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Rare Events: Limiting Their Damage
Through Advances in Modeling

Gloria Gonzélez-Rivera

PREVIEW Rare events such as tsunamis and avalanches often result in severe losses, but
such “acts of God” have been beyond the predictive ability of our forecasting models. Ad-
vances are being made, however, in forecasting rare economic events. As Gloria tells us,
the key is to account for system connectedness to single out the fragile side of an eco-
nomic network, to quantify the cross-linkages among financial and other institutions,
and to perform stress tests that, when credible, will be able to reduce the uncertainty as-
sociated with a potentially catastrophic event. .

INTRODUCTION

The financial crisis of 2008, with its enor-
mous consequences for the world economy,
has brought a renewed interest in forecasting
rare events. The crisis has triggered questions
about the validity and forecasting ability of
economic models when confronted with un-
familiar circumstances.

One of the aftershocks has been a crisis of
confidence in forecasters and their meth-
ods. However, the academic community
has responded with unusual energy in ex-
ploring new venues of research, revisiting
old methods, and opening new paths to in-
clude methods from other disciplines. The
9th Workshop of the International Institute
of Forecasters, jointly organized with the
Federal Reserve Bank of San Francisco and
held in September 2012, showcased the lat-
est advances on predicting rare events and
modeling systemic and idiosyncratic risk.
For a summary, see Gonzalez-Rivera and
colleagues (2012) in The Oracle.

While rare events, as the name indicates, oc-
cur very infrequently, their consequences
tend to be catastrophic. Natural disasters
like earthquakes, tsunamis, floods, and ava-
lanches fit this category. In general, they are
isolated events and classified as “acts of God.”
However, when we consider an economic
system, rare events are defined as low-prob-
ability, high-magnitude episodes that carry
devastating losses, do not for the most part
happen spontaneously or in isolation, and
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are man-made. Precisely because of these
last two characteristics — lack of spontaneity,
human causation - there is hope for forecast-
ing economic rare events.

The hope rests on a multidimensional ap-
proach to the modeling and monitoring
of the many risks in an economic system,
which is increasingly hyper-connected. The
key notion is system connectedness. Episodes
that seem rare and idiosyncratic at the out-
set, like the Lehman bankruptcy in 2008, can
quickly become systemic events that jeopar-
dize the stability and functioning of entire
economies.

EXTREME VALUE DISTRIBUTIONS
AND QUANTILES

The objective of conventional time se-
ries models, e.g., simple and exponential-
smoothing mechanisms, seasonal and trend
filters, ARIMA models, etc., is to construct a
forecast as the expected value (that is, the av-
erage) of a future random variable. But with
rare events, focusing our forecast on the av-
erage outcomes is useless; rather, we need to
focus on the low-probability sections of the
distribution of possible outcomes. But here
is where we find our first problem. Precisely
because they are low-probability events, the
data is very sparse. In addition, we are forced
to contemplate the rare event beyond the
range of the available data. In the absence
of long historical records, we need mathe-
matical and statistical theories to extrapolate
from the available data.




Extreme Value Theory (EVT) is a standard
tool in the insurance industry as well as in
many engineering sectors (Embrechts and
colleagues, 1997). These industries are con-
cerned with the modeling of extreme events.
For instance, insurance firms need to set up
their premiums such that, when the big event
happens, the payments of insurance claims
do not make the insurers insolvent.

At the core of EVT, we have extreme-value
distributions like Fréchet, Weibull, and
Gumbel, which are distributions that char-
acterize the maximum outcomes — for in-
stance, the modeling of the largest claims in
an insurer portfolio. These functions model
exclusively the low-probability area (location
of rare events) of the variable of interest, dis-
regarding the most frequent events. Figure 1
shows an example of a standard Fréchet dis-
tribution.

Figure 1. An Extreme Value Distribution
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Figure 2. Quantile Estimation
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In EVT, it is also of interest to compute the
mean excess function beyond some threshold
u set by the researcher. For instance, within
the insurance industry, we could compute
what the average claim will be once the
claims exceed a threshold of $1 million.

Key Points

- Man-made rare events are defined as low-
probability, high-magnitude episodes that
carry devastating losses, but for the most
part do not happen spontaneously or in iso-
lation. For forecasting rare events, the key
notion is system connectedness. Episodes
that seem rare and idiosyncratic at the out-
set, like the Lehman bankruptcy in 2008,
could quickly become systemic events that
jeopardize the stability and functioning of

entire economies.

