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New developments in abscisic acid perception and metabolism

Paul E Verslues' and Jian-Kang Zhu

Abscisic acid is a powerful signaling molecule that accumulates
in response to abiotic stress. However, no potential receptors
that could perceive this increase in abscisic acid had been
identified until recent reports of three abscisic acid binding
proteins: the nuclear protein Flowering Time Control Locus A,
the chloroplast protein Magnesium Protoporphyrin-IX
Chelatase H subunit, and the membrane-associated protein G
Protein Coupled Receptor 2. Abscisic acid metabolism

also has a new and prominent component with the
identification of a B-glucosidase capable of releasing
biologically active abscisic acid from inactive abscisic
acid-glucose ester in a stress-inducible manner. These
observations refocus our attention on the metabolism
underlying abscisic acid accumulation, sites of abscisic acid
perception, and delivery of abscisic acid to those sites.
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Introduction

Abscisic acid (ABA) has key roles in regulating plant
responses to abiotic stress and in controlling seed germi-
nation, growth, and stomatal aperture [1-3]. Physiological
experiments with numerous plant species have indicated
that accumulation of ABA above its basal level in
unstressed plant tissues is required for its role in promot-
ing abiotic stress resistance [2]. This ABA accumulation
must then be followed by ABA perception and sub-
sequent downstream signaling to activate ABA-regulated
stress responses (Figure 1). While this general framework
has been a part of our core knowledge of plant function for
some time, there are still a number of important gaps in
our knowledge of how ABA functions at the molecular
and physiological levels (Box 1). In signaling downstream
of ABA perception, some of the most intriguing recent

results have involved the protein phosphatase 2Cs Absci-
sic Acid Insensitive 1 (ABI1) and ABI2 that have roles in
many aspects of ABA signaling [1]. Particularly interest-
ing is the recent observation that ABI2 interacts directly
with Glutathione Peroxidase3, and this interaction affects
the redox status and phosphatase activity of ABI2, pro-
viding a direct link between ABA signaling and redox
status [4°]. Most relevant to this review is the interaction
of ABI1 with phosphatidic acid to control stomatal regu-
lation [5°°], an observation that also links ABI1 to G
protein signaling. Other recent data have highlighted
the importance of SnRK2 kinases [6] and ubiquitination
[7-9] in ABA signaling.

Before these signaling mechanisms downstream of ABA
perception can be called into action, production, and
delivery of biologically active ABA, and its initial percep-
tion by ABA receptors must occur. Although these aspects
of ABA signaling have at times been less prominent in the
molecular literature, several recent studies have brought
these topics back to the fore of ABA research. Thus, the
perception of ABA and control of ABA accumulation,
particularly by deconjugation of inactive ABA, are the
focus of this review.

ABA perception inside and outside

The site of ABA perception and particularly the question
of intracellular versus extracellular perception have intri-
gued plant biologists for many years. In the absence of a
known receptor, a number of studies sought to test
extracellular versus intracellular ABA perception [10-
13]. The results showed that both intracellular and extra-
cellular ABA perception could occur, leading to the
hypothesis, which seems even more likely in light of
recent data, of multiple sites of ABA perception. Other
evidence in favor of multiple sites of ABA perception
came from studies showing differences in the responses
elicited by different ABA analogs [14°,15]. In addition,
the multiple receptor hypothesis became more prominent
as forward genetic screening failed to turn up a candidate
ABA receptor. This difficulty in identifying ABA recep-
tors led to a near stalemate in ABA receptor research for
a number of years. That stalemate has now been broken
by reports describing three ABA-binding proteins that
have many of the characteristics of ABA receptors
[16°%,17°°,18%°].

The first two of these proteins to be reported, Flowering
Time Control Locus A (FCA) and Magnesium Protopor-
phyrin-IX Chelatase H subunit (CHLH/GUNS/ABAR,;
referred to here as CHLH), established intracellular sites
for ABA binding, and both are members of relatively
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Conceptual diagram of stress perception and ABA metabolism, transport, and signaling. Large numbers indicate the six points outlined in Box 1.
Red arrows indicate perception and signaling events upstream of ABA accumulation. Black arrows indicate ABA metabolism and transport
processes. Green boxes and arrows represent ABA perception and downstream ABA-dependent signaling including feedback regulation by ABA.
Purple ovals indicate possible sites where as yet unidentified ABA transporters could operate.

