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Summary

We approximate probabilistic forecasts for interval-valued time series by offering
alternative approaches. After fitting a possibly non-Gaussian bivariate vec-
tor autoregression (VAR) model to the center/log-range system, we transform
prediction regions (analytical and bootstrap) for this system into regions for cen-
ter/range and upper/lower bounds systems. Monte Carlo simulations show that
bootstrap methods are preferred according to several new metrics. For daily S&P
500 low/high returns, we build joint conditional prediction regions of the return
level and volatility. We illustrate the usefulness of obtaining bootstrap forecasts
regions for low/high returns by developing a trading strategy and showing its
profitability when compared to using point forecasts.

1 INTRODUCTION

Data sets in interval format are common in economics and finance. First, in some instances, intervals could be the only
data available to the researcher. For example, when data are sensitive to privacy concerns, the records must be aggre-
gated and measured as intervals. Wealth and income are measured as intervals in the Health and Retirement Study
(HRS) and Current Population Survey (CPS), respectively; see Manski and Tammer (2002). Also, in bond markets, traders
report bid/ask intervals; see R. Pascual and Veredas (2010) and Bien et al. (2011). Interval data also appear in contingent
valuation surveys that aim to elicit the willingness to pay of respondents for some good not currently marketed; see, for
instance, Fernández et al. (2004). In energy markets, the US Energy Information Administration provides min/max retail
prices of electricity at the state level; see García-Ascanio and Maté (2010) for an application to electric power demand.
The US Department of Agriculture also provides daily low and high prices on agricultural commodities and livestock;
see Lin and González-Rivera (2016) and Xiong et al. (2015) for applications. Second, interval data can also appear when
dealing with big data sets to reduce dimensionality. For example, in stock markets, when intraday prices are available,
one could analyze daily intervals of low/high asset prices; see, for example, Rodrigues and Salish (2015). One advantage
of analyzing low/high stock price intervals instead of all available intraday returns is that problems related to irregular
temporal spacing, strong diurnal patterns, microstructure noise or complex dependencies are avoided; see Russell and
Engle (2010) for the problems associated with high-frequency data, and Alizadeh et al. (2002), Brandt and Diebold
(2006), and Shu and Zhang (2006) for the robustness of the volatility estimator based on the range in the presence
of microstructure noise such as bid–ask bounce. Additionally, interval prices obviously have more information than
one-point prices. High and low prices have, jointly, information about both level and volatility. Thus we expect more
efficient estimation by using interval-valued data; see, among others, Xiong et al. (2017) for the advantages of high/low
prices when compared to one-point prices.

In this paper, we focus on interval-valued times series defined as a collection of interval realizations ordered over time;
that is, {(yl,t, yu,t)} for t = 1, … ,T, where yl,t is the lower bound and yu,t is the upper bound of the interval at time t, such
that yl,t ≤ yu,t for all t. An equivalent representation is given by {(Ct,Rt)}, where Ct = (yl,t + yu,t)∕2 and Rt = yu,t − yl,t ≥ 0
are the center and range of the interval, respectively. Most of the econometric analysis in this area has focused on model
estimation and inference and, though it is possible to construct point forecasts based on a given model or algorithm, the
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question of constructing probabilistic forecasts for interval data has not yet been addressed. This is the main question
that we aim to analyze in this paper. There are several routes to construct probabilistic forecasts for interval valued time
series, which involve some tradeoffs between estimation and prediction decisions.

When dealing with lower/upper bounds systems, one needs to incorporate the constraint yl,t ≤ yu,t into the
estimation.1,2 Alternatively, dealing with the center/range system, one needs to incorporate the constraint Rt ≥ 0.3 In
this paper, we follow Tu and Wang (2016), who overcome this restriction by log-transforming the range, and estimating
the center/log-range system without imposing any distributional assumptions. However, forecasting the center/range or
lower/upper bounds will be more complicated. First, for point forecasts, one needs the inverse transformation—that is,
Rt = exp[log Rt]—which itself introduces nontrivial econometric issues. Second, for a density forecast, a joint distribu-
tional assumption for the center and range or for the upper and lower bounds is required. Consequently, we propose
constructing prediction regions for the center/log-range system using not only the bivariate normality assumption but
also bootstrap procedures that do not require any specific assumption on the forecast error distribution; see Fresoli et al.
(2015) for the bootstrap procedure. Based on the prediction regions of the center/log-range system, we construct predic-
tion regions for the center/range system and for the upper/lower bounds system by implementing both analytical and
numerical approaches. An important advantage of our approach is that, by focusing on prediction regions rather than on
point forecasts, we avoid the biases associated with the exp-transformation of point forecasts of log-transformed variables.
Note that we estimate only one unconstrained system—the center/log-range system—but our objective is the prediction
regions of the center/range or upper/lower bounds system. However, if researchers are interested just in the dynamics of
these constrained systems, they need to take into account the constraint in the estimation of the systems.

We assess the finite-sample out-of-sample performance of the prediction regions considered and compare their perfor-
mance according to several metrics. There is a rather extensive literature on the evaluation of point multivariate forecasts;
see, for example, Komunjer and Owyang (2012). Also, recently, several authors have proposed different evaluation cri-
teria for multivariate forecast densities; see Diebold, Han, and Tay (1999), Clements and Smith (2002), Gneiting et al.
(2008), González-Rivera and Yoldas (2011), and González-Rivera and Sun (2015). However, the literature on evaluating
multivariate prediction regions is rather thin.4 The most basic required property is coverage so that regions are reli-
able when the empirical and nominal coverages are close. To our knowledge, there is one additional metric that brings
the volume of the region to interact with its coverage (Golestaneh, Pinson, Azizipanah-Abarghooee, & Gooi, 2018). In
this paper, we also contribute to this literature by introducing several new measures that account for (i) the location
of out-of-the-region points with respect to a central point of the region, (ii) the tightness of the intervals that result
from projecting the two-dimensional region into one-dimensional intervals, and (iii) the distance of the also projected
out-of-the-region points to the projected one-dimensional interval. These new measures bring a notion of risk associated
with the prediction region. In addition, we also provide a description of the distribution of the out-of-the-region points
around the region to measure whether the region is probability centered. We show that, even for Gaussian systems, boot-
strap methods deliver the best performance, mainly when the estimation sample is small and estimation uncertainty is
most relevant. For non-Gaussian systems, bootstrap regions are preferred regardless of the sample size.

