidatus Liberibacter psyllaurous in potatoes. (A) a healthy plant 
(left) and an infected plant exhibiting stunting and leaf scorching; (B) aerial tuber; (C) potato chips from 
a healthy tuber (left) and from an infected tuber (right). Picture Credit: Gregory Kund.
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Wen et al., 2009). ZC disease has also been documented in potato fields in Guatemala 
and Honduras with field incidences as high as 80% and total losses because of unmar-
ketable tubers (Secor and Rivera-Varas, 2004; Crosslin et al., 2010).

Munyaneza et al. (2007a) were the first to elucidate the association between B. cock-
erelli feeding and ZC expression on potato. In a greenhouse and a Washington field 
study by Munyaneza et al. (2007a), potato plants not exposed to B. cockerelli did not 
exhibit ZC symptoms, but potato plants exposed to B. cockerelli exhibited symptoms 
three weeks after the initial B. cockerelli release. Furthermore, psyllid exposed plants 
exhibited initial plant symptoms which included upward rolling of the leaves and  
yellowish-reddish discolorations with later symptoms of plants and tubers that exhib-
ited typical ZC symptoms (Munyaneza et al., 2007a). Comparable results were docu-
mented by Munyaneza et al. (2007b) in Texas too, whereby potato plants not exposed 
to B. cockerelli did not show ZC symptoms and plants exposed to psyllids showed ZC 
symptoms. In these field locations, the most predominant insect collected where  
ZC was prevalent was B. cockerelli (Munyaneza et al., 2007a; Goolsby et al., 2007a). 
Later research found that B. cockerelli populations from different geographic localities 
varied in their ability to infect potato with ZC (Munyaneza et al., 2008). Additionally, 
B. cockerelli reared upon the agricultural host plants of potato, tomato, bell pepper and 
eggplant can infect potato with ZC, although B. cockerelli reared on bell pepper  
and eggplant can cause relatively more severe ZC infections compared to psyllids reared 
on tomato and potato (Gao et al., 2009).

Hansen et al. (2008) were the first to identify a new bacterial species of Candidatus 
Liberibacter that was vectored by B. cockerelli. The bacterium was first sequenced  
3 January 2008 at UCR’s IIGB Bioinformatics Facility based on the 16S-ISR-partial 
23S rRNA sequences found in B. cockerelli and infected plants (Hansen et al., 2008). 
These sequences were later deposited in GenBank 18 June 2008. The bacterium was 
named Candidatus Liberibacter psyllaurous and is an unculturable Gram-negative 
α-proteobacterium that is associated with the phloem tissue of plants (Hansen et al., 
2008; Lin et al., 2009). Results indicated that Ca. L. psyllaurous infection can occur 
throughout B. cockerelli life stages but can vary with eggs exhibiting a 15-47 percent 
infection frequency, which suggests transovarial transmission of Ca. L. psyllaurous 
(Hansen et al., 2008). For B. cockerelli reared on potato, Ca. L. psyllaurous infection 
from the first instar to adults appeared to be fixed at 100%, while B. cockerelli reared 
on tomato exhibited 100% infection of Ca. L. psyllaurous at the third instar (Hansen 
et al., 2008). This research also revealed transmission of Ca. L. psyllaurous by B. cock-
erelli after one week of exposure to a potato or tomato plant and subsequently dis-
played of symptoms, which were consistent with Munyaneza et al. (2007a) description 
of ZC (Hansen et al., 2008). Later research by Munyaneza (2010) has reported that as 
few as one B. cockerelli can transmit Ca. L. psyllaurous within two hours of colonizing 
the plant. The exact mechanism of transmission is unknown, but we suspect the bac-
teria are injected during salivation into the phloem.

In January 2008, related research was conducted in New Zealand regarding the eti-
ology of a new disease of greenhouse grown tomatoes and peppers (Crosslin et al., 
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2010). In April 2008, Liefting et al. (2009) discovered a bacterium-like organism in 
the phloem of symptomatic plants. In May 2008, various polymerase chain reaction 
(PCR) primers were used to amplify putative prokaryotic DNA extracted from healthy 
and symptomatic tomato and pepper; the result was the detection of what the authors 
named Ca. L. solanacearum (Liefting et al., 2008). Recent research has suggested hap-
lotypes of Ca. L. solanacearum exist as described by single-nucleotide polymorphisms 
and rplJ and rplL ribosomal protein genes and the publication of the complete genome 
sequence of Ca. L. solanacearum is currently available (Nelson et al., 2010; Lin et al., 
2010).

Since publication of the primers by Hansen et al. (2008) and Liefting et al. (2009), 
multiple laboratories in the USA, Mexico, and New Zealand have documented Ca. 
L. psyllaurous and Ca. L. solanacearum infection in solanaceous agricultural crops and 
additional solanaceous hosts such as L. barbarum, tamarillo (Solanum betaceum), cape 
gooseberry (Physalis peruviana), silverleaf nightshade (Solanum elaeagnifolium), and 
black nightshade (Solanum ptychanthum) (Abad et al., 2009; Brown et al., 2010; 
Crosslin and Bester, 2009; French-Monar, 2010; Li et al., 2009; Liefting et al., 2008a,b; 
McKenzie and Shatters, 2009; Munyaneza et al., 2009a,b,c; Rehman et al., 2010; Wen 
et al., 2009). Sequence analysis of the 16S and 23S rRNA suggests that Ca. L. psyllaur-
ous and Ca. L. solanacearum are the same bacterium as a number of BLAST analyses 
of consensus sequences often show 99-100% identity of Ca. L. solanacearum with Ca. 
L. psyllaurous (Crosslin and Bester, 2009; French-Monar, 2010; Munyaneza et al., 
2009a,b,c; Secor et al., 2009; Wen et al., 2009; Crosslin et al., 2010). Both names are 
in current use, and the final ‘official’ naming of the bacterium will not occur until all 
of Koch’s postulates can be fulfilled when the bacterium can be cultured in the 
laboratory.

Management strategies

Detection and monitoring

Surveys for the purpose of population detection and monitoring of B. cockerelli have 
been conducted by various authors in cultivated and non-cultivated host plants 
(Pletsch, 1947; Wallis, 1955; Cranshaw, 1994; Al-Jabr, 1999, 2007; Goolsby et al., 
2007a,b). These methods have involved suction traps, vacuum sampling of plants, 
sweep net sampling, examination of plant material, and colored sticky traps. Suction 
traps and vacuum samplers were found to be ineffective at detecting and sampling  
B. cockerelli, respectively (Cranshaw, 1994; Goolsby et al., 2007). The use of sweep nets 
to obtain a relative estimate of B. cockerelli has been used extensively (Pletsch, 1947 
and reference therein). Pletsch (1947) used these data to calculate a “psyllid index” 
based on the number of B. cockerelli captured per 100 sweeps, and found the index 
correlated with the amount of PY observed in agricultural fields (Cranshaw, 1994). 
Information from the sweep net sampling of B. cockerelli have revealed patterns regard-
ing the infestation and disease spread within agricultural fields. Within agricultural 
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fields, B. cockerelli were first detected on the edges and as the number of psyllids build 
in the field they progress toward the center (Jensen, 1939; Wallis, 1955; Cranshaw, 
1994).

Examinations of leaf samples have often been described as ‘tedious and time con-
suming’ for B. cockerelli, but have provided detailed information regarding the popula-
tion density of this pest (Pletsch, 1947; Goolsby et al., 2007). These data have also 
revealed that relative to other parts of potato plants, B. cockerelli prefer to inhabit leaves 
on the abaxial surface (Knowlton and Janes, 1931; List, 1939; Pletsch, 1947). Despite 
this information, a sampling plan for B. cockerelli has yet to be developed in agricul-
tural fields. However, only recently has a statistically verifiable sampling plan been 
developed for an agricultural crop (Butler and Trumble, 2011a).