- The objective of conventional time-series
models is to construct a forecast as the ex-
pected value (that is, the average) of a future
random variable. But with rare events, focus-
ing our forecast on the average outcomes
is useless; rather, we need to focus on the
low-probability sections of the distribution
of possible outcomes. Use of extreme-value
distributions and quantile estimation tech-
niques are proving to be valuable.

» Modeling of systemic risk must be multivari-
ate; it may start by assessing individual risk
functions, but in the aggregate we need a
notion of interconnectedness able to single
out the fragile sides of the network. Network
modeling is useful to find the critical time
just before the network is ready to collapse.

«Though forecasting the rare event is not a
straightforward exercise, the consequences
of a rare event can be simulated and stress
testing performed to reduce the uncertainty
associated with the potentially catastrophic

event.

Quantile Estimation is another approach
to model low-probability events. In this case,
we consider the full distribution of possible
values for the variable to be predicted - that
is, the cumulative distribution function -
and we focus on the lower or upper quantiles.
The low a % quantile is defined as a value in
the tail of Figure 2 such that the probability
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associated with that value is a %. Since our
interest is in low-probability events, custom-
ary levels for a are 5%, 1%, or 0.5%.

A standard tool for risk management in the
financial industry, required as well by finan-
cial regulators, is the Value-at-Risk (VaR) of
the market portfolios of the banking institu-
tions. VaR is the 5% or 1% quantile of the
profit/loss function of the market portfolio
(Jorion, 2001). As in EVT, it is also useful to
compute the expected shortfall, which is the
average loss of the portfolio once the losses
exceed the VaR value.

In summary, forecasting rare events will re-
quire building time-series models for maxi-
mum (or minimum) observations based on
EVT and/or time-series models for low-level
quantiles, and computing their correspond-
ing average excesses, and shortfalls.

NEW RESEARCH
Three major themes permeated the VaRr,
contributions of the September 2012
IIF workshop mentioned above: VaR

o Multivariate analyses of risks
« Understanding of risk networks

« Stress testing to analyze the consequences
of rare events

At the micro level, companies may shield
from risk or manage a rare event by “diver-
sifying” it away. At the macro level, how-
ever, there is a limit on how much risk can
be transferred or how many institutions are
willing to carry out the other side of a trade.
Any macro modeling of systemic risk must
be multivariate; it may start by assessing in-
dividual risk functions, but in the aggregate
we need a notion of interconnectedness able
to single out the fragile sides of the network.
Network modeling has been embraced in oth-
er disciplines and is making its way into eco-
nomic modeling. By nature, the rare event
may be outside the range of available data;
to assess the consequences of the event, we
will have to resort to stress testing, creating
scenarios that are rare and then, under these
circumstances, forecasting the reaction of
the economy.
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Multivariate Analysis of Risk

From a system perspective, it is crucial to un-
derstand that the risk faced by an individual
institution may have spillovers on other in-
stitutions. This means that a rare event for
an institution can become a systemic event
through the linkages in the system.

From a macroeconomic point of view, it
is important under situations of financial
distress to understand the risk sensitivity of
financial institutions to market shocks. For
instance, suppose that there are n institu-
tions in the system. The macroeconomic
analyst would like to estimate a multivari-
ate system of VaRs (Values-at-Risk) as the
following (for the sake of simplicity, the lag
structure is very short — just one lag — but we
could include further lags in each equation):

VaR, = B,VaR, ., + B,VaR,,  +...+ B, VaR,  + Xy,

s, ﬁZlVaRl,t—l + ﬂZZVaRZ,r—l Foent By, VaR,,, + X;y:
=B VaR . +B,,VaR,, , +....+ B, VaR,, , +X,7,

Here, X; represents other exogenous vari-
ables in the information set of the forecaster.
This system links all the VaRs of the  institu-
tions, and consequently a shock in any insti-
tution would work its way to the rest through
the dynamics of the system. We could view
such a system as a model for financial con-
tagion. The sensitivity of each institution
will be a function of the coefficients in the
system. While the estimation and testing
of such a system requires advanced econo-
metric techniques, Dan Hamilton’s article in
Foresight (2011) presents a tutorial introduc-
tion to the modeling of multivariate autore-
gressions.