Box 1 Six short points likely to have a long impact on ABA research
(numbers correspond to the numbers in Figure 1).

1. Unknown upstream. The initial events that are responsible for
sensing abiotic stresses such as drought-associated water loss and
that act upstream of and elicit ABA accumulation are not known. Also
unclear is whether this initial stress perception is required to make the
plant competent to respond to ABA (see #6).

2. Tumultuous turnover. Experiments have suggested a rapid
turnover of ABA. It is now known that amount of active ABA can
be regulated by synthesis, conjugation, and catabolism, but what is
the relative importance of each of these processes and how are they
regulated?

3. Up and down. The importance of root-to-shoot transport of ABA
and/or ABA precursors/conjugates as well as the main site (root or
shoot) of stress-induced changes in ABA metabolism remains
unclear. Also, important is the question of whether ABA transporters
play a role in distributing ABA within the plant or whether ABA
distribution is predominantly controlled by pH gradients.

4. In and out. The ABA-binding proteins identified so far suggest
that intracellular (nucleus and chloroplast) and extracellular ABA
perception can both control many of the same phenotypes. Which
sites (receptors) are most important for different ABA responses and
how do they interact?

5. Receptors revealed. Three candidate receptors for ABA have
been described, but it seems likely that there are more. Whether or not
additional receptors will be found for intracellular ABA perception,
extracellular perception, or both remains to be seen.

6. Signaling and sensitivity. A number of observations have indi-
cated that exogenous ABA applied to unstressed plants does not elicit
the same responses as stress-induced ABA accumulation. This could
represent additional signaling mechanisms that act in parallel with
ABA or an effect of stress that makes the plant competent to respond
to ABA (increases the ABA sensitivity).

unexpected classes of proteins to be ABA receptors. FCA
had been previously characterized as a nuclear RNA-
binding protein that when complexed with FY, another
floral regulator protein, caused cleavage of Flowering
Locus C (FLC) RNA thereby blocking FLLC expression
and allowing flowering to occur [19]. Razem ¢z a/. [17°°]
found that binding of ABA to a site in the C-terminal
portion of FCA disrupts the FCA-FY complex. This
allows FLC mRNA to accumulate and delays flowering.
These results were surprising partly because the mech-
anism of ABA signaling revealed apparently bypassed
other ABA signal transduction components [20]. While
this was unexpected, it did not overturn previous work on
ABA signaling because it was also clear that FCA was a
specific regulator of flowering and lateral root formation
[17°°]. Thus, the search was still on for a receptor that
could regulate other key ABA-regulated events such as
germination and stomatal movement.

Another equally unexpected ABA-binding protein
emerged nearly simultaneously with FCA: The chloro-
plast protein CHLH also was shown to have specific ABA-
binding activity [18°°]. Plants with decreased CHLH
expression had ABA-insensitive phenotypes in germina-
tion and stomatal closure while plants overexpressing
CHLH were ABA hypersensitive in these responses
[18°°]. However, a mechanism by which CHLH could
transmit the ABA signal has yet to be described. The
significance of CHLH’s location in the chloroplast is
also unclear. The chloroplast is the site of ABA synthesis
up to the point of the cleavage reaction catalyzed by the
9-cis-epoxycarotenoid dioxygenase (NCED) family of
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enzymes [2]. Thus, the chloroplast would be a logical site
of ABA perception for feedback regulation of ABA syn-
thesis; however, CHLH itself is not involved in ABA
synthesis, and such feedback regulation is unlikely to
explain the phenotypes observed when CHLLH expres-
sion was altered [18°°]. Further work to establish the
mechanism of CHLH function in ABA signaling is
needed.