Sticky card traps have been used as monitoring tools in the greenhouse and the field 
(Al-Jabr, 1999; Goolsby et al., 2007). Al-Jabr (1999) was the first to study the effective 
detection and monitoring of B. cockerelli in greenhouse tomato. The results of his study 
indicated that B. cockerelli were most attracted to neon-green, neon-orange, and stand-
ard yellow sticky traps that were placed above the crop canopy and in the shade (Al-Jabr, 
1999). Goolsby et al. (2007a,b) used yellow sticky cards to monitor adult B. cockerelli 
in potato fields in Texas, and suggested they could be an effective tool to detect  
B. cockerelli in cultivated and non-cultivated host plants at low densities. However, an 
evaluation of sticky traps compared to other sampling techniques has yet to be con-
ducted. Also, there has been no publication that has reported a predictive relationship 
between the numbers of adults on traps and the numbers of nymphs in the foliage. 
Thus, this technique probably has the most utility for determining when adults are 
migrating into an area.

Insecticidal control

Insecticidal control of B. cockerelli has been the subject of extensive research. 
Compounds used for B. cockerelli control included oils, nicotine, pyrethrum, zinc 
arsenite sprays and calcium cyanide dusts (Knowlton, 1931, 1933b; Pletsch, 1942, 
1947). One of the first and most broadly used insecticides in the 1930’s and 1940’s for 
B. cockerelli control was lime-sulfur, which gave good control of this pest in tomatoes 
and potatoes with increases in yields for both of these crops (List, 1918, 1935, 1938; 
List and Daniels, 1934). Lime-sulfur was effective in killing the immature and adult 
stages of B. cockerelli as well as being repellent to the adults. However, lime-sulfur had 
the problem of being phytotoxic to crops (List, 1935; Pletsch, 1942). In the green-
house, the residual toxicity of lime-sulfur lasted for up to five weeks (Tate and Hill, 
1944). In 1945, DDT was used against B. cockerelli for the first time in Nebraska and 
was described as providing more effective control for a longer period of time compared 
to the other compounds available at the time (Hill, 1945; Pletsch, 1947).

In the 1960’s, organophosphates such as phorate, parathion, disulfoton, and deme-
ton, and the carbamate aldicarb were used for control of B. cockerelli (Gerhardt and 
Turley, 1961; Harding, 1962; Gerhardt, 1966). In the 1980’s Cranshaw conducted 
extensive tests on insecticides for B. cockerelli management (Cranshaw, 1985a,b,c, 



	 C.D. Butler and J.T. Trumble / Terrestrial Arthropod Reviews 5 (2012) 87–111� 99

1989a,b,c, 1993). Foliar sprays of diazinon, endosulfan, permethrin, acephate and 
many pyrethroid insecticides were among the better compounds for B. cockerelli con-
trol; and the systemic soil applied applications of phorate and disulfoton still pro-
vided  control of B. cockerelli early in the growing season (Cranshaw, 1985a,b,c, 
1989a,b,c). The carbamates such as aldicarb, carbofuran, cloetiocarb, carbaryl, and the 
organochlorine methoxylchlor were ineffective treatments at controlling B. cockerelli 
(Cranshaw, 1985a,c). Al-Jabr (1999) found for greenhouse tomatoes neem-derived 
compounds, spinosad and acetamiprid were effective in killing B. cockerelli 24 h post-
application, and other compounds such as horticultural spray oil and pymetrozine 
were effective in killing B. cockerelli 5 days post-application.

