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Abstract

We analyze the predictive performance of various volatility models for stock returns. To compare their performance, we

choose loss functions for which volatility estimation is of paramount importance. We deal with two economic loss functions

(an option pricing function and an utility function) and two statistical loss functions (a goodness-of-fit measure for a value-

at-risk (VaR) calculation and a predictive likelihood function). We implement the tests for superior predictive ability of White

[Econometrica 68 (5) (2000) 1097] and Hansen [Hansen, P. R. (2001). An unbiased and powerful test for superior predictive

ability. Brown University]. We find that, for option pricing, simple models like the Riskmetrics exponentially weighted

moving average (EWMA) or a simple moving average, which do not require estimation, perform as well as other more

sophisticated specifications. For a utility-based loss function, an asymmetric quadratic GARCH seems to dominate, and this

result is robust to different degrees of risk aversion. For a VaR-based loss function, a stochastic volatility model is preferred.

Interestingly, the Riskmetrics EWMA model, proposed to calculate VaR, seems to be the worst performer. For the predictive

likelihood-based loss function, modeling the conditional standard deviation instead of the variance seems to be a dominant

modeling strategy.
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1. Introduction

During the last two decades, volatility has been

one of the most active areas of research in time

series econometrics. Volatility research has not been
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just limited to the area of time series econometrics

dealing with issues of estimation, statistical infer-

ence, and model specification. More fundamentally,

volatility research has contributed to the under-

standing of important issues in financial economics

such as portfolio allocation, option pricing, and risk

management. Volatility, as a measure of uncertainty,

is of most interest to economists and, in particular,

to those interested in decision making under un-

certainty.

The development of volatility models has been a

sequential exercise. Surveys as in Bera and Higgins

(1993), Bollerslev, Chou, and Kroner (1992), Bol-
rs. Published by Elsevier B.V. All rights reserved.
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lerslev, Engle, and Nelson (1994), and Poon and

Granger (2003) attest to the variety of issues in

volatility research. As a starting point, a volatility

model should be able to pick up the stylized facts

that we frequently encounter in financial data. The

motivation for the introduction of the first genera-

tion of ARCH models (Engle, 1982) was to

account for clusters of activity and fat-tail behavior

of the data. Subsequent models accounted for more

complex issues. Among others and without being

exclusive, we should mention issues related to

asymmetric responses of volatility to news, distri-

bution of the standardized innovation, i.i.d. behav-

ior of the standardized innovation, persistence of

the volatility process, linkages with continuous

time models, intraday data and unevenly spaced

observations, seasonality and noise in intraday data.

The consequence of this research agenda has been

a vast array of specifications for the volatility

process.

When the researcher and/or the practitioner faces

so many models, the natural question becomes which

one to choose. There is not a universal answer to this

question. The best model depends upon the objec-

tives of the researcher. Given an objective function,

we look for best predictive ability while controlling

for possible biases due to ‘‘data snooping’’ (Lo &

MacKinlay, 1999).

The literature that compares the relative perfor-

mance of volatility models is either centered

around a statistical loss function or an economic

loss function. The preferred statistical loss func-

tions are based on moments of forecast errors

(mean-error, mean-squared error, mean absolute

error, etc.). The best model minimizes a function

of the forecast errors. The volatility forecast is

often compared to a measure of realized volatility.

With financial data, the common practice has been

to take squared returns as a measure of realized

volatility. However, this practice is questionable.

Andersen and Bollerslev (1998) argued that this

measure is a noisy estimate and proposed the use

of the intraday (at each 5 min interval) squared

returns to calculate the daily realized volatility.

This measure requires intraday data, which is

subject to the variation introduced by the bid-ask

spread and the irