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Identifying Nonlinear Components by

Random Fields in the US GNP Growth.

Implications for the Shape of the

Business Cycle

Christian M. Dahl and Gloria Gonzalez-Rivera

Abstract

Within a flexible parametric regression framework (Hamilton, 2001) we pro-
vide further evidence on the existence of a nonlinear component in the quarterly
growth rate of the US real GNP. We implement a battery of new tests for ne-
glected nonlinearity based on the theory of random fields (Dahl and Gonzalez-
Rivera, 2003). We find that the nonlinear component is driven by the fifth lag
of the growth rate. We show that our model is superior to linear and nonlinear
parametric specifications because it produces a business cycle that when dis-
sected with the BBQ algorithm mimics very faithfully the characteristics of the
actual US business cycle. On understanding the relevance of the fifth lag, we
find that the nonparametrically estimated conditional mean supports paramet-
ric specifications that allow for three phases in the business cycle: rapid linear
contractions, aggressive short-lived convex early expansions, and moderate/slow
relatively long concave late expansions.



1 Introduction

During the last decade, we have witnessed the development of a plethora

of nonlinear models to analyze the growth rate of the US GNP. Hamilton

(1989) Markov regime switching model is perhaps the most well known uni-

variate time series specification due to its ability to classify the NBER reces-

sions with remarkable precision. Later contributions expanded the Hamil-

ton’s model in a variety of ways, such as including three regimes, introduc-

ing a state-space model with Markov switching, introducing heteroscedastic

variances, etc. Other preferred specifications were the parametric threshold

models as in Potter (1995) with a variety of extensions such as threshold

autoregressive, threshold moving average, self-exciting threshold with two

and four regimes, etc. The performance of these models is mixed depending

upon the evaluation criteria. When their performance is evaluated with sta-

tistical criteria, such as forecasting ability, we seem to have a negative view

of nonlinear specifications because simple linear models tend to perform

better or as well as nonlinear models (Stock and Watson, 1999). Recently,

Harding and Pagan (2002) proposed to revisit the traditional approach of

Burns and Mitchell (1946) grounded on the location of the turning points

of a series and other graphical methods to explain the shape of the business

cycle. The performance of the many statistical models is judged according

to their ability to mimic the characteristics of the actual business cycle.

With this yardstick, Harding and Pagan concluded that there is “little evi-

dence that certain non-linear effects are important to the nature of business

cycle”. The nonlinear models they considered were the Hamilton model

and a Markov switching model with duration dependence due to Durland

and McCurdy (1994). A more extensive collection of nonlinear models can

be found in Galvão (2002) where she evaluated fifteen models according to

their ability to produce faster growth rates after a trough and slower before

a peak. According to her results, the best model to reproduce such a feature

of the business cycle is a three-regime Markov switching with heteroscedas-

tic variances as in Clements and Krolzig (1998). Interestingly absent of this
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academic debate are nonparametric or semiparametric specifications that

given their generality -there is no assumption in the functional form of the

conditional mean- may seem to be a very appropriate tool to guide the

choice of a parametric model. This paper contributes to this end.

Hamilton (2001) proposed a flexible parametric regression model where

the conditional mean has a linear parametric component and a potential

nonlinear component represented by an isotropic Gaussian random field.

The model has a nonparametric flavor because no functional form is as-

sumed but, nevertheless, the estimation is fully parametric. In this paper,

we implement the flexible parametric regression model for statistical iden-

tification of a nonlinear component in the quarterly US real GNP growth

rate. Previous to the estimation of the model, we test for neglected nonlin-

earity in the conditional mean with a battery of new powerful tests based on

the theory of random fields developed by Dahl and González-Rivera (2003).

We start with the choice of the linear regressors and we assume that the

nonlinear component is a function of either the full set or a subset of the

linear regressors. Following most of the parametric models, the preferred

choices are linear and nonlinear AR(4), as in Hamilton (1989) and Durland

and McCurdy (1994), and an AR(5) as in Potter (1995). Our approach is

rather conservative in that we tend to choose a relative large number of lags

in the linear component to guard against dynamic misspecification making

the detection of nonlinearity, either in testing or in estimation, a more dif-

ficult exercise. Nevertheless, we find strong evidence for nonlinearity in the

US GNP growth rate, clearly driven by one regressor, the fifth lag of the

growth rate. This finding offers some support to the Potter’s specification

where the nonlinear component is driven by three variables: the first, second

and fifth lags of the growth rate. The assessment of our model is conducted

within the Harding and Pagan (2002) context. We dissect the business cy-

cle according to measures of duration, amplitude, cumulation and excess

cumulation of the contraction and expansion phases of the business cycle.

Contractions are believed to be linear as opposed to expansions, which are

mostly concave. This asymmetry is the challenge that any statistical spec-
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ification should be able to replicate. We find that the flexible parametric

regression model is able to mimic the characteristics of the actual US busi-

ness cycle. It represents a clear improvement over linear models, in contrast

to Harding and Pagan (2002) findings, and seems to capture just the right

shape of the expansion phase as opposed to Hamilton (1989) and Durland

and McCurdy (1994) models, which tend to overestimate the cumulation

measure in the expansion phase. We are intrigued by the contribution of

the fifth lag of the growth rate to the nonlinearity of the model. We explore

this issue by examining, in the plane (yt−5, yt), the conditional mean of the
growth rate estimated with the random field technology and mapping the

changing signs of the autocorrelation between growth rates yt−5 and yt into
dynamic paths of the GNP level. We find that the expansion phase must

have at least two subphases: an aggressive early expansion after the trough,

and a moderate/slow late expansion before the peak implying the existence

of an inflexion point that we date approximately around one-third into the

duration of the expansion phase. This shape lends support to parametric

models of the growth rate that allow for three regimes (Sichel, 1994), as

opposed to models with just two regimes (contractions and expansions).