Further research on tomatoes by Liu and Trumble (2004, 2005), found complex 
interactions between tomato cultivars and insecticides tested for the behaviors of  
B. cockerelli and life history characteristics measured. The compounds tested included 
imidacloprid, kaolin particle film, pymetrozine, pyriproxyfen, and spinosad. While  
B. cockerelli on insecticide-treated plants exhibited significant decreases in the duration 
of probing behavior and reduced egg-adult survivorship (Liu and Trumble, 2004, 
2005), non-feeding behaviors (resting, cleaning, etc.) and other life history character-
istics (antixenosis, oviposition) often exhibited unexpected interactions between the 
insecticide and tomato cultivar. Also, Liu and Trumble (2007) found resistance to 
imidacloprid and spinosad in populations of B. cockerelli in California compared to 
psyllids from the central USA. Subsequent experiments using the electrical penetration 
graph technique determined that imidacloprid interfered with penetration behaviors 
and could provide substantial reductions in Ca. L. psyllauraous transmission for at 
least 4 weeks after application (Butler, 2011; Butler et al., 2012).

Since the association was made between B. cockerelli feeding and ZC, management 
practices for potatoes in the USA have relied on insecticides to control B. cockerelli to 
lower ZC incidences and increase yields. In Texas, in-furrow applications of phorate 
followed by several in-season applications of foliar insecticides including imidaclo-
prid + cyfluthrin, endosulfan, and methamidophos reduced ZC incidence in tubers to 
12.9-20.4% (Goolsby et al., 2007a). Insecticides also were used as a management tool 
to further lower ZC incidence in tubers to 0.4-2.3% in a pest management plan that 
included an in-furrow application of imidacloprid, and weekly applications of dinote-
furan and spiromesifen used in rotation applied at weekly intervals until the two week 
pre-harvest interval (Goolsby et al., 2007b).

In California, existing UC Pest Management Guidelines recommend treating potato 
plants with imidacloprid at planting, and additional treatments with abamectin, 
spiromesifen, or spinosad if monitoring indicates that psyllid populations are at one  
to two per leaf or ten per plant during the growing season (UC IPM Online, 2008). 
Further research by Gharalari et al. (2009) evaluated the knockdown effect for a variety 
of insecticides on B. cockerelli adults with thiamethoxam and abamectin being the most 
effective. The dosage and exposure time of abamectin can also significantly increase the 
mortality rates of B. cockerelli adults; however, after 24 h under field conditions the 
mortality rates on abamectin-treated potato plants are not significantly different from 
controls (Gharalari et al., 2009). Similar work has been conducted in Mexico and  
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New Zealand, which examined several compounds at the recommended fields and the 
subsequent impact on mortality of B. cockerelli nymphs (Vega-Gutierrez et al., 2008; 
Berry et al., 2009). In recent years, evaluations of selected biorational insecticides and 
kaolin particle film for the repellency of B. cockerelli have been examined in the labora-
tory and the field (Yang et al., 2010; Butler et al., 2011a; Peng et al., 2011). Results 
indicated reasonably good control (> 50% for some psyllid stages) suggesting these 
materials are suitable for further investigation designed to incorporate them into inte-
grated control programs.

Cultural control

Cultural control refers to the purposeful manipulation of a cropping environment to 
reduce rates of pest increase and damage (Pedigo and Rice, 2006). For B. cockerelli 
management, this area of research has occasionally been investigated. These areas of 
research and observations have included the timing of crop planting, fertilization, trap 
crops, destruction of breeding sites, colored pesticide sprays, and mulches.

One of the first observations regarding timing of planting and damage by B. cocker-
elli was provided by Eyer and Enzie (1939). These authors observed that late-planted 
tomatoes and potatoes in New Mexico did not develop PY as severely as those planted 
earlier. Similar observations were noted by Starr (1939) and Hartman (1947) who 
noted that fields planted in Wyoming in early June appeared to be damaged less than 
fields planted before that time (Starr 1939, Hartman 1947). Wallis (1948) found that 
B. cockerelli populations were significantly higher in early plantings of potatoes in 
Wyoming and Nebraska compared to middle and late season plantings. Additional 
studies using current cultivars and modern production practices are clearly justified.