The third reported ABA-binding protein brought a well-
known class of signaling molecules into the group of
proteins with potentially key roles in ABA perception.
Plants contain a number of candidate G protein coupled
receptors (GCRs) that have a characteristic seven mem-
brane spanning domains. In the classical model of G
protein signaling, ligand binding to the extracellular por-
tion of the GCR activates it and causes dissociation of the
intracellular Ga/GB/Gy complex into Ga and GB/Gy
portions along with release of GDP and binding of
GTP [21]. The dissociated Ga and GB/Gy can then
activate signal transduction by a number of mechanisms.
Conclusively identifying candidate GCRs in Arabidopsis
has been difficult and no ligand had been identified for
any GCR until Lui ¢z a/. [16°*] reported a candidate GCR,
which they designated as GCR2, that had ABA-binding
activity. The same study also provided evidence that
GCR2 interacts with GPA1, the sole Arabidopsis Ga,
and that binding of ABA to GCR2 causes it to disassociate
from GPA1 as would be expected in the initiation of a
classical G protein signaling cascade. Knockout or over-
expression of GCR2 altered several ABA-dependent phe-
notypes [16°°].

In spite of the data reported by Lui ez a/. [16°°], questions
about the role of GCR2 remain. Previous detailed bioin-
formatics analysis did not identify GCR2 as one of 394
Arabidopsis candidate seven transmembrane-domain
GCRs [22], and the Arabidopsis genome annotation has
identified GCR2 as being similar to the enzyme lanthio-
nine synthetase. It is also of interest to note that, because
GCR2 had a relatively high pH optimum of ABA binding
(pH 7.5), its ABA-binding activity at typical apoplast pH
values (pH 5.0-6.0 [23]) would be only approximately half
of the maximal level. This point is of particular interest:
Increased apoplastic pH has been proposed to be import-
ant in root-to-shoot stress signaling and would deprotion-
ate ABA and thus inhibit its diffusion across the plasma
membrane into the cell [23].

Despite these lingering questions, the potential involve-
ment of GCRs in ABA perception and signaling is import-
ant not only because it potentially puts ABA perception in
the context of a known signaling mechanism but also
because it suggests a link to ABI1, a well-studied ABA-
signaling factor. ABI1 binds phosphatidic acid produced
by phospholipaseDal (PLDal) and this binding tethers
ABI1 to the membrane and promotes stomatal closure
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[5°°]. The converse response, stomatal opening, is pro-
moted by PLDal binding to GPA1 [5°°,24]. Because of
the broad effects of ABI1 and ABI2 on ABA signaling, it
will be of interest to determine whether PLDal and
phosphatidic acid also regulate other ABA responses, such
as germination, which are affected in @bil, ger2, and gpal
mutants [1,16°°,25°]. Also of interest is whether other
candidate GCRs bind ABA and participate in ABA sig-
naling and whether other PP2Cs are involved in signaling
through GPA1, as genetic data suggest they could be [26—
28].

This flurry of activity in ABA receptor research raises the
question of whether there are more candidate ABA
receptors yet to be characterized. The answer to this
question appears to be yes. The same studies using
ABA anti-idiotypic antibodies that led to the eventual
identification of FCA as an ABA receptor also identified
another barley ABA-binding protein, ABAP1, whose mol-
ecular identity remains obscure [20,29]. Also, a number of
other studies have identified ABA-binding activities in
plant extracts [30-34], and it is unlikely that all of these
activities can be explained by the three ABA-binding
proteins characterized thus far. Additional data on what
the ABA-binding motifs of FCA, CHLH, and GCR2 look
like may be useful in searching for additional proteins
with similar motifs.

Active ABA: regulation by metabolism,
conjugation, and transport

For ABA receptors to function, there must first be an
accumulation of biologically active ABA at the site of
perception. Although ABA synthesis is required, whether
or not it is the main factor in controlling how much ABA
accumulates under stress is unclear. High levels of
NCED3 overexpression led to only relatively small
increases or no effect on ABA content under stress con-
ditions [35,36°,37] but much larger increases in phaseic
acid, the principle ABA catabolite [36°,37]. This is con-
sistent with observations that exogenously applied ABA
is rapidly catabolized [14°] and inhibitor and labeling
studies that have also suggested a rapid turnover of
ABA in both unstressed and dehydrated plant tissue
[38,39,40°,41]. These observations establish both ABA
synthesis and ABA catabolism as determinants of stress-
induced ABA accumulation; however, the relative import-
ance of these two processes in stress-induced ABA
accumulation is unclear.