The organization of the paper is as follows. In section 2, we review

Hamilton (2001) flexible parametric regression model where a random field

models the nonlinear component of the conditional mean. In section 3,

we summarize the tests for neglected nonlinearity based on the theory of

random fields proposed by Hamilton (2001) and Dahl and González-Rivera

(2003). In section 4, we engage in an extensive modelling exercise of the

post-war growth rate of the US real GNP, which constitutes the core of this

paper. We test for nonlinearity and identify the nonlinear component by

estimation. Both types of statistical inference, estimation and testing, are

in agreement on identifying the source of nonlinearity. We proceed with

the dissection of the business cycle, exploring the shape of contractions and

expansion. Finally, in section 5, we offer a brief set of conclusions.
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2 Random fields and flexible parametric re-

gression

Hamilton (2001) suggested representing the nonlinear component in a gen-

eral regression model by a Gaussian homogeneous and isotropic scalar ran-

dom field. A scalar random field is defined as a functionm(ω,x) : Ω×A→ R
such that m(ω,x) is a random variable for each x ∈ A where A ⊆ Rk. A
random field is also denoted as m(x). If m(x) is a system of random vari-

ables with finite dimensional Gaussian distributions, then the scalar random

field is said to be Gaussian and it is completely determined by its mean

function µ(x) = E [m(x)] and its covariance function with typical element

C(x,z) = E [(m(x)− µ(x))(m(z)− µ(z))] for any x,z ∈ A. The random
field is said to be homogeneous or stationary if µ(x) = µ and the covariance

function depends only on the difference vector x − z and we should write
C(x,z) = C(x− z). Furthermore, the random field is said to be isotropic

if the covariance function depends on d(x,z), where d(·) is a scalar measure
of distance. In this situation we write C(x,z) = C(d(x,z)).

The specification suggested by Hamilton (2001) can be represented as

yt = β0 + x
0
tβ1 + λm(g ¯ xt) + ²t, (1)

for yt ∈ R and xt ∈ Rk, both stationary and ergodic processes. The con-
ditional mean has a linear component given by β0 + x

0
tβ1 and a non-linear

component given by λm(g ¯ xt), where m(z), for any choice of z, rep-
resents a realization of a Gaussian and homogenous random field with a

moving average representation; xt could be predetermined or exogenous

and is independent of m(·), and ²t is a sequence of independent and identi-
cally distributed N(0,σ2) variates independent of both m(·) and xt as well
as of lagged values of xt. The scalar parameter λ represents the contribu-

tion of the nonlinear part to the conditional mean, the vector g ∈ Rk0,+
drives the curvature of the conditional mean, and the symbol ¯ denotes

element-by-element multiplication.

LetHk be the covariance (correlation) function of the random fieldm(·)
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with typical element defined asHk(x,z) = E [m(x)m(z)]. Hamilton (2001)

proved that the covariance function depends solely upon the Euclidean dis-

tance between x and z, rendering the random field isotropic. For any x

and z ∈ Rk, the correlation between m(x) and m(z) is given by the ratio of
the volume of the overlap of k-dimensional unit spheroids centered at x and

z to the volume of a single k-dimensional unit spheroid. If the Euclidean

distance between x and z is greater than two, the correlation betweenm(x)

and m(z) will be equal to zero. The general expression of the correlation

function is

Hk(h) =

(
Gk−1(h, 1)/Gk−1(0, 1)

0

if h ≤ 1
if h > 1

, (2)

Gk(h, r) =

Z r

h

(r2 − w2)k/2dw,

where h ≡ 1
2
dL2(x,z), and dL2(x,z) ≡ [(x− z)0(x− z)]1/2 is the Euclidean

distance between x and z.1

Within the specification (1), Dahl and González-Rivera (2003) provided

alternative representations of the random field that permit the construction

of Lagrange multiplier tests for neglected nonlinearity, which circumvent

the problem of unidentified nuisance parameters under the null of linearity

(as we will see in the forthcoming sections) and, at the same time, they are

robust to the specification of the covariance function associated with the

random field. They modified the Hamilton framework in two directions.

First, the random field is specified in the L1 norm instead of the L2 norm,

and secondly they considered random fields that may not have a simple

moving average representation. The advantage of the L1 norm, which is

exploited in the testing problem, is that this distance measure is a linear

function of the nuisance parameters, in contrast to the L2 norm which is

a nonlinear function. Logically, Dahl and González-Rivera proceeded in an

opposite fashion to Hamilton. Whereas Hamilton first proposed a moving

average representation of the random field, and secondly, he derived its

1For a formal proof, see Theorem 2.2 in Hamilton (2001)
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corresponding covariance function, Dahl and González-Rivera first proposed

a covariance function, and secondly they inquire whether there is a random

field associated with it. The proposed covariance function is

Ck(h
∗) =

(
(1− h∗)2k
0

if h∗ ≤ 1
if h∗ > 1

, (3)

where h∗ ≡ 1
2
dL1(x,z) =

1
2
|x − z|0ı. The function (3) is a permissible co-

variance, that is, it satisfies the positive semidefiniteness condition, which

is q0Ckq ≥ 0 for all q 6= 0T . Furthermore, there is a random field asso-

ciated with it according to the Khinchin’s theorem (1934) and Bochner’s

theorem (1959). The basic argument is that the class of functions which are

covariance functions of homogenous random fields coincides with the class

of positive semidefinite functions. Hence, (3) being a positive semidefinite

function must be the covariance function of a homogenous random field.

3 Testing for nonlinearities

We shortly describe the two most important tests for neglected nonlinear-

ities proposed by Dahl and González-Rivera (2003). Consider the model

given by equation (1). The contribution of the non-linear component to the

conditional mean is driven by the parameter λ and/or by the parameter

vector g. It is easy to observe that a test for neglected nonlinearity will

be subject to a nuisance parameter problem, where a set of parameters are

identified only under the alternative hypothesis. There are two alternative

approaches to specify the null hypothesis of linearity: (i) If the null hypothe-

sis is written asH0 : λ2 = 0, the parameter vector g is unidentified under the

null and the number of unidentified parameters increases with the dimen-

sionality of the model. Tests with a null hypothesis H0 : λ
2 = 0 are denoted

λ-tests. (ii) If the null hypothesis is written as H0 : g = 0k, the parameter λ

becomes unidentified under the null. Furthermore, the contribution of the

nonlinear component becomes indistinguishable from that of the constant

β0, which becomes also unidentifiable. However, in this case, the number of
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unidentified parameters remains the same whenever the dimensionality of

the model increases. Tests with a null hypothesis H0 : g = 0k are denoted

g-tests.

From model (1), we can write y ∼ N(Xβ,λ2Ck + σ2IT ) where y =

(y1, y2, ..., yT )
0, X1 = (x01,x

0
2, ...,x

0
T )

0
, X = (ı : X1), β = (β0,β

0
1)

0
, ε =

(²1, ²2, ..., ²T )
0
and σ2 is the variance of ²t. Ck is a generic covariance function

associated with the random field, which could be equal to the Hamilton

spherical covariance function in (2), or to the covariance in (3). The log-

likelihood function corresponding to this model is

`(β,λ2, g,σ2) = −T
2
log(2π)− 1

2
log |λ2Ck + σ2IT | (4)

−1
2
(y −Xβ)0(λ2Ck + σ2IT )

−1(y −Xβ),

which is the basis for the Lagrange multiplier tests for neglected nonlinearity.

Note that the covariance function Ck depends on the parameters g. The

Lagrange multiplier statistic is given by LM = s(eϑ)0I−1(ϑ̃)s(eϑ), where
s(ϑ̃) denotes the score function, and I−1(ϑ̃) the inverse of the information
matrix, both evaluated under a generic null hypothesis H0 : ϑ = ϑ̃. We

consider two different estimators of the information matrix, both consistent

under the null. The first estimator, denoted IH , is based on the Hessian
of the log likelihood function, and the second, denoted IOP , is based on
the outer-product of the score. Under the usual regularity conditions, the

Lagrange multiplier statistics will be χ2(q)-distributed where q equals the

number of restrictions under the null.

3.1 λ-tests

Hamilton (2001) derived the λ-test for neglected nonlinearity based on the

IH estimator of the information matrix and with Ck(xt,xs) = Hk(h) for

h = 1
2
dL2(xt,xs). We denote Hamilton’s test statistic λ

E
H(g). To deal with

the identification issues, Hamilton suggested fixing g to the mean of its

prior distribution and proceed to derive the Lagrange multiplier test, which

then follows a standard asymptotic distribution. Dahl and González-Rivera
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(2003) derived the TR2 version of the Lagrange multiplier tests based on the

IOP estimator of the information matrix. First, they provided an analogous
test to Hamilton’s. Keeping g fixed, evaluating the score functions under

the null H0 : λ
2 = 0, and considering the covariance function (3), the test

statistic is

λEOP (g) =
T 2

2

u0x̃(x̃0x̃)−1x̃0u
u0u

∼ χ2(1),

where u = vec (IT − εε0
σ2
), x̃ = (x̃1 : x̃2), with x̃1 = vec (Ck) and x̃2 =

vec (IT ). The statistic is easily obtained by the following procedure: 1.

Estimate the model under the null and compute bε = y − (X 0X)−1(X 0y)
and bσ2 = T−1bε0bε. 2. Obtain the least squares estimate of ν - denoted bν -
from the auxiliary regression bu = φ1x̃1+φ2x̃2+ν, using bu = vec (IT − bεbε0bσ2 ).
3. Obtain the uncentered R2 as R2 = 1− ν̂ 0ν̂/bu0bu. 4. Finally, the Lagrange
multiplier statistic is given as λEOP (g) =

1
2
T 2R2.

The second test proposed by Dahl and González-Rivera does not depend

on the unidentified nuisance parameters g and does not depend on the exact

parameterization of the covariance function. Let us start by considering

the covariance function (3), i.e. Ck(h∗ts) = (1 − h∗ts)2k1(h∗ts≤1), where h∗ts ≡
1
2
dL1(g¯xt,g¯xs) = 1

2
r0tsg, and rts = {|xt1−xs1|, |xt2−xs2|, ..., |xtk−xsk|}0.

Observe the following: (i) h∗ts is a linear function of the nuisance parameters

g; (ii) (1− h∗)2k =
2kP
j=0

¡
2k
j

¢
h∗

j
(−1)j; and (iii) the indicator function 1(h∗ts≤1)

can be approximated by a differentiable function like a logistic function,

i.e. 1(h∗ts≤1) ≈ (1 + exp(−γ(1 − h∗ts))−1 for fixed γ À 0. A second order

Taylor expansion of the logistic function around an average value of h∗ts
together with the computation of the powers of h∗, that is h∗

j
, give rise to

the following auxiliary regression (step 2 of the procedure outlined in the
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previous paragraph)

ûts = φ̄0 + φ̄1

kX
i=1

girts,i + φ̄2

kX
i=1

kX
j≥i
gigjrts,irts,j (5)

+φ̄3

kX
i=1

kX
j≥i

kX
l≥j
gigjglrts,irts,jrts,l + ..+

+φ̄2k+2

kX
i=1

kX
j≥i
..

kX
m

gigj..gmrts,irts,j..rts,m + φ2ex2,ts + νts,

where φ̄j is directly proportional to φ1, that is φ̄j = cjφ1 with cj being the

proportionality parameter. The subindex ts attached to the vectors û, ex2,
and ν means the tsth entry/row in the respective vector for t, s = 1, 2, ...T ,

and gi and rts,i denote the ith entry in the vectors g and rts respectively.

The second order expansion of the logistic function linearizes the auxiliary

regression at the expense of increasing the number of regressors. Notice that

now we can proceed to estimate the auxiliary regression (5) by OLS, treating

the nuisance vector g as part of the parameter space. In the computation

of the test λEOP (g), φ1 = 0 implied that the null hypothesis of linearity

cannot be rejected. Considering the regression (5), φ1 = 0 implies that

φ̄j = 0, j = 0, 1, 2....2k + 2. Hence, the regression (5), where
P2k+2

j=1

¡
k+j−1
k−1

¢
regressors have been added, is the basis to compute a Lagrange multiplier

test that is free of nuisance parameters but, in this case, the new test denoted

λAOP will be χ
2-distributed with 1 +

P2k+2
j=1

¡
k+j−1
k−1

¢
degrees of freedom.

The auxiliary regression (5) is based on the covariance function (3).

Dahl and González-Rivera argued that (3) represents a very broad class of

covariance functions. For a homogenous and isotropic random field, if the

covariance function is differentiable, it can be approximated by a Taylor’s

expansion around an average value of h∗. In this case, Dahl and González-
Rivera showed that the auxiliary regression needed to construct the La-

grange multiplier statistic will be the same as (5). Consequently, the λAOP
test, described in the previous paragraph, is also a test for nonlinearity when

the covariance function is unknown but it can be approximated reasonably
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well by a high order Taylor’s expansion. Dahl and González-Rivera provided

some examples of permissible covariance functions whose characteristics can

be captured by the λAOP test.

3.2 g-tests

Under the null hypothesis H0 : g = 0k, model (1) becomes yt = β0+x
0
tβ1+

λm(0k)+²t, wherem(0k) ∼ N(0, 1). The model is linear on xt, but yt will be
a non-ergodic process. Consider the simplest case where xt is deterministic.