Eyer and Enzie (1939) also pointed out the possible value of fertilizers to correct 
the lack of chlorophyll and nitrates/nitrogen on B. cockerelli plant afflicted with PY, 
although no research studies regarding this have been formally conducted. In Colorado, 
pepper plants were recommended as an alternate trap crop for B. cockerelli to attract 
this pest from potatoes (Cranshaw, 1994). Starting in the 1930’s, local practices recom-
mended the removal of potential spring and early summer breeding places through 
the  elimination of early potato plantings, non-economic solanaceous host plants 
such as L. barbarum, and volunteer potatoes in cull dumps to curtail B. cockerelli popu-
lation buildups (Knowlton, 1934; Hill, 1947; Cranshaw, 1994). A single study regard-
ing colored sprays has been investigated as a method to impact the number of  
B. cockerelli colonizing agricultural fields (Cranshaw and Liewehr, 1990). The study 
used the following compounds, which were sprayed on potatoes: yellow-colored 
maneb, white-colored cholorathalonil, and a white-colored inorganic insecticide 
sodium fluoaluminate; however results showed no significant differences in the cap-
tures of B. cockerelli in fields (Cranshaw and Liewehr, 1990). Colored mulches have 
offered promise as a cultural control method for B. cockerelli management in home 
garden tomato plants in Colorado as aluminum and white plastic mulches can be used 
to significantly decrease the population density of B. cockerelli on tomato (Demirel and 
Cranshaw, 2006).
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Host plant resistance

Similar to cultural control, studies regarding host plant resistance have seldom been 
investigated as a management technique for B. cockerelli. Host plant resistance refers to 
genetic resistance of plants to insects as categorized as antixenosis (inability of a plant 
to serve as a host for an arthropod), antibiosis (negative effects of a resistant plant that 
affect the biology an arthropod attempting to use that plant as a host) and tolerance 
(possessing the ability to withstand or recover from damage caused by arthropod popu-
lations equal to those on susceptible genotypes) (Smith, 2005). One of the first studies 
regarding host plant resistance involved examining potato varieties for tolerance to PY 
(Babb and Kraus, 1937). Results from the study by Babb and Kraus (1937) indicated 
that none of the thirty-nine varieties tested were immune to PY, and due to a lack of 
statistical analyses there was difficulty determining if the varieties were significantly 
more or less tolerant compared to each other. In field studies, Linford (1928) and Starr 
(1939) found that none of the commercial potato varieties tested exhibited enough 
resistance to B. cockerelli to provide a substantial benefit. Cranshaw (1989) found that 
for various varieties of potato, tomato, and pepper tested in Colorado fields that some 
varieties had increased numbers of B. cockerelli, but there was often an unclear relation-
ship between the varieties preferred by B. cockerelli and the damage to the crop, sug-
gesting that different varieties may need different thresholds.

The use of resistant varieties has been investigated as a management option against 
B. cockerelli in tomatoes (Liu and Trumble, 2004, 2005, 2006; Casteel et al., 2006, 
2007). Some resistance by the Mi-1.2 gene has been documented in tomatoes showing 
antixenosis (decreased host selection by B. cockerelli on plants with the resistant geno-
type) and antibiosis (significant decreases in survival of B. cockerelli reared on the resist-
ant genotype) (Casteel et al., 2006). In addition, antixenosis (reported as decreased 
feeding and oviposition) and antibiosis (described as increased developmental time and 
decreases in survival) were observed for a wild-type accession tomato (PI 134417) 
when compared to the tomato varieties ‘7718 VFN’, ‘Yellow Pear’, ‘QualiT 21’, and 
‘Shady Lady’ (Liu and Trumble, 2004, 2005, 2006). Butler et al. (2011b) documented 
changes in stylet penetration behaviors that reduced transmission in putatively resist-
ant varieties from breeders in Texas and Idaho. However, reports of how effective these 
might be when incorporated into an IPM program are not yet available.

Biological control

In North America, a number of natural enemies attack B. cockerelli. Generalist preda-
tors that attack B. cockerelli include chrysopid larvae (Chrysoperla spp.), various coc-
cinellids (i.e., Hippodamia convergens Guerin-Meneville, Hippodamia quinquesignata 
(Kirby), Hippodamia tredecimpunctata (L.), and Hippodamia americana Crotch), syr-
phid fly larvae, and Hemiptera such as Geocoris decoratus Uhler, Orius tristicolor 
(White), Anthocoris tomentosus Pericart, Deraeocoris brevis (Uhler) and Nabis ferus (L.) 
(Knowlton 1933a,b, 1933c, 1934a,b; Knowlton and Allen, 1936; Romney, 1939; 
Pletsch, 1947). However, most of the observations of predators attacking B. cockerelli 
have been performed under artificial laboratory conditions, with the exception of 
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chrysopid larvae observed attacking B. cockerelli nymphs in Utah potato fields 
(Knowlton, 1933a) and the field observations by Butler (2011). Field observations by 
Romney (1939) indicated that coccinellids and chrysopids reduced the number of eggs 
and nymphs of B. cockerelli on Lycium spp. to varying degrees from year to year. Recent 
research by Butler (2011) found through two years of field studies (2009-2010) at four 
different sites and laboratory feeding tests, identified O. tristicolor, Geocoris pallens Stal 
(Hemiptera: Geocoridae), and H. convergens as key natural enemies of B. cockerelli in 
southern California potatoes, tomatoes, and bell peppers. The number of these natural 
enemies exhibited either significant positive or negative relationships with the number 
of B. cockerelli on these crop plants. Further tests to document the effects of natural 
enemies on B. cockerelli population dynamics using exclusion cage experiments in the 
potato crop and in American nightshade, Solanum americanum Miller, found the 
number of B. cockerelli surviving was significantly greater in the closed cage treatments 
(approximately 65% greater), thus confirming the impact natural enemies can have on 
B. cockerelli.

In the laboratory and in the field unknown species of Chrysoperla spp., Chrysoperla 
carnea (Stephens) and Chrysoperla rufilabris (Burmeister) have been further assessed as 
B. cockerelli predators (Pletsch, 1947; Al-Jabr, 1999). In laboratory experiments, 
Chrysoperla larvae can attack all life stages of B. cockerelli (Pletsch, 1947; Knowlton, 
1933; Al-Jabr, 1999). Al-Jabr (1999) evaluated C. carnea and C. rufilabris as potential 
biological control agents of B. cockerelli and found they are capable of completing  
their entire life cycle on B. cockerelli. However, a field trial involving applications of  
C. carnea eggs to psyllid infested potatoes did not produce significant reductions in B. 
cockerelli numbers (Al-Jabr, 1999). Butler (2011) found numerous Chrysoperla spp. 
eggs in the field, but very few Chrysoperla spp. larvae; also the number of eggs or larvae 
of these predators did not correlate with the number of B. cockerelli that occurred on 
crop plants.

Natural enemies of B. cockerelli also include two primary parasitoids: Metaphycus 
psyllidis Compere (Hymenoptera: Encyrtidae), and Tamarixia triozae (Burks) (Hyme
noptera: Eulophidae). Parasitism of B. cockerelli nymphs by T. triozae was noted for the 
first time by Romney (1939) on Lycium spp. in southern Arizona. Metaphycus psyllidis 
was described as a new B. cockerelli parasitoid species by Compere (1943). No follow-
up work on M. psyllidis regarding its impact on B. cockerelli has been attempted since.