Finally, we construct forecast regions for a time series of daily low/high S&P 500 returns. In addition to illustrating the
procedures described in this paper, this empirical application has interest on its own. As mentioned above, daily low/high
return intervals are more informative than just daily one-point measurements (end-of-day return) as they have simultane-
ous information about the level and volatility and, at the same time, they avoid some of the problems often associated with
high-frequency intradaily observations. Several authors show that range-based measures of volatility may be preferred
to other alternative measures based either on one-point returns or high-frequency intraday returns; see Parkinson
(1980), Rogers and Satchell (1991), Rogers et al. (1994), Alizadeh et al. (2002), Brandt and Diebold (2006),
Chou, Chou, and Liu (2015), and Shu and Zhang (2006), among others. Furthermore, it is also important to mea-
sure the uncertainty of the volatility itself; see Vorbrink (2014), Blasques et al. (2016), and Ji and Shi (2018)
for the relevance of measuring the uncertainty of volatility in the context of financial models. In addition, when
computing forecast intervals for future returns and volatilities, one should take into account that both quan-

1González-Rivera and Lin (2013) propose two-step estimators based on assuming a truncated bivariate normal density of the errors of the lower/upper
bounds. The estimation of the system is complex but, if the distributional assumption is adequate, it is possible to construct a direct bivariate density
forecast for the upper/lower bounds.
2Han et al. (2016) propose the conditional interval (ACI) model, which is based on the concept of “extended” interval for which the left bound needs
not be smaller than the right bound.
3Lima Neto and De Carvalho (2010) impose nonnegative constraints on the parameters of the range equation, which are unnecessarily too restrictive
and complicate the estimation of the system.
4See Rodrigues and Salish (2015) for accuracy measures of interval-valued point forecasts.
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tities are usually correlated. For example, Cheung et al. (2009) point out that a proper specification of the
range using only its own history may be inferior to a model that jointly describes the behavior of high and
low prices. In the interval approach described in this paper, we forecast jointly future low/high return intervals
and construct prediction regions of the center and range of the interval at any desired horizon that do not require paramet-
ric distributional assumptions. The forecast regions incorporate the dependence between returns and volatilities when
building joint forecast regions for the center/log-range or low/high systems. Overall, the main advantage of the proposed
approach is that it allows for the modeling of the joint conditional density of the level and volatility of returns, which
in our sample are contemporaneous and negatively correlated, and consequently allow for the construction of bivariate
density forecasts. We also carry out a trading strategy that illustrates the economic advantages of taking into account the
probabilistic forecasts of the interval returns instead of point forecasts.

The organization of the paper is as follows. Section 2 establishes notation by describing the VAR model for the
center/log-range system and the construction of forecast regions both with and without the normality assumption.
Section 3 shows how to construct forecast regions for the center/range and upper/lower bounds systems. Section 4
proposes several new metrics to evaluate the performance of prediction regions, while Section 5 reports Monte Carlo
simulations carried out to compare the performance of the proposed procedures to construct forecast regions. Section 6
constructs prediction regions for S&P 500 low/high return intervals as the basis for implementing profitable trading
strategies. Section 7 concludes.

2 FORECASTING THE CENTER/LOG-RANGE SYSTEM

2.1 Point forecasts
Let us call yc,t ≡ Ct, 𝑦r,t ≡ log Rt and Yt ≡ (yc,t, yr,t)′. We start by fitting the following VAR(p)model for the center/log-range
system:

Yt = A +
p∑

i=1
BiYt−i + 𝜀t, (1)

where A and Bi are parameter matrices restricted to satisfy the usual stationarity conditions5 and 𝜀t is a bivariate white
noise process with covariance matrix Ω. The estimation of the parameters proceeds by least squares (LS), which is
consistent and asymptotically normal under standard assumptions.6

Given Y1, … ,YT, if the loss function is quadratic, optimal h-step-ahead point forecasts of YT+h are given by

YT+h|T = A +
p∑

i=1
BiYT+h−i|T , (2)

where YT+h−i|T = YT+h−i for i ≥ h. The forecast error covariance matrix is given by Wh = Ω +
∑h−1

i=1 ΨiΩΨ′
i , where the

matrices 𝛹i come from the MA(∞) representation of Yt. In practice, consistent LS estimates are plugged into YT+h|T and
Wh to obtain the estimated h-step-ahead point forecasts and their estimated covariance matrices, denoted by ŶT+h|T and
Ŵh, respectively.

2.2 Forecast regions under normality
If the center/log-range system is bivariate normal, pointwise bivariate density forecasts can be obtained as follows:

YT+h → N
(

ŶT+h|T , Ŵh
)
, (3)

and h-step-ahead forecast ellipses for YT+h with coverage 100 × (1 − 𝛼)% are given by

NET+h =
[

YT+h such that
[
YT+h − ŶT+h|T]́Ŵ−1

h
[
YT+h − ŶT+h|T] ≤ q1−𝛼

]
, (4)

5Note that the VAR(p) model is not subject to further restrictions as we are log-transforming the range.
6Tu and Wang (2016) used the estimator of Yao and Zhao (2013), which relies on kernel estimates of the likelihood. This estimator is computationally
more demanding than LS and depends on the choice of tuning parameters. Their empirical results suggest that both estimators are very similar and,
consequently, we focus on the LS estimator.
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where q1−𝛼 is the (1 − 𝛼) quantile of the chi-square distribution with 2 degrees of freedom.
As proposed by Lütkepohl (1991), we could also construct forecast regions by using Bonferroni rectangles (BR), which

are simpler and rather popular among practitioners. A BR with (at least) 100 × (1 − 𝛼)% coverage has the following sides:

[
bc,𝛼∕4, bc,1−𝛼∕4

]
≡

[
𝑦̂c,T+h|T − z𝛼∕4

√
Ŵh,11, 𝑦̂c,T+h|T + z𝛼∕4

√
Ŵh,11

]
, (5)

[
br,𝛼∕4, br,1−𝛼∕4

]
≡

[
𝑦̂r,T+h|T − z𝛼∕4

√
Ŵh,22, 𝑦̂r,T+h|T + z𝛼∕4

√
Ŵh,22

]
, (6)

where z𝛼/4 is the 𝛼∕4-quantile of the standard normal distribution. To include the contemporaneous linear correlation
between the center and log-range, the BR can be modified as in Fresoli et al. (2015). The corners of the modified rectangle
are as follows

[bc,𝛼∕4, br,𝛼∕4 + phbc,𝛼∕4], [bc,𝛼∕4, br,1−𝛼∕4 + phbc,𝛼∕4], (7)

[bc,1−𝛼∕4, br,𝛼∕4 + phbc,1−𝛼∕4], [bc,1−𝛼∕4, br,1−𝛼∕4 + phbc,1−𝛼∕4]

where ph = Ŵh,21∕Ŵh,11. Although the area of the modified Bonferroni rectangle (MBR) is the same as that of the BR,
their coverage may be slightly different depending on the quantiles associated with the modified terms—for example,
br,𝛼/4+phbc,𝛼/4—which in turn depend on the magnitude and sign of ph. Simulation results will provide some information
on the coverage rate of the MBR.