In this case, we have that cov(ytyt−s) = λ2 for any s. Ergodicity is a critical

assumption for the law of large numbers to hold; we need consistency of

the parameters of the model under the null because our tests are based

on the null residuals (see step 1 in the previous section). If the process is

non-ergodic, a test for nonlinearity based on the parameter vector g may

not have a well defined asymptotic distribution under the null.

A simple modification of the specification of the function m(x) will pre-

serve the ergodicity of yt under the null. If we write the modified un-

restricted model as yt = β0 + x
0
tβ1 + λm̃(g ¯ xt) + ²t, where m̃(x) =

m(x) −m(0k), notice that m̃(0k) = 0. The model under the null becomes
yt = β0+x

0
tβ1+ ²t restoring the ergodicity of yt under the null hypothesis,

provided that xt and ²t are stationary and ergodic. Let eCk be the covariance
function that uniquely determines the random field m̃(x). The typical ele-

ment in eCk is defined as eCk(xt,xs) = E{m(xt)−m(0k)}{m(xs)−m(0k)},
hence the covariance function can be written as eCk(xt,xs) = Ck(xt,xs) +
Ck(0k,0k)−Ck(xt,0k)−Ck(0k,xs). Yaglom (1962, pp. 87) names eCk the
structure function.

To construct the g-tests, we assume that Ck(xt,xs) has the parametric

form of (3), with h∗ts ≡ 1
2
dL1(g ¯ xt,g ¯ xs) = 1

2
r0tsg. The likelihood

function is as (4) where Ck is replaced by C̃k. The derivation of the LM

test proceeds as in the previous section. In the case of the g-tests, the λ

parameter is unidentified under the null hypothesis and on calculating the

score function we need to keep λ fixed. Evaluating the score function under
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the null of linearity H0 : g = 0, and keeping λ fixed, the score functions in

vectorized form are

s(gi)|λ2,g=0 = − λ2

2σ2
ex0iu, i = 1, 2, .., k, (6)

s(σ2)|λ2,g=0 = − 1

2σ2
ex0k+1u, (7)

where x̃i =
∂ vec ( eCk)

∂gi
|g=0, for i = 1, 2, .., k, x̃k+1 = vec (IT ), and u =

vec (IT − εε0
σ2
).2

With the scores (6) and (7), we compute the g-test as a TR2 statistic,

which is free of the nuisance parameter λ. We denote such a test by gOP .

The construction of the test statistic follows the procedure already outlined

in the previous section. After having obtained ε̂ and σ̂2 compute the uncen-

tered R2 from the auxiliary regression buts =Pk
i=1
eφierts,i+ eφk+1exk+1,ts+ ν̃ts,

where erts,i = −k (|xti − xsi|− |xti|− |xsi|), for t, s = 1, 2, .., T. The Lagrange
multiplier statistic is then given as gOP = 1

2
T 2R2 ∼ χ2(k).

Notice that the g-test does not depend on the unidentified nuisance

parameter λ. In order to increase power under the alternative hypothesis,

the auxiliary regression can be augmented with higher powers and cross

products of erts, thereby increasing the number of degrees of freedom of the

asymptotic distribution of the test.

4 Modeling quarterly real US GNP growth

Our main objective is to assess the potential nonlinearities in the quarterly

growth rate of the real US GNP from 1947Q1 to 2000Q4 with this new set

of tools based on the theory of random fields. To this end, we implement the

tests for neglected nonlinearity reviewed in the previous section. Based on

the testing results, we estimate a flexible parametric random field regression

model and we present the functional form of the conditional expectation of

the growth rate, which reveals the asymmetric behavior of the GNP growth

2To calculate x̃i, the indicator function has been substituted for a logistic function,
i.e. 1(h∗ts≤1) ≈ (1 + exp(−γ(1− h∗ts))−1 for fixed γ À 0.
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rate in expansions and recessions. We analyze the characteristics of the busi-

ness cycle generated by the random field regression model implementing the

Bry and Boschan (BB) (1971) algorithm converted to quarterly frequency

(BBQ) by Harding and Pagan (2002). The BBQ algorithm permits the

description of the duration and amplitude of the cycle and its phases, the

asymmetric behavior of the phases, and the cumulative movements within

phases.

4.1 Testing for neglected nonlinearity

The specification of the model under the null (the linear component) has a

potential large impact on the family of tests for neglected nonlinearity that

are based on the estimated residuals under the null. Including a large num-

ber of regressors in the model under the null, combined with the relative

robustness of the linear model against moderate deviations from linearity

(the linear model as a first order Taylor approximation to a nonlinear spec-

ification) makes the residuals behave as a white noise process. This implies

that a possible neglected nonlinear component may be very hard to detect

when the model under the null is not parsimoniously specified. On the

other hand, imposing too many restrictions on the linear model under the

null may result in too many rejections because many tests for neglected

nonlinearity based on the Lagrange multiplier principle will not be able to

distinguish dynamic misspecification from misspecification of the functional

form.

Our approach to selecting the linear component of the model is rather

conservative. We use the well known AIC and BIC criteria and we report

the results in Table 1.

The AIC criteria selects the AR(5) model but with zero restrictions

in the third and four lags providing support for the linear component in

Potter’s SETAR model. The BIC criteria selects a more parsimonious spec-

ification, an AR(1), however the AR(5) with some zero restrictions comes

as the second choice. In any case, it is questionable whether the model se-
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Table 1: Selection of the optimal number of lags under the null hypothesis

of linearity. Quarterly growth rates of real US GNP, 1947Q1 - 2000Q4. The

preferred specification is indicated by *.

H0 AIC BIC

AR(1) -0.056 -0.024∗

AR(2) -0.053 -0.005

AR(3) -0.056 -0.008

AR(4) -0.061 0.019

AR(5) -0.060 0.036

yt−1, yt−2, yt−5 -0.064∗ -0.016

lection criteria are able to select the number of lags in the linear component

independently from the lags in the nonlinear component. Ideally we would

like to have test statistics that are able to select the lag structure and the

nature of the nonlinearity jointly. In the absence of such a procedure, when

we test for neglected nonlinearity, we will maintain all the specifications

considered in Table 1.

In Table 2, we report the bootstrapped p-values of the four tests for

neglected nonlinearity based on the theory of random fields3. These are:

λEH(g) is the Hamilton’s Lagrange multiplier statistic based on the Hessian

representation of the information matrix and on the spherical variance-

covariance matrix; λEOP (g) is the test based on the outer product of the score

and on the variance-covariance matrix (3) proposed by Dahl and González-

Rivera (2003); λAOP is the test based on a higher order Taylor approximation

to the variance-covariance function; and gOP is the statistic explained in

section 3.2. All the four tests considered are based on the estimated residuals

from the model estimated under the null hypothesis of linearity. The first

column of Table 2 provides the specification of the linear component of the

model and the second column the regressors considered in the nonlinear

3The bootstrap procedure is described in Dahl and González-Rivera (2003).
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component. These are the elements of the auxiliary regressions explained

in section 3.1 and 3.2. When we deal with a large number of regressors in

the nonlinear component of the model, the implementation of the auxiliary

regression required in the test λAOP may be difficult because we may run

out of degrees of freedom for moderate to small sample sizes. In this case,

we reduce the auxiliary regression to second order terms or, alternatively,

we could remove the terms involving cross-products and leaving the high

power terms. Table 2 has three panels. In the first panel, we investigate

whether Hamilton’s Markov switching (MS)-AR(4) model is plausible. The

MS-AR(4) model states that up to four lags of real US GNP growth should

be included in the linear as well as in the nonlinear part. In the second

panel, we consider a nonlinear component driven by the first five lags; and

in the third panel, we consider the case suggested by Potter (1995) where

only yt−1, yt−2, and yt−5 contribute to the nonlinear component.
In the first panel, the four tests fail to reject the null hypothesis of lin-

earity very strongly. Their p-values are very large providing no evidence

of a nonlinear component driven by the first four lags of the GNP growth

rate. However, when the fifth lag is introduced (second panel), we observe a

dramatic reduction in the p-values of the λAOP and gOP tests. On the other

hand, the p-values of the λEH(g) and λEOP (g) tests either become larger or

remain at the same level. This is a reflection of the nuisance parameter

problem that we argued in Dahl and González-Rivera (2003) and that mo-

tivated the introduction of the λAOP and gOP tests. When the dimensionality

of the model increases, the number of nuisance parameters grows and the

λEH(g) and λEOP (g) tests, which depend on the fixed vector g, tend to loose

power; on the contrary, the λAOP and gOP tests are immune to the number

of nuisance parameters and are more powerful. In the third panel, when

the nonlinear component is a function of yt−1, yt−2, and yt−5, we find that
the λEH(g), λ

A
OP and gOP tests reject linearity at the customary 5 or 10 %

significance levels. The preferred specification is a linear component repre-

sented either by an AR(5) or an AR(2), and a nonlinear component driven

by yt−1, yt−2, and yt−5. As soon as the number of nuisance parameters is
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Table 2: Bootstrapped p-values of the tests for neglected nonlinearity for the

quarterly growth rates of real US GNP, 1947Q1 - 2000Q4. 1000 bootstrap

resamples. Rejection of linearity at the 10 % significance level is indicated

by *.

Test Statistics

H0 Aux. Regres λEH(g) λEOP (g) λAOP gOP

AR(1) yt−1, .., yt−4 0.558 0.494 0.514 0.429

AR(2) yt−1, .., yt−4 0.485 0.459 0.214 0.328

AR(3) yt−1, .., yt−4 0.498 0.455 0.513 0.276

AR(4) yt−1, .., yt−4 0.787 0.528 0.503 0.474

AR(5) yt−1, .., yt−4 0.774 0.475 0.543 0.414

yt−1, yt−2, yt−5 yt−1, .., yt−4 0.496 0.398 0.700 0.612

AR(1) yt−1, .., yt−5 0.883 0.607 0.186 0.273

AR(2) yt−1, .., yt−5 0.986 0.544 0.086∗ 0.134

AR(3) yt−1, .., yt−5 0.993 0.540 0.209 0.173

AR(4) yt−1, .., yt−5 0.617 0.602 0.289 0.320

AR(5) yt−1, .., yt−5 0.508 0.576 0.143 0.103

yt−1, yt−2, yt−5 yt−1, .., yt−5 0.699 0.560 0.145 0.490

AR(1) yt−1, yt−2, yt−5 0.181 0.433 0.120 0.178

AR(2) yt−1, yt−2, yt−5 0.319 0.539 0.082∗ 0.053∗

AR(3) yt−1, yt−2, yt−5 0.233 0.375 0.113 0.085∗

AR(4) yt−1, yt−2, yt−5 0.121 0.433 0.171 0.209

AR(5) yt−1, yt−2, yt−5 0.056∗ 0.341 0.056∗ 0.301

yt−1, yt−2, yt−5 yt−1, yt−2, yt−5 0.099∗ 0.437 0.064∗ 0.623
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reduced, the p-values of the λEH(g) and λEOP (g) become smaller (compare

the third panel with the first), and the λEH(g) test is able to reject the null

of linearity at the 10% significance level.

In summary, the overall assessment of the four tests for neglected non-

linearity is that there is a nonlinear component in the quarterly growth rate

of real US GNP most likely driven by yt−5, and marginally, by yt−1, and
yt−2. There are three potential specifications that emerge. The most par-
simonious is a linear AR(2) with a nonlinear component that is a function

of yt−1, yt−2, and yt−5. The next is a model with yt−1, yt−2, and yt−5 in the
linear and nonlinear components, and the last is a linear AR(5) with non-

linearities due to yt−1, yt−2, and yt−5. We proceed conservatively choosing
to estimate the latter.

4.2 Identifying the nonlinear component by estima-
tion

We estimate a fully parameterized random field regression model as in

Hamilton (2001). Letting λ = ς × σ, we consider the following reparame-

terized version of model (1)

yt = β0 + x
0
tβ1 + σ{ςm(g ¯ xt) + ηt}

ηt → N (0, 1)

where xt = {yt−1, yt−2, yt−3, yt−4, yt−5}0 . The estimation and statistical sig-
nificance of ς is of paramount importance to assert the existence of nonlin-

earities. Conditional on ς being significant, we produce parametric inference

on the components that drive the nonlinear part of the model.

In Tables 3 and 4, we report the results of maximum likelihood estima-

tion and Bayesian estimation of the above model for two different random

fields. In Table 3, we consider a random field with the spherical covari-

ance function, and, in Table 4, we deal with the covariance function (3)

proposed by Dahl and González-Rivera (2003). In both tables, we supply

Bayesian estimates of the parameters and their standard errors based on
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Hamilton’s ”t/normal”-mixture importance sampler (Hamilton, 2001), and

on Geweke’s ”split-t/normal”-mixture importance sampler (Geweke, 1989).

The specification of the model consists of an AR(5) in the linear component

and a nonlinear component driven by yt−1, yt−2, and yt−5.
The estimation results of Table 3 support very strongly the nonlinear-

ity of the model. The estimate ς̂ is highly significant and the magnitude

of the estimates is statistically similar across estimation techniques. The

maximum likelihood estimates of g1, g2, and g5 are all significant at the 5%

level. The Bayesian analysis supports strongly the existence of a nonlinear

component dominated by yt−5 and marginally by yt−1. From the accuracy

measures, it seems that Hamilton’s importance sampler is relative better

compared to Geweke’s.

The estimation results of Table 4 are similar to those of Table 3. There

is support for the nonlinearity of the model as the estimate ς̂ is statistically

significant. The linear estimates are almost identical to those of Table 3, and

the value of the log-likelihood function is the same for both specifications of

the covariance function of the random field. Even though the statistical sig-

nificance of g1, g2, and g5 has been reduced, it seems that yt−5 is the major
force driving the nonlinear component. We should note that the magni-

tude of g1, g2, and g5 is smaller than that of the estimates in Hamilton’s

specification. However, we find that there is a substantial overlap between

the 95% confidence intervals for these parameters when we compare both

specifications.

4.3 Dissecting the business cycle

We assess the contribution of the estimated flexible parametric regression

model to the understanding of the US business cycle within the context

provided by Harding and Pagan (2002). The basic insight is that a statistical

model is performing well if it is able to replicate the characteristics of the

actual business cycle. The description of the cycle follows the standards

established by the NBER, which consist of locating the peaks and troughs
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Table 3: Maximum likelihood based estimates and Bayesian estimates of the

nonlinear US-GNP model using Hamilton’s Spherical Covariance Function

and the mixed split-t based Importance Sampling Scheme of Geweke (1989)

and mixed t based Importance Sampling Scheme of Hamilton (2001).

Maxim. Likelihood Bayesian Estimation Bayesian Estimation

Geweke’s Split-t mixture Hamilton’s t-mixture

Estimate Std-err. Estimate Std-err. RNE Estimate Std-err. RNE

β0 0.903 0.189 0.920 0.221 0.129 0.930 0.207 0.216

β1 0.303 0.088 0.299 0.094 0.136 0.296 0.092 0.221

β2 0.088 0.091 0.082 0.101 0.127 0.081 0.098 0.226

β3 -0.081 0.071 -0.089 0.071 0.161 -0.085 0.072 0.246

β4 -0.101 0.070 -0.091 0.071 0.156 -0.097 0.071 0.241

β5 -0.143 0.088 -0.143 0.097 0.131 -0.147 0.096 0.220

g1 0.568 0.242 0.607 0.360 0.358 0.566 0.253 0.461

g2 0.652 0.301 0.838 0.637 0.329 0.727 0.469 0.565

g5 1.058 0.316 1.115 0.597 0.241 0.997 0.418 0.438

ς 0.558 0.200 0.710 0.286 0.312 0.641 0.177 0.401

σ 0.846 0.061 0.819 0.079 0.223 0.838 0.058 0.302

logL 283.25 . .

E{w(θ)} . 0.106 0.242

ω1 . 177.43 60.67

ω10 . 144.01 45.23

Notes:
RNE : relative numerical efficiency of the importance sampling

density, see Geweke (1989), pp. 1322

ω1,ω10 order statistics pertaining to the importance sampling density; the

subscripts refer to the order, see Geweke (1989), pp. 1331

w(θ) : the importance sampling density as a function of the parameter vector θ.
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Table 4: Maximum likelihood based estimates and Bayesian estimates of the

nonlinear US-GNP model using Dahl - González-Rivera Covariance Func-

tion and the mixed split-t based Importance Sampling Scheme of Geweke

(1989) and mixed t based Importance Sampling Scheme of Hamilton (2001).

Maxim. Likelihood Bayesian Estimation Bayesian Estimation

Geweke’s Split-t mixture Hamilton’s t-mixture

Estimate Std-err. Estimate Std-err. RNE Estimate Std-err. RNE

β0 0.911 0.204 0.877 0.186 0.190 0.882 0.184 0.245

β1 0.293 0.085 0.293 0.089 0.171 0.294 0.085 0.230

β2 0.091 0.092 0.095 0.092 0.179 0.094 0.091 0.232

β3 -0.101 0.075 -0.124 0.074 0.189 -0.106 0.071 0.245

β4 -0.078 0.072 -0.055 0.074 0.183 -0.072 0.069 0.242

β5 -0.140 0.089 -0.135 0.089 0.184 -0.136 0.088 0.237

g1 0.095 0.093 0.197 0.201 0.474 0.167 0.182 0.524

g2 0.250 0.278 0.389 0.276 0.340 0.362 0.300 0.397

g5 0.354 0.281 0.445 0.304 0.298 0.408 0.299 0.407

ς 0.714 0.303 1.315 0.684 0.209 0.947 0.516 0.197

σ 0.783 0.102 0.643 0.151 0.206 0.734 0.114 0.196

logL 282.87 . .

E{w(θ)} 0.273 0.269

ω1 . 56.91 84.00

ω10 . 46.53 56.47

Notes:
RNE : relative numerical efficiency of the importance sampling

density, see Geweke (1989) pp. 1322

ω1,ω10 order statistics pertaining to the importance sampling density; the

subscripts refer to the order, see Geweke (1989) pp. 1331

w(θ) : the importance sampling density as a function of the parameter vector θ.
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(turning points) in the level of the GNP time series, together with a set

of rules to determine the duration and amplitude of phases (from peak

to through, and viceversa) and full cycles (from peak to peak, and from

through to through). Some of the rules are that a full cycle must have

a minimum duration of 15 months (5 quarters) and that a phase must

last at least 6 months (2 quarters). The algorithm to implement the NBER

standards was developed by Bry and Boschan (BB) (1971) for monthly data.

Harding and Pagan (2002) have adapted the BB algorithm to quarterly data,

which they named BBQ.

We implement the BBQ algorithm4 for the actual quarterly GNP from

1947Q1 to 2000Q4 and for simulated data from the flexible parametric re-

gression models estimated in Tables 3 and 4. For comparison purposes, we

have also simulated data from a linear AR(2) and a linear AR(5) model

for the GNP growth rate. The results are reported in Table 5. The BBQ

algorithm examines four characteristics of the business cycle: the duration

of the cycle and its phases, measured in quarters; the amplitude of the cycle

and its phases, measured as percentage loss (gain) of GNP from the previous

peak (trough); the cumulated losses (gains) in output from peak to trough

(from trough to peak) relative to the previous peak (through) in percentage

terms; and the excess cumulated movements, in percentage terms, that re-

sult from approximating the actual cumulative movements with a “triangle

approximation”5.

The full business cycle for the US GNP lasts on average about 21 quar-

ters, with short lived contractions (from peak to trough) of about 3 quarters,

and longer expansions (from trough to peak) of about 17 quarters. Both ran-

dom field models and the linear AR(2) are able to replicate approximately

the duration of the cycle; however, the linear AR(5), while replicating the

duration of contractions, produces longer expansions, extending the dura-

4We thank Don Harding and Adrian Pagan for making their BBQ algorithm available
from Harding’s web page.

5For a more detailed description of these four measures, see Harding and Pagan (2002),

pp. 369-370.
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tion of the cycle to 27 quarters. In general, the contraction phase of the cycle

is more or less faithfully replicated by the four models considered in Table 5.

The random field model with the Dahl-González-Rivera (D-GR) covariance

is the best to reproduce the amplitude of the contraction. All models are

able to reproduce the mean cumulation and the mean excess. The latter is

practically zero, corroborating that the “triangle approximation” is a good

one and that the average contraction phase is linear.

The expansion phase of the cycle is more difficult to replicate. In the

actual data, the mean excess is 1.12% and all the four models fail to replicate

it. The random field model with D-GR covariance produces the largest mean

excess of 0.16% with a 75% quartile of 0.40. In the remaining three counts -

duration, amplitude, and cumulation- the random field models have a clear

advantage over the linear models. The random field model with D-GR

covariance replicates the percentual cumulation very accurately, while the

linear models -in particular, the AR(5)- produce too large a cumulation.

Furthermore, the dispersion of the duration, amplitude and cumulation,

measured by the interquartile range, is the smaller for the random field

model with D-GR covariance.

Harding and Pagan (2002) found very little evidence for nonlinear mod-

els being able to replicate the characteristics of the business cycle. They

considered two popular specifications: the two-state Markov regime switch-

ing of Hamilton (1989), and an extension of this model by Durland and

McCurdy (1994) where the transition probabilities depend on the duration

of the expansion or contraction. In Table 6, we compare Harding and Pagan

results to those of the random field model with D-GR covariance.

The Hamilton and the Duration Dependence models produces longer

contractions as well as longer average amplitudes and cumulations than

those of the actual data. In the expansion phase, the average amplitude is

also larger but the most striking difference comes from the excessive average

cumulation produced by the Hamilton’s model.

In summary, we find that a nonlinear model as the flexible parametric

regression model with a D-GR covariance function is able to replicate very
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Table 5: Business cycle characteristics. Quarterly real US GNP, 1947Q1-

2000Q4. Flexible parametric regresssion models versus linear models.

Data Random Field Random Field AR(2) AR(5)

US GNP Spherical cov. D-GR covar.

Contractions

(peak to trough)

Mean Duration 3.22 3.33 3.40 3.32 3.28

(in quarters) 3.00, 3.67 3.07, 3.67 2.86, 3.71 2.80, 3.67

Mean Amplitude (%) -2.32 -1.79 -2.17 -1.87 -1.82

-2.03, -1.57 -2.44, -1.92 -2.22, -1.54 -2.15, -1.51

Mean Cumulation (%) -3.53 -3.13 -3.89 -3.98 -3.68

-3.73, -2.41 -4.82, -2.98 -4.69, -2.50 -4.32, -2.36

Mean Excess(%) 0.01 0.03 0.05 0.00 -0.01

-0.02, 0.08 -0.02, 0.10 -0.06, 0.06 -0.07, 0.05

Expansions

(trough to peak)

Mean Duration 17.50 19.51 16.44 20.17 23.57

(in quarters) 15.62, 21.86 12.92, 18.89 15.90, 23.43 17.87, 28.20

Mean Amplitude (%) 20.60 19.67 18.32 21.70 25.51

15.22, 22.46 14.17, 21.21 16.47, 25.63 17.87, 30.94

Mean Cumulation (%) 259.82 318.93 251.70 373.59 537.86

185.8, 385.0 140.1, 296.7 190.7, 466.9 250.1, 689.5

Mean Excess (%) 1.12 0.05 0.16 0.04 -0.04

-0.23, 0.36 -0.08, 0.40 -0.31, 0.35 -0.34, 0.27

Note: The numbers below the mean are the 25% and 75% quartiles.
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Table 6: Business cycle characteristics. Quarterly real US GNP, 1947Q1-

2000Q4. Flexible parametric regresssion models versus nonlinear models.

Data Random Field Hamilton* Dur Dep*

US GNP D-GR covar.

Contractions

(peak to trough)

Mean Duration 3.22 3.40 4.4 4.8

Mean Amplitude (%) -2.32 -2.17 -2.8 -3.3

Mean Cumulation (%) -3.53 -3.89 -8.2 -8.5

Mean Excess(%) 0.01 0.05 0.0 0.0

Expansions

(trough to peak)

Mean Duration 17.50 16.44 20.0 16.9

Mean Amplitude (%) 20.60 18.32 27.3 25.0

Mean Cumulation (%) 259.82 251.70 496 293

Mean Excess (%) 1.12 0.16 -0.0 0.0

* These two columns are taken from Harding and Pagan (2002), Table 5.

Their period of study is 1947Q1-1997Q1.
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faithfully the characteristics of the US GNP business cycle, though the aver-

age excess in the expansion phase remains to be explained. We address this

issue examining the conditional mean function estimated with the random

field model.

In the actual data, the large average excess of the expansion phase in-

dicates that the “triangle approximation” is not very accurate and that

we should expect deviation from linearity going from a trough to a peak,

in particular, the expansion phase must be concave. This shape is com-

patible with the claim of several authors for whom the business cycle con-

sists of three regimes, i.e. Sichel (1994), Clements and Krolzig (1998).