Tamarixia triozae has been found in the USA (Arizona, California, Colorado, Idaho, 
Kansas, Montana, New Mexico, and Washington) and recently in Mexico (Romney, 
1939; Pletsch, 1947; Jensen, 1957; Lomeli-Flores and Bueno Partida, 2002). In a 
tomato field in Montana in 1939, 23% of the B. cockerelli nymphs were parasitized by 
T. triozae; although no parasitism was noted in the surrounding areas despite high 
B.  cockerelli populations. Similar observations have been noted by Butler (2011) in 
which despite the presence of T. triozae in agricultural fields in southern California the 
percent parasitism was below 20%. Details regarding the life history of this parasitoid 
can be found in Pletsch (1947), and a list of additional psyllid species that T. triozae 
parasitizes can be found in Jensen (1957). In general, T. triozae attacks the fourth and 
fifth instars of B. cockerelli (Pletsch, 1947), and this parasitoid’s dispersal can be rapid 
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at a distance limited to less than 1.5 m (Johnson, 1971). In the field, T. triozae is poorly 
synchronized with B. cockerelli populations and suffers high pupal mortality ranging 
from 38-100% (Johnson, 1971). In the laboratory, levels of parasitism were low aver-
aging 13.2-26.5%, which is similar to parasitism rates found for other psyllid parasi-
toids (Jensen, 1957). Thus, Johnson (1971) finds control of B. cockerelli in agricultural 
settings with T. triozae unfeasible, but leaves the possibility of using this species as a 
biological control agent in the natural, overwintering areas of B. cockerelli. In addition, 
new records of Encarsia pergandiella Howard (Hymenoptera: Aphelinidae) and a single 
record tentatively identified as Encarsia peltata (Cockerell) (Hymenoptera: Aphelinidae) 
hyperparasitizing T. triozae have been documented on tomato and bell pepper plant-
ings in southern California with proportions of parasitism between 5.3-6.9% (Butler 
and Trumble, 2011b). Despite this information, in New Zealand in 2006, T. triozae 
was imported from Mexico into quarantine for assessment as a potential biological 
control agent of B. cockerelli (Workman and Whiteman, 2009).

The entomopathogenic fungi Beauvaria bassiana (Balsamo) Vuillemin, Isaria 
fumosorosea (Wize), Verticillium lecanii (Zimmerman) and Metarhizium anisopliae 
(Metschnikoff) are known to attack B. cockerelli (Al-Jabr, 1999; Strand, 2006; Sanchez-
Pena et al., 2007; Lacey et al., 2009, 2010). One of the first studies to document the 
effect of entomopathogenic fungi on B. cockerelli was conducted by Al-Jabr (1999). 
Under laboratory conditions, B. bassiana caused significant mortality (> 82%) on 
B. cockerelli nymphs. Mixed results were obtained in the greenhouse with B. bassiana, 
V. lecanii, and M. anisopliae in terms of mortality on B. cockerelli nymphs on tomato 
(Al-Jabr, 1999). Studies by Sanchez-Pena (2007) testing B. bassiana and M. anisopliae, 
and Lacey et al. (2009) testing B. bassiana, M. anisopliae, and I. fumosorosea likewise 
demonstrated significant mortality on B. cockerelli in the laboratory compared to 
untreated controls. In field trials, Lacey et al. (2010) found fungal treatments of  
M. anisopliae and I. fumosorosea alone or in combination with insecticides caused sig-
nificant reductions in B. cockerelli in southern Texas.

Conclusions

Much research still needs to be conducted on the basic biology and control of this pest. 
While a number of symbionts have been identified, the role these may play in trans-
mission of the ZC pathogen have not been elucidated. Similarly, research is needed to 
determine the possible impact of the Ca. L. psyllaurous on the fitness of the psyllid. 
The effects of the ZC pathogen on use and storage of potatoes destined for fresh market 
use versus frying/chipping is also largely unknown. Control strategies that are cur-
rently available tend to be relatively expensive and pesticide intensive, so economic 
evaluation of IPM programs that incorporate biological control agents, resistant varie-
ties, and alternative suppression strategies are critically needed. We are aware that con-
trol strategies based on controlling the bacteria within the plant or production of 
transgenic plants with putative resistance are in progress, but no peer-reviewed studies 
were available at the time this was written. We still do not fully understand how these 
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pests are moving between countries and why the ZC pathogen is a huge problem in 
some locations but not in others. However, based on the intensive research efforts 
published in the past 10 years, and the remarkable interdiciplinary efforts of entomolo-
gists, plant pathologists, and epidemiologists, the overall outlook for management of 
this pest and its associated pathogen is promising.
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