For ABA, and for other hormones, there is another factor:
conjugation. ABA can be conjugated to glucose (as well as
other sugars) to form ABA-glucose ester (ABA-GE) that is
biologically inactive [42]. However, the significance of
ABA conjugation and whether or not it is a readily
reversible modification or a ‘dead end’ that permanently
removes ABA from the biologically active hormone pool
had not been determined. While ABA glycosyltrans-
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ferases have been described [36°,43-45], until recently
we still lacked molecular knowledge of ABA glucosidases
that could release ABA-GE back into the pool of biologi-
cally active ABA. That situation has now changed with
the identification of Arabidopsis thaliana B-glucosidasel
(AtBG1).

ArBG1 was first identified as a gene upregulated by salt
stress and subsequent molecular characterization demon-
strated that AtBG1 could hydrolyze ABA-glucose ester
[46°°]. atbgl plants exhibited a number of phenotypes
consistent with ABA deficiency and had decreased seed
ABA levels and a slightly decreased level of dehydration-
induced ABA accumulation [46°°]. Conversely, plants
that overexpressed ATBG1 had increased levels of dehy-
dration-induced ABA accumulation. These results show
that ABA conjugation and deconjugation are dynamic
processes and have a significant role in controlling levels
of biologically active ABA both under unstressed con-
ditions and under stress when the amount of free ABA
increases dramatically.

Dehydration treatment caused ATBG1 to polymerize
(molecular weights consistent with ATBG1 10-mers were
observed) and this polymerization increased the specific
activity of ATBG1 in ABA-GE hydrolysis [46°°]. Thus,
despite the original observation that ATBG1 gene expres-
sion is increased by stress, the key factor in upregulating
its activity under stress is polymerization. Another inter-
esting finding was that ATBG1 is an endoplasmic reti-
culum-localized protein. By contrast, ABA-GE is found
mostly in the vacuole and intercellular space [47]. To
bridge this spatial separation between ABA-GE and
ATBGI, the existence of a transport system for ABA-
GE was proposed [46°°]. Since no transporter for ABA,
ABA-GE, or other ABA metabolites or precursors has yet
been identified, this is a significant question for future
experiments.

The transport question is also significant at the whole
plant level where transport of ABA [48] or of ABA-GE
with subsequent release of free ABA in the leaf [47,49]
have been proposed as root-to-shoot signals. ABA-GE
has been found in xylem sap of both stressed and
unstressed plants and a salt-induced extracellular gluco-
sidase activity capable of hydrolyzing ABA-GE has also
been observed in leaves [47,49,50]. Interestingly, no
difference in extracellular ABA-GE hydrolyzing activity
was found in ATBG1 knockout and overexpression
plants [46°°]. Thus, the extracellular hydrolysis of
ABA-GE must be performed by another enzyme. Identi-
fication of this enzyme would allow the importance of
extracellular localized ABA-GE to be determined. It
should also be noted that hypotheses about root-to-shoot
ABA transport, which are often mentioned in the phys-
iological literature, must consider whether ABA syn-
thesis capacity of roots, which is more likely to be

substrate limited than that of shoots, is sufficient to
influence shoot ABA content [51].

New and old questions about ABA

The identification of ABA receptors and ATBG1 as well
as other enzymes involved in ABA metabolism herald a
renewed emphasis on events at or upstream of the level of
ABA perception (Figure 1). These new observations
suggest a number of areas likely to be of importance in
future ABA research (Box 1). Perhaps the biggest gap in
our knowledge is in the sensing and signaling events that
lie upstream of stress-induced ABA accumulation. For
example, how is the polymerization of ATBG1 induced?
Such events must surely be connected to the initial
perception of stress, particularly dehydration of plant
tissue. Such upstream signaling can induce some stress
responses independently of ABA, induce ABA synthesis,
and increase the plants response to ABA [52-54]; how-
ever, the nature of this initial signal and its perception are
unknown. Also, the question of ABA and ABA-GE trans-
port both within the cell and from root to shoot has also
been raised anew by the description of ATBG1 and our
increased understanding of where and how ABA is per-
ceived. A number of studies have described specific,
saturable uptake of ABA by various plant tissues and
provided strong evidence for the existence of ABA trans-
porters [55-62]. These data have not yet been followed
up by the identification of an ABA transporter. Thus,
much of our new information is leading us back to some
old questions.
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