To illustrate the shapes of the three forecast regions described above, Figure 1 (top panel) plots the one-step-ahead
95% NE, BR, and MBR together with 1,000 realizations of YT+1 generated by a VAR(4) model with Gaussian errors and
a contemporaneous correlation of −0.24. The forecast regions have been obtained after estimating the parameters using
T = 1, 000 observations. We observe that both the NE and MBR regions are able to capture the negative correlation
between the center and the log-range, whereas the BR cannot inform about this correlation. Note that the BR has large
empty areas without any realization of YT+1.

2.3 Forecast regions under nonnormality
Often the normal distribution is not a good approximation for the distribution of the center/log-range system. In this
case, we can obtain bootstrap pointwise forecast densities that incorporate parameter uncertainty without relying on any
specific forecast error distribution. Note that even in the Gaussian case, if the estimation sample is not very large, the
effect of parameter estimation on the forecast uncertainty may not vanish, and so the use of bootstrap forecast densities
may be desired. In this paper, we implement the asymptotically valid bootstrap algorithm of Fresoli et al. (2015) to obtain
bootstrap replicates of Y∗(b)

T+h|T , for b = 1, … ,B. The bootstrap replicates can be used to obtain the following pointwise
bootstrap ellipse with 100 × (1 − 𝛼)% coverage:

BET+h =
[

YT+h|[YT+h − Ȳ∗
T+h|T

]′
SY∗ (h)−1

[
YT+h − Ȳ∗

T+h|T
]
≤ q∗

1−𝛼

]
, (8)

where Ȳ∗
T+h|T is the sample mean of the B bootstrap replicates Y∗(b)

T+h|T , SY∗ (h) is the corresponding sam-
ple covariance matrix, and q∗

1−𝛼 is the (1 − 𝛼) quantile of the empirical distribution of the quadratic form[
Y∗(b)

T+h|T − Ȳ∗
T+h|T

]′
SY∗ (h)−1

[
Y∗(b)

T+h|T − Ȳ∗
T+h|T

]
.

Pointwise bootstrap prediction regions for the center/log-range system can also be constructed as BR with at least
100 × (1 − 𝛼)% coverage with corners obtained from the marginal bootstrap distributions of the center and the log-range
and denoted as BBR. These BBR regions can also be modified to account for the contemporaneous correlation between
the center and the log-range as in expressions 7.

Note that, when the joint distribution of the center/log-range system is not symmetrical, neither the BE nor the BBR
needs to be probability centered; see, for example, Beran (1993) for the desirable properties of multivariate forecast regions.
In this case, the BE and BBR regions will only be approximations of the true shape of the bootstrap forecasts. Alternatively,
probability-centered forecast regions can be constructed using the convex hull peeling method of Tukey (1975), which
consists of constructing a series of convex prediction polygons. Given a data cloud, the first layer of the Tukey convex
hull is the convex polygon formed by the boundary of the data. It continues by peeling the first layer off and finding the
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FIGURE 1 95% prediction regions for the
center/log-range system (top panel) and
center/range system (bottom panel) obtained
from a simulated VAR(4) model with
parameters: a1 = −0.93, b(1)

11 = 0.34,
b(2)

11 = −0.15, b(3)
11 = 0.03, b(4)

11 = −0.06,
b(1)

12 = −0.50, b(2)
12 = 0.13, b(3)

12 = −0.16,
b(4)

12 = 0.92, a2 = 0.08, b(1)
21 = −0.01,

b(2)
21 = b(3)

21 = b(4)
21 = 0, b(1)

22 = 0.09, b(2)
22 = 0.18,

b(3)
22 = 0.15, b(4)

22 = 0.08 and Gaussian errors
with variances given by 𝜎2

1 = 111.24 and
𝜎2

2 = 0.16 and covariance 𝜎12 = −1.02. The
sample size is T = 1, 000 [Colour figure can be
viewed at wileyonlinelibrary.com]

second layer for the remaining data. This process is repeated until no convex polygon can be constructed any more. Given
the two-dimensional bootstrap data cloud, Y∗(b)

T+h|T , we construct the Tukey nonparametric region by choosing the polygon
that provides the closest coverage to the desired nominal coverage rate.

As an illustration of the bootstrap regions, Figure 1 (top panel) plots the 95% BE, BBR, and BMBR regions based on
B = 4, 000 bootstrap replicates for YT+1 generated as described above. The estimation sample size is T = 1, 000 and,
consequently, the uncertainty due to parameter estimation is negligible, with the normal and bootstrap ellipses having
identical shapes. The Tukey hull follows these ellipses very closely. The BBR are also very similar to their normal
counterparts.

3 REGIONS FOR CENTER/RANGE AND LOWER/UPPER SYSTEMS

When forecasting interval-valued time series, often the interest is not the center/log-range system but either the
center/range or the lower/upper systems. First, under bivariate normality of center/log-range, the bivariate density of the
center/range system can be estimated as follows:

http://wileyonlinelibrary.com
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𝑓 (𝑦c,T+h,RT+h) =
1

2𝜋
√|Ŵh|

1
RT+h

exp
[
−1

2
(

YT+h − ŶT+h|T)′Ŵ−1
h

(
YT+h − ŶT+h|T)] . (9)

Since the center and the range are linear combinations of the upper and lower bounds, it is easy to see that the condi-
tional bivariate density of the lower/upper bounds is also given by Equation 9. Analytical contours for the center/range
(or lower/upper bounds) system can be constructed by horizontally cutting the bivariate density in Equation 9 at a value
determined by the nominal coverage and obtained by numerical simulation. Figure 1 (bottom panel) plots 1,000 realiza-
tions of (CT+1,RT+1) based on the same system described above, together with the 95% forecast region obtained using the
analytical density in Equation 9. We observe that, as expected, the region is not an ellipse.

Second, note that any of the prediction regions constructed for the center/log-range system can be directly transformed
into a prediction region for the center/range system. For instance, consider the NE region with 100× (1− 𝛼)% probability
coverage. Its boundary is the (1 − 𝛼) bivariate quantile. The boundary points (center, log-range) can be transformed into
another boundary of points (center, exp(log-range)) of a prediction region for the center/range system; that is,

T-NET+h =
({

[𝑦c,T+h, exp(log RT+h)]′
}

such that
(

YT+h − ŶT+h|T)′Ŵ−1
h

(
YT+h − ŶT+h|T) = q1−𝛼

)
. (10)

The new region will not preserve the shape of an ellipse but will have the same coverage because the exponential
function is a monotonic transformation. Furthermore, the transformation has the advantage of delivering strictly positive
values for the range.7 In Figure 1 (bottom panel), we illustrate the shape of the T-NE regions using the same simulated
example considered before. The transformed shape is similar to the analytical although they are not identical.

Similarly, the BR and MBR regions can be transformed by taking the exponential transformation of the log-range inter-
vals in Equations 6 and 7, respectively. Figure 1 (bottom panel) illustrates the shapes of the transformed BR and MBR
regions. As expected, while the transformed MBR region shows the correlation between center and range, the transformed
BR region does not and some portions of its area are empty.

It is important to note that the transformation of the forecast regions constructed for the center/log-range system is
not feasible when constructing prediction regions for the lower/upper bounds system because there is not a monotonic
transformation from the boundary points of the center/log-range region to the boundary points of the lower/upper bounds
region.

Finally, if one avoids the normality assumption of the center/log-range system and wishes to construct bootstrap forecast
regions for the center/range system, the regions can also be transformed. For example, by transforming the points (center,
log-range) sitting on the boundary of Equation 8 to points (center, exp(log-range)), we obtain the following transformed
bootstrap ellipse:

T-BET+h =
({

[𝑦c,T+h, exp(log RT+h)]′
}

such that
(

YT+h − Ȳ∗
T+h|T

)′
SY∗ (h)−1

(
YT+h − Ȳ∗

T+h|T
)
= q∗

1−𝛼

)
. (11)

Similarly, we obtain the transformed bootstrap Bonferroni and modified Bonferroni rectangles for the center/range
system. Finally, we also construct the Tukey nonparametric region for the data cloud of bootstrap realizations of cen-
ter and range

[
𝑦̂
∗(b)
c,T+h|T , exp

(
𝑦̂
∗(b)
r,T+h|T

)]′
. Figure 1 (bottom panel) plots the transformed bootstrap forecast regions of the

center/range system for the same simulated system considered above.
Third, recall that the direct transformation of the boundaries of the regions for the center/log-range system cannot be

implemented when constructing forecast regions for the upper/lower bounds system. This is why, for this system, we
construct the following bootstrap ellipse:

BEUL
T+h =

[
Y UL

T+h| [Y UL
T+h − Ȳ UL∗

T+h|T
]′

SUL
Y∗ (h)−1

[
Y UL

T+h − Ȳ UL∗
T+h|T

]
≤ qUL∗

1−𝛼

]
, (12)

7Note that, by focusing on prediction regions rather than on point forecasts, we avoid the biases associated with the exp-transformation of point forecasts
of log-transformed variables, for which corrections are necessary; see, for example, Granger and Newbold (1976) and Guerrero (1993).
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where Y UL
T+h = (𝑦u,T+h, 𝑦l,T+h)′, and Ȳ UL∗

T+h|T and SUL
Y∗ (h) represent the mean vector and variance covariance matrix, respec-

tively, of the bootstrap upper/lower bound realizations given by 𝑦
∗(b)
u,T+h = 𝑦̂

∗(b)
c,T+h|T + 1

2
exp

(
𝑦̂
∗(b)
r,T+h|T

)
and 𝑦

∗(b)
l,T+h = 𝑦̂

∗(b)
c,T+h|T −

1
2

exp
(
𝑦̂
∗(b)
r,T+h|T

)
, respectively.

Finally, a Tukey nonparametric region can be constructed for the data cloud of bootstrap realizations of upper and lower
bounds

(
𝑦
∗(b)
u,T+h, 𝑦

∗(b)
l,T+h

)′
. Note that for this system we do not construct Bonferroni rectangles because they may contain

infeasible subregions of points where the lower bound is greater than the upper bound.

4 OUT- OF-SAMPLE EVALUATION OF PREDICTION REGIONS

Suppose that we construct h-step-ahead prediction regions with nominal coverage 100 × (1 − 𝛼)%, from t = 1, … ,N and
want to evaluate them. As in the case of loss functions, it is only the objective of the forecaster that will define which
criterion is the most appropriate. At the most basic level, the forecaster will aim for reliability—that is, those prediction
regions that provide the closest coverage to the nominal. The average coverage rate is defined as follows:

C(1−𝛼) =
1
N

N∑
t=1

I(1−𝛼)t , (13)

where I(1−𝛼)t is an indicator variable that is equal to 1 if the observed outcome falls within the prediction region, and
0 otherwise. Furthermore, following Golestanehet al. (2018), we combine reliability with sharpness—a preference for
regions with small volume. The forecaster would prefer a lower average coverage-volume score, given by

CV(1−𝛼) =
||||||

1
N

N∑
t=1

[
I(1−𝛼)t − (1 − 𝛼)

]
×
[

V (1−𝛼)
t

] 1
2
|||||| , (14)

where V (1−𝛼)
t is the volume of the prediction region at time t.

Another aspect to the evaluation of forecast regions is to consider the observations outside of the region and to assess
how far they are from a central point within the prediction region. We propose the following average outlier distance:

O(1−𝛼) =
1
G

N∑
t=1

[
1 − I(1−𝛼)t

]
× D(𝑦t,Mt), (15)

where G is the number of observations outside the region, and D is a distance measure (e.g., Euclidean distance) of each
outside-the-region outcome, yt, from Mt, which is the median of the realizations generated within the region at each time
t. To obtain Mt, we implement the definition of median in a multidimensional setting introduced by Zuo (2003), known
as “projection depth median.” The outside-the-region observations can be considered the “risk” that the forecaster has to
bear and, in this sense, he would like to minimize O(1−𝛼). For two regions with similar coverage, the forecaster will choose
that with a lower average outlier dispersion.

We also evaluate the prediction region by the sharpness or tightness of the intervals that result from projecting the
two-dimensional region into one-dimensional intervals. We draw a large number of directions, which are given by the
lines drawn from the zero origin of the unit circle to any point on its boundary. For each direction, we find the two
bounding tangent lines to the prediction region that are perpendicular to that direction. We calculate the length of the
projected interval bounded by the tangent lines; see Figure 2 (top panel) for a graphical representation. Denote di ∈ 𝛶 as
the ith direction in 𝛶 , where 𝛶 is the set of all directions, and let D be the number of directions. The average length of the
projected intervals associated with the prediction region is

P(1−𝛼) =
1
N

N∑
t=1

Pt, (16)

where Pt is the average projection length over all directions at time t given by Pt = 1
D

∑D
i=1(udi − ldi ), with udi and ldi being

the upper and lower bounds of the projected interval in the ith direction. The forecaster would prefer prediction regions
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FIGURE 2 Projected interval and projected
outliers (top panel). Outlier distribution around
a region (bottom panel)

that deliver tight projected intervals. We also consider the realized data points over the prediction period in conjunction
with the projected intervals. The average distance of the projected outliers associated with the prediction region is

OP(1−𝛼) =
1
N

N∑
t=1

OPt, (17)

where OPt is the average distance of the projected outliers to the projected interval, given by OPt = 1
D

∑D
i=1[(ldi −xdi)I(xdi <

ldi ) + (xdi − udi )I(xdi > udi )], with xdi being the coordinate of the data point projected on the ith direction and I(·) being
an indicator function. The forecaster prefers prediction regions with projected outliers close to the projected intervals.
Finally, if the length of the projected interval is large, we expect the distance of the projected outliers to the interval to be
smaller. To take this tradeoff into account, we propose a combined criterion POPt = Pt × OPt so that, over the prediction
sample, the average tradeoff associated with the prediction region is

POP(1−𝛼) =
1
N

N∑
t=1

POPt. (18)

A smaller POP(1−𝛼) would be preferred by the forecaster.
Our final assessment of prediction regions is whether they are probability centered. We check whether the points outside

of the prediction region are evenly distributed around the region R. In this case, we expect the following statistic to be
close to zero:
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TABLE 1 Monte Carlo evaluation of one-step-ahead 95% prediction regions for a VAR(4) model with skewed Student-5
center and normal log range

Evaluation criteria
C V1/2 CV O P OP POP S

Center/log-range system
Normal ellipse 0.851 1.999 0.190 1.529 2.219 0.018 0.037 0.081
Bonferroni rectangle 0.861 2.098 0.177 1.541 2.641 0.010 0.026 0.075
Modified Bonferroni rectangle 0.862 2.098 0.176 1.539 2.674 0.010 0.025 0.075
Bootstrap ellipse 0.935 2.543 0.083 1.986 2.824 0.008 0.021 0.036
Bootstrap Bonferroni rectangle 0.937 2.705 0.086 1.844 3.420 0.004 0.012 0.037
Modified bootstrap Bonferroni rectangle 0.937 2.705 0.086 1.839 3.466 0.004 0.011 0.038
Tukey convex hull 0.914 2.412 0.105 1.732 2.834 0.008 0.020 0.050
Center/range system
Analytical method 0.851 2.081 0.194 1.656 2.446 0.022 0.049 0.084
T-Normal ellipse 0.851 2.136 0.202 1.635 2.518 0.020 0.047 0.081
T-Bonferroni rectangle 0.861 2.256 0.190 1.649 2.899 0.013 0.034 0.075
T-Modified Bonferroni rectangle 0.862 2.280 0.191 1.643 3.049 0.012 0.032 0.074
T-Bootstrap ellipse 0.935 2.806 0.091 2.122 3.385 0.009 0.026 0.036
T-Bootstrap Bonferroni rectangle 0.937 3.010 0.096 1.981 3.885 0.005 0.016 0.037
T-Modified Bootstrap Bonferroni rectangle 0.936 3.153 0.104 1.959 4.363 0.004 0.015 0.038
Tukey convex hull 0.914 2.711 0.117 1.851 3.385 0.009 0.026 0.050
Upper/lower system
Analytical method 0.851 2.081 0.194 1.929 3.033 0.031 0.087 0.088
Bootstrap ellipse 0.936 2.947 0.099 2.675 4.101 0.015 0.055 0.054
Tukey convex hull 0.914 2.712 0.117 2.196 4.052 0.013 0.044 0.048

S(1−𝛼)(Mt) =
1
D

D∑
i=1

|Cu(di,Mt)) − Cl(di,Mt)|, (19)

where D is the number of directions that pass through Mt, Cu(di,Mt)) = {#x|(x ∈ Rc) ∩ [x ∈ Hu(di,Mt)]}, and Cl(di,Mt) =
{#x|(x ∈ Rc)∩[x ∈ Hl(di,Mt)]}, with Hu(di,Mt) being the half-plane above the line generated by the direction di, Hl(di,Mt)
being the half-plane below the same line, and Rc the complementary region to R; see Figure 2 (bottom panel) for a graphical
representation. Although S(1−𝛼)(Mt) will not be feasible with real data (we will have only one realized observation at time
t that could be in or out of the prediction region), we will be able to assess whether each prediction region is probability
centered in a simulated environment.

5 MONTE CARLO SIMULATIONS

In this section, we perform Monte Carlo simulations to evaluate the prediction regions for interval valued time series
according to the criteria described in Section 4. We report just one case for small samples here and extensive simulation
cases in the supplementary material (Supporting Information).

We generate R = 500 replicates of the center/log-range system from a VAR(4) with T = 50 observations and its param-
eters chosen to replicate the dynamics of S&P 500 interval returns. The errors are distributed according to a skewed
Student t with 5 degrees of freedom and asymmetry parameter −0.5 and a normal distribution, respectively.8 Note that
the distributional assumptions are on the marginal densities of the errors of each equation and we do not know the exact
bivariate densities. For the system to have the desired marginal density functions and the stated correlation structure, we
have generated bivariate errors from a Gaussian copula and retransform the probability integral transformations (PITs)
of the corresponding univariate normal variates according to the Student t, to obtain the new error variates, which need
to be adjusted to have the desired mean and variance. We construct one-step-ahead prediction regions with 95% nominal
coverage and simulate 1,000 future values of the required vector at time T + 1—that is, center/log-range, center/range,
and upper/lower bounds. The empirical coverage is calculated as the proportion of these values that falls within the con-

8The skewed Student distribution is defined as proposed by Hansen (1994).
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FIGURE 3 Unconditional bivariate density (top panel) of S&P 500
low/high return intervals and G-ACR specification tests for
conditional bivariate normality of residuals of the center and
log-range VAR(6) model (bottom panel) [Colour figure can be viewed
at wileyonlinelibrary.com]

structed prediction regions. The number of bootstrap samples is B = 2, 000, and the number of directions to calculate the
average length of the projected intervals and outliers is D = 100.9

Table 1 reports the evaluation criteria for the Monte Carlo experiments when the prediction regions are constructed
by all procedures described in Section 2 for the three systems (center/log-range, center/range, and upper/lower bounds).
First, note that regardless of the particular system being forecasted the regions based on the normality assumption for the
center/log-range system have coverages below the 95% nominal and their coverage-volume scores (CV) are nearly double
those of the regions based on bootstrap procedures. Therefore, it seems that in cases of small samples and/or non-Gaussian
interval data, bootstrap procedures should be used instead of relying on normality. Comparing the alternative bootstrap
regions considered, we can observe that bootstrap ellipsoids have minimum coverage-volume scores, although the differ-
ences among them are very small. However, the average outlier distance, O, is lower for the Tukey regions than for the
other bootstrap regions. When constructing the regions for the upper/lower bounds, the Tukey convex hull also has a
smaller tradeoff between sharpness and risk, POP and centeredness. Therefore, it seems that in the presence of asymmetric
distributions, as considered in this paper, the Tukey convex hull provides adequate regions for interval data.

6 PREDICTION REGIONS FOR S&P 500 LOW/HIGH RETURNS

Several authors propose modeling the interaction between volatility and asset returns, fitting bivariate models to returns
and realized variances. Among them, Takahashi et al. (2009) propose a stochastic volatility model in which both returns

9The parameters of the VAR(4) model are reported in the online supplementary material (Supporting Information). Results for other VAR models, error
distributions, and sample sizes are also reported in the supplementary material.

http://wileyonlinelibrary.com
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and realized variance depend on a latent volatility. The presence of this latent volatility forces authors to estimate the mod-
els and extract the volatility using computationally intensive Bayesian procedures. Shephard and Sheppard (2010) also
propose modeling returns and realized volatilities by fitting a VAR model called high-frequency-based volatility (HEAVY)
and obtain the entire predictive distribution of returns based on drawing with replacement pairs from the joint distribution
of standardized returns and realized volatilities. More recently, Catania and Proietti (2019) propose bivariate score-driven
models for returns and realized volatilities.

The methodology proposed in this paper has several advantages with respect to bivariate models for returns and realized
volatilities. First, we avoid issues related to microstructure noise associated with the construction of realized volatilities. As
mentioned in the Introduction, several authors advocate using the range as a measure of volatility. Second, using bootstrap
prediction regions, we avoid potential unrealistic assumptions about the joint distribution of returns and volatilities; see,
for example, Catania and Proietti (2019), who assume that returns and log-volatilities have a joint Student t distribution
with 𝜈 degrees of freedom, implying that the marginal univariate distributions of returns and volatilities are both Student
t with 𝜈 degrees of freedom. Third, the proposed methodology is a natural framework to incorporate other stylized facts,
such as the effect of past volatilities on returns. Last but not least, the proposed methodology is computationally less
intensive than alternative approaches, and thus it allows for a straightforward implementation and can be easily extended
to other models for the center/log-range system as vector autoregressive moving average or cointegrated systems.

6.1 Model estimation
We collect intervals of low/high S&P 500 log-prices,

(
PL

t ,PU
t
)
, observed daily from January 2, 2009 to April 20, 2018, for

a total of 2,341 observations. Since prices are nonstationary, we construct daily stationary intervals of low/high returns,(
𝑦L

t , 𝑦
U
t
)
, by calculating the daily minimum and maximum return with respect to the closing price of the previous day;

that is, 𝑦L
t = PL

t −PC
t−1 and 𝑦U

t = PU
t −PC

t−1, where PC
t is the closing price at day t. Figure 3 (top panel), which plots a kernel

estimate of the bivariate unconditional density of the center and the range, shows that the center exhibits fat tails and
it is slightly skewed to the left. Furthermore, according to the sample descriptive statistics reported in the supplemen-
tary material (Supporting Information), we can observe that the log-range is only slightly skewed to the right and has a
coefficient of kurtosis of about 3. The correlation between the center and log-range is about −0.10. With respect to tem-
poral dependence, as expected, the Q statistics for the center indicate no autocorrelation, while those for the range and

TABLE 2 Evaluation of one-step-ahead 95% prediction regions for S&P 500 returns forecasted from
January 1, 2017, to April 20, 2018

Evaluation criteria
C V1/2 CV O P OP POP

Center/log-range system
Normal ellipse 0.954 2.22 0.009 1.61 2.43 0.004 0.009
Bonferroni rectangle 0.945 2.31 0.011 1.47 2.90 0.002 0.006
Modified Bonferroni rectangle 0.948 2.31 0.004 1.45 2.91 0.002 0.005
Bootstrap ellipse 0.960 2.36 0.025 1.69 2.59 0.003 0.007
Bootstrap Bonferroni rectangle 0.948 2.47 0.004 1.38 3.10 0.001 0.003
Modified Bootstrap Bonferroni 0.951 2.47 0.003 1.36 3.12 0.001 0.002
Tukey convex hull 0.945 2.14 0.010 1.33 2.50 0.002 0.005
Center/range system
Analytical method 0.936 1.81 0.032 1.52 2.21 0.009 0.019
T-Normal ellipse 0.954 1.89 0.002 1.71 2.26 0.006 0.013
T-Bonferroni rectangle 0.945 1.98 0.018 1.45 2.58 0.004 0.010
T-Modified Bonferroni rectangle 0.948 1.99 0.013 1.44 2.63 0.003 0.008
T-Bootstrap ellipse 0.960 2.01 0.008 1.85 2.42 0.004 0.010
T-Bootstrap Bonferroni rectangle 0.948 2.19 0.013 1.31 2.87 0.003 0.007
T-Modified Bootstrap Bonferroni 0.951 2.21 0.002 1.24 2.95 0.001 0.004
Tukey convex hull 0.945 2.05 0.025 1.24 2.49 0.004 0.009
Upper/lower system
Analytical method 0.936 1.81 0.032 1.68 3.17 0.008 0.027
Bootstrap ellipse 0.960 2.21 0.021 1.67 3.58 0.005 0.017
Tukey convex hull 0.945 2.05 0.025 1.31 3.61 0.003 0.010
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FIGURE 4 One-step-ahead 95% prediction regions for the center/log-range system of the S&P 500 return intervals corresponding to
different dates of the out-of-sample period [Colour figure can be viewed at wileyonlinelibrary.com]

log-range indicate high autocorrelation, mimicking the autocorrelations often observed in the end-of-the day returns and
in their squared returns, respectively.

We split the total sample into an estimation sample from January 2, 2009, to December 31, 2016 (2,014 observations)
and a prediction/evaluation sample from January 1, 2017, to April 20, 2018 (327 observations). Using the estimation
sample, we obtain the following LS estimates of the (significant) parameters of a VAR(6) model as selected by the Schwarz
information criterion (robust standard errors in parentheses):10

Ĉt = 0

log R̂t = −0.17
(0.013)

Ct−1 − 0.09
(0.014)

Ct−2 − 0.06
(0.014)

Ct−3 − 0.04
(0.014)

Ct−4

+ 0.17
(0.023)

log Rt−1 + 0.22
(0.023)

log Rt−2 + 0.16
(0.023)

log Rt−3 + 0.09
(0.023)

log Rt−4 + 0.1
(0.023)

log Rt−5 + 0.11
(0.022)

log Rt−6.

As expected, all regressors (lagged center and lagged log-range) in the equation for the center are not statistically
significant. On the contrary, the equation for the log-range presents interesting dynamics. The center Granger-causes the
log-range so that the lagged centers are negatively correlated with the current log-range; that is, positive and large changes
in the center return today predict a narrower range tomorrow. This is similar to the leverage effect in a conditional vari-
ance equation. Another relevant aspect, in agreement with the autocorrelation function/partial autocorrelation function
profiles, is the strong and statistically significant autoregressive nature of the log-range. The estimated model is in concor-
dance with that estimated by Li and Hong (2011) for the log-range of S&P 500 returns observed over a different time span.
These latter authors show that point forecasts of volatilities based on the log-range have a better performance than fore-

10Only significant values are reported.

http://wileyonlinelibrary.com
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casts based on conventional generalized autoregressive conditional heteroskedasticity (GARCH) and exponential GARCH
models; see also Molnar (2016), who propose extending the conventional GARCH-based models of volatility by including
range measures. The estimated VAR model captures the main stylized facts often observed in financial returns:
(i) persistence of volatility; (ii) heavy tails of returns; and (iii) negative dependence between volatility and past returns. The
goodness of fit for the log-range equation is high, with an adjusted R2 = 0.52. In the supplementary material (Supporting
Information), we report the results of the residual diagnosis. First, we observe that the residuals are all clear of any auto-
correlation. Furthermore, the center residuals and log-range residuals are contemporaneously negatively correlated, with
a correlation coefficient of −0.17. Finally, we formally test for conditional bivariate normality by implementing the gener-
alized autocontour (G-ACR) (in-sample) tests based on the PITs of the joint density under the null hypothesis of bivariate
normality (González-Rivera & Sun, 2015). We also report the results of the t statistics (tk,𝛼) that canvas the density from
the 1% to the 99% PIT autocontours for lags k = 1, 2, … , 5. The null hypothesis is strongly rejected at the 5% significance
level for mostly all but the 10%, 90% and 95% autocontours. The portmanteau test Ck also reinforces the strong rejection
of bivariate normality. Figure 3 (bottom panel) plots the autocontours of the contemporaneous PITs (centert, log-ranget).
Under the correct null hypothesis, the distribution of the PITs should be uniformly distributed within these autocontour
squares. It is obvious that this is not the case.

6.2 Out-of-sample forecast regions
Table 2 reports results on the evaluation of the out-of-sample one-step-ahead 95% prediction regions obtained from Jan-
uary 1, 2017, to April 20, 2018 (327 observations). For the system center/log-range, the bootstrap MBR regions offer the
best coverage C with empirical rates of mostly 95%, and they are the most reliable, with the lowest average CV. They
also provide the tightest projected one-dimensional regions measured by POP. However, the Tukey convex hull regions
provide the lowest average outlier distance O. For the system center/range, we find that the transformed modified boot-

FIGURE 5 One-step-ahead 95% prediction regions for the center/range system of the S&P 500 return intervals corresponding to different
dates of the out-of-sample period [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 6 Buy and sell signals from trading strategy

strap Bonferroni rectangle is the best performer according to most metrics (C, CV, and POP). For the system upper/lower
bounds, the Tukey convex hull offers the best coverage and the lowest scores for O and POP. As expected, the analytic
methods are not reliable as they tend to undercover. On the contrary, the bootstrap ellipse and its transformed region tend
to overcover. All these results are very consistent with the Monte Carlo findings.

In Figures 4 and 5, we plot the one-step-ahead 95% prediction regions for the center/log-range and center/range systems,
respectively. We choose six random dates over the prediction sample (March 15, May 11, August 30, December 8, 2017,
and February 22, April 6, 2018). In all six dates, the one-step-ahead realized values of the (center, log-range) and (center,
range) fall within the regions; only the realized values on December 8, 2017, and April 6, 2018, are slightly more extreme
and they fall towards the boundaries of the prediction regions. For the center/log-range system, the normal ellipse and
the bootstrap ellipse are very similar but in the center/range system the bootstrap ellipse tends to be wider, adapting to
the kurtosis of the center and the asymmetry of the range. The differences among the Bonferroni rectangles are more
obvious in the center/range system. In the center/log-range system, the Tukey convex hull has a cone shape over all the
six dates, although the shape becomes more irregular in the center/range system.

It is important to point out that when using point data we can obtain a single forecast density for future returns. How-
ever, by using interval data, we are able to provide a wider characterization of returns by constructing the conditional
forecast density of returns conditioning on volatility or the joint bivariate density of returns and volatilities.

6.3 Trading strategy
Using the bootstrap prediction regions for the daily S&P 500 high/low returns obtained in the previous section, we develop
a trading strategy for interval data that extends that proposed by He et al. (2010) for point forecasts. The proposed trading
strategy exploits the probability distribution of forecasts. Consider the ratio st =

|Ot−𝑦̂l,t+h||𝑦̂u,t+h−Ot| , where Ot is the opening return
at day t, calculated using the opening price at day t with respect to the closing price at day t − 1, and 𝑦̂l,t+h and 𝑦̂u,t+h are
the low and high return forecasts, respectively. If st < 1, then the return is more likely to go up than down in the next
h days. If this is observed for several days, it is reasonable to believe that the market is forming an upward trend and a
“buy alert signal” should be generated. A similar argument can be applied to the “sell alert signal.” While He et al. (2010)
compute st using point forecasts of 𝑦̂u,t+h and 𝑦̂l,t+h, we compare the probability of st > 1 (sell signal) and st < 1 (buy
signal). Figure 6 illustrates the proposed trading strategy. Note that st is the absolute value of the slope of any line that
connects point A ≡ (Ot,Ot) and any other point below the 45◦ line. The ellipse represents the h-step-ahead prediction
region of the high/low returns. The slope of line AB is equal to (minus) one and it is perpendicular to the 45◦ line. Hence
the area under the 45◦ line is divided into two areas by the line AB: st > 1 to the left of line AB, and st < 1 to the right of
line AB. Therefore, counting the bootstrap realizations in the two subareas of the prediction region, we can compare the
estimated probability of st < 1 with that of st > 1 for a given 100 × (1 − 𝛼)% confidence region. The trading strategy then
consists of the following steps:
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• At day t, plot Figure 6 based on Ot and the h-step-ahead prediction region of high and low returns. Within the
prediction region, if the number of bootstrap realizations (obtained as in Equation 12) on the right-hand side of the
line AB is larger than that on the left-hand side of the line AB, a “buy alert signal” is generated.

• If Prob(st < 1) > Prob(st > 1) is observed for m consecutive days beginning with day t, buy the asset on day t+m− 1
using the closing price on that day.

• After buying the asset, on any other day d, watch for the“sell alert signal”; that is, the number of bootstrap realizations
on the left-hand side of the line AB should be larger than that on the right-hand side of the line AB within the
prediction region. If the “sell alert signal” is observed for m consecutive days from day d, sell the asset on day d+m−1
using the closing price on that day. Otherwise, hold the asset.

We evaluate this trading strategy over the out-of-sample period (January 1, 2017, to April 20, 2018) using the bootstrap
ellipse and Tukey convex hull prediction regions with a 95% nominal coverage. For the implementation, the choice of m
should not be too small because it will introduce substantial noise in trading, but it should not be too large either because
we could miss profitable trades. We consider m = 1, 2, 3, 4 and h = 1, 2, 3. We apply a transaction cost of 0.1%, and we
annualize the profit/loss for each trade because each trade will have a different holding period. The annualized return
is calculated as ARt =

(
𝑦c,t+𝑗−𝑦c,t

𝑦c,t
− 0.001

)(
365
𝑗

)
, where yc,t and yc,t+j, (j > 0), are the closing prices for the buying and

selling days, respectively. The investor can buy the asset again before the previous bought asset is sold. At the end of the
evaluation period, if there are still assets that have not been sold, these assets will not be considered when calculating the
profits.

Table 3 reports the average and the max. and min. of ARt together with the percentage of trades with positive returns
for all cases. HKW is the trading strategy in He et al. (2010) based on point forecasts of the high/low returns. For all
cases but two, the averaged annualized returns are positive. The choice of m is very relevant because the gap between
the max. and min. annualized returns narrows as m increases for all h. A large m means that investors are looking for a
stronger signal and, though they may miss some trades with extreme positive returns, they will also avoid those extreme
negative returns that can be catastrophic. There is also a monotonic positive relation between m and the percentage of
trades with positive returns. For average annualized returns, the performance of BE is better than that of TH in most
cases, and the performance of BE or TH is better than HKW, in particular when m = 4.

7 CONCLUSIONS

Often, time series interval measurements offer a more complete description of a data set because each observation has
joint information on the level and dispersion of the process under study. However, statistical analysis of interval-valued
data requires that the natural order of the interval is preserved. Though there are several works that consider the problem
of estimation with constraints, we are not aware of any work that considers the construction of probabilistic forecasts for
interval-valued data satisfying the natural constraint in each period of time. Our contribution relies on approximating a
probabilistic forecast of an interval-valued time series by offering alternative approaches to construct bivariate prediction
regions of the center and the range, or the lower and upper bounds, of the interval.

To overcome the positive constraint of the range, we estimate a Gaussian bivariate system for the center/log-range sys-
tem, which delivers QML properties for our estimators. However, the interest of the researcher is not the prediction of
the center/log-range but the center/range or upper/lower bounds of the interval. By implementing either analytical or
bootstrap methods we directly transform the prediction regions for the center/log-range system into those for the cen-
ter/range and upper/lower bounds systems. It is important to remark that we do not focus on point forecast purposely. By
focusing on prediction regions rather than on point forecasts, we avoid the biases associated with the exp-transformation
of the point forecasts of log-transformed variable. A prediction region for the center/log-range does not need any bias
correction when transformed into a prediction region of the center/range system because the quantile is preserved under
a monotonic transformation like the exp-transformation. These transformed prediction regions can have very irregular
shapes even in the most straightforward scenario of bivariate normality of the center/log-range system. If a central point
forecast is of interest, the researcher can always calculate the centroid of the region.

Beyond the standard coverage rate, we propose several new metrics to evaluate the performance of prediction regions.
We introduce a notion of risk to the evaluation of the regions by considering the location of the out-of-the-region out-
comes with respect to some central point in the region. The researcher would like to minimize risk once the empirical
coverage of the region is close to the nominal coverage. We have considered Gaussian and non-Gaussian systems and our
recommendation leans towards bootstrap methods, even for Gaussian systems. Bootstrap ellipses and their transformed
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are best when the joint distribution of the center/log-range system is symmetric. If it is not, then bootstrap Tukey hull
regions will be preferred. In summary, we find that simulation-based methods are the most reliable.

We analyze a time series of the daily low/high return intervals of the S&P 500 index. We model and predict the joint
conditional density of the return level and volatility. We show that the bootstrap regions have the best properties. Fur-
thermore, we carry out a trading strategy to illustrate the economic advantages of taking into account the probabilistic
forecast of the low/high returns instead of point forecasts.
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