They differentiate a high growth recovery phase after a contraction from a

moderate growth phase that immediately follows. Hence, in an expansion

phase we should be able to detect faster than average growth rates after

a trough and slower before a peak, implying the existence of an inflexion

point somewhere in the phase. When we examine the conditional mean

E(yt|yt−1, yt−2, yt−3, yt−4, yt−5) estimated with the random field model, we

find an accurate description of the nonlinearity in the expansion phase that

is precisely compatible with the existence of three regimes in the business

cycle. We proceed in the following fashion. Let us assume that the business

cycle has a linear contraction shape and a concave expansion shape. We

inquire about the implications of this shape in the analysis of the functional

form of the growth rate, aiming to understand the nonlinearity features that

we found in the statistical testing and estimation stages. In particular, we

are intrigued by the role of the fifth lag of the growth rate in driving the

nonlinearity of the conditional mean of the US GNP growth rate.

In Figure 1, we draw a stylized business cycle of the GNP level (in logs)

with some of the characteristics of the US business cycle.

The contraction phase is linear and the average duration from peak to

trough is approximately three quarters, while the expansion phase is mostly

concave and its duration is about seventeen quarters. We distinguish three

stages of growth in the expansion phase: aggressive growth after a trough

with growth rates larger than the average and convex shape; moderate
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growth with rates around the average and concave shape; and slow growth

before the peak where the growth rate eventually becomes zero just before

the start of the contraction phase. The question we ask is the following.

If the average business cycle has the characteristics described in Figure 1,

which functional form should we expect when we plot the conditional ex-

pected growth rate E(yt|yt−1, yt−2, yt−3, yt−4, yt−5) against any of the com-
ponents of the information set? Note that Figure 1 describes the dynamics

of the GNP level and we inquire about the functional form of the growth

rate, which is the first derivative of the curve in Figure 1. According to the

results obtained in the statistical testing and estimation stages, we focus

mainly on the contribution of the first lag (Figure 2) and fifth lag (Figure

3) to the functional form of the conditional mean of the growth rate.

Figure 2 has two panels. The left panel is a stylized version of the

functional form of the conditional mean E(yt|yt−1, yt−2, yt−3, yt−4, yt−5) as a
function of yt−1. The right panel is the actual functional form estimated by
the random field regression model with the D-GR covariance function for

all the other variables in the conditioning set fixed at their sample means.

Let us focus in the left panel first. In the plane marked by coordinates

(yt−1, yt), two threshold values are important: zero growth rate (at the peak
or at the trough of the cycle) and the unconditional mean of the growth

rate. Since contractions are linear, we should expect a constant growth rate

and positive first order autocorrelation such as negative growth rates are

followed by negative growth rates in the next period. Hence, we have the

functional form plotted in the south-west quadrant of the left panel. In the

expansion phase, if we are in the aggressive part of the phase, just after

the trough, faster growth rates than the average will be followed by larger

growth rates in the next period due to the convexity of the cycle, placing

the functional form in the upper north-east quadrant. When we enter in the

moderate growth part of the expansion phase, the cycle is already concave

and growth rates around the average µ will be followed by smaller (below or

around µ) growth rates. Finally, on approaching the peak of the expansion,

the one-period dynamics of the growth rate is constrained to the square
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Figure 2.
Understanding nonlinearity due to the first lag of the growth rate
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delimited by the points (0, 0) and (µ, µ). Inspection of the right panel reveals

that the estimated conditional mean seems to agree with the description of

the stylized conditional mean in the left. The unconditional mean of the

growth rate is 0.86% per quarter and the standard deviation is 1.02%. The

aggressive growth part of the expansion seems to have growth rates of 1.5%

and above, approximately one standard deviation above the mean. It is

fair to say that a linear model in yt−1 would have basically missed only
the moderate growth part of the expansion, this may be a reason why the

nonlinearity in yt−1 is not terribly strong. However, a very different picture
emerges when we analyze the contribution of yt−5 to the nonlinearity of the
conditional mean.

In Figure 3, we analyze the functional form of the conditional mean

E(yt|yt−1, yt−2, yt−3, yt−4, yt−5) as a function of yt−5. The organization of
this figure is the same as that of Figure 2. If the average duration of

the expansion phase is about seventeen quarters, five quarters represent

approximately one third of the duration. Given that the contraction phase

is about three quarters, the fifth order autocorrelation between growth rates

in the contraction and those in the expansion must be negative. In the plane

marked by coordinates (yt−5, yt), to the left of the vertical axis that crosses
the point (0,0), we picture the negative correlation between the areas T and

A of Figure 1. During the expansion phase, the fifth order autocorrelation

will change sign. In the aggressive part of the phase, faster growth rates

than the average will be followed five periods into the future by growth

rates around or below µ that we observe in the moderate part of the phase,

which explains the negative autocorrelation between the areas A and M of

Figure 1. Finally, the correlation between moderate growth rates and slow

growth rates (areas M and S of Figure 1) will be positive since both areas

are in the concave part of the phase. Inspection of the right panel confirms

the stylized description of the conditional mean in the left.

In conclusion, the flexible parametric regression model lends support to a

nonlinear, asymmetric business cycle with three regimes: linear contraction,

aggressive early expansion, and moderate/slow late expansion, as opposed
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to models with just two regimes, contractions and expansions.

5 Conclusions

Nonparametric and semiparametric models for the growth rate of the US

GNP are surprisingly absent from the many specifications that have being

proposed during the last decade. In this paper, we have analyzed nonlin-

earities in the quarterly growth rate of the US GNP within the framework

of Hamilton (2001) flexible parametric regression. This model is specified

in a nonparametric/semiparametric fashion because no functional form for

the conditional mean is assumed but, nevertheless, the estimation is fully

parametric. We have implemented a battery of new tests for neglected

nonlinearity based on the theory of random fields proposed by Dahl and

González-Rivera (2003) and we have found that both types of statistical in-

ference, testing and estimation, are in agreement on identifying the source of

nonlinearity, which comes from the fifth lag of the growth rate. Our model

produces a business cycle that when is dissected with the BBQ algorithm

mimics very faithfully the characteristics of the actual US business cycle.

We have shown that the flexible parametric regression model is superior to

linear and nonlinear parametric specifications. On understanding why the

fifth lag of the growth rate is so relevant, we have found that the nonpara-

metrically estimated conditional mean supports parametric specifications

that claim that there are three phases in the business cycle: rapid linear

contractions, aggressive short-lived convex early expansions, and moder-

ate/slow relatively long concave late expansions.
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