Risk Networks

The analysis of networks is very prevalent in
other disciplines — computer science, to give
one example. It consists of quantifying the
cross-linkages (nodes, number of connec-
tions, distances between nodes, etc.) among
financial and other institutions, such that




Figure 3. Risk Network of the U.S. Financial System
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those firms that are more systemically rel-
evant are identified. For an introduction to
networks, see Barabasi and Frangos (2002).
Network graphs, such as Figure 3, offer a vi-
sual tool to assess the interconnectedness of
the system of institutions.

Figure 3 (taken from Hautsch and colleagues,
2012, “Financial Network Systemic Risk
Contributions,” presented at the 9th Work-
shop of the IIF) shows a risk network of the
U.S. financial system highlighting key com-
panies in the system in 2000-8. Depositories
are marked in red, broker dealers in green,
Insurance companies in black, other in blue.

Networks can also be combined with VaRs
systems, like the one presented above, so that
we obtain a risk network graph as a represen-
. fation of the system under financial stress.
It is very informative to observe how other
sciences model behavioral dynamics in a
network, such as a zoologist might approach
the social collapse of the hierarchy within a
group of monkeys. The methodological ob-
- Jective is to find the critical time just before
the network is ready to collapse. These meth-
" ods also have direct applications to the mod-
cling of financial networks and monitoring
. of systemic risk.

Stress Testing

Though forecasting the rare event is not a
straightforward exercise, the consequences
can be simulated. Stress testing is a practice
that, when credible, has the capability to
reduce the uncertainty associated with the
potentially catastrophic event. The objec-
tive of stress testing is to convert uncertainty
into a risk assessment by mapping extreme
but probable macro scenarios to micro out-
comes, e.g. losses in loan portfolios, short-
falls in provisions/capital, lower income
streams, etc. (Gonzélez-Rivera, 2003). Once
the stressful macro scenarios are defined,
stress testing is the ultimate exercise in fore-
casting, including dynamic projections of
revenues and expenses, evolution of the bal-
ance sheet of the institution, projections of
liquidity and capital ratios, probability of de-
faults, bankruptcy points, and so on. Stress
testing can also be understood as a protec-
tion mechanism for the solvency of institu-
tions, because it will allow implementing
corrective measures in anticipation of poten-
tially devastating shocks to the system. Stress
testing can also be incorporated into a risk
network to analyze the reaction across insti-
tutions and possible feedback mechanisms
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within the network provoked by the stressful

macro scenarios.

Man-made rare events do not happen in iso-
lation. There are warning signals hidden in
the data so that constructing and monitor-
ing early warning indicators is a practice that
should provide some protection against the
rare event. Such an indicator will be useful
if it is timely, precise, and stable; these prop-
erties need to be evaluated in relation to an
objective function, which should balance the
cost of false alarms (false positive) and of
missed signals (false negative).

The receiver operating characteristic (ROC)
curve is a function that summarizes the
trade-offs between all possible false-positive
and false-negative signals, and as such it of-
fers a good evaluation tool for any proposed
indicator. This type of function is already in
use in other sciences (engineering, medicine,
crime detection), and is finding its way into
economics. Wil Gorr’s (2011) article in Fore-
sight shows how ROC analysis can be applied
to forecasting exceptional situations.

Some of the early warning indicators for
systemic risk that are at least somewhat suc-
cessful (evaluated according to ROC) for
predicting economic crises are measures of
excessive leverage, like the credit-to-GDP
ratio (very much present in the financial cri-
sis of 2008); measures of explosive growth
in asset prices, like real estate prices in the
U.S. and Europe before 2008; and measures
of liquidity shortages, like the debt-service
ratio.
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CONCLUSION

The rare catastrophic event can be mea-
sured, at least probabilistically, and we can
predict the consequences of such an event;
our econometric and statistical methodolo-
gies are sufficiently advanced to measure the
sources of fragility in the economic system
and to detect in advance when the system
is at risk. Making the system more robust
in the face of catastrophic shocks is still a
challenge, however. Insurance benefits are
predicated on the basis that the risks we wish
to insure against are uncorrelated - but the
world’s economies have become more hyper-
connected to the point that the benefits from
diversification are disappearing. In this state
of affairs, it seems that solutions must come
from macroeconomic policies that provide
incentives to reduce reckless business prac-
tices, ensure that macro prudential regula-
tion is effective and timely, and that buffers,
firewalls, and circuit breakers are positioned
so they could isolate the rare event and avoid
its propagation throughout the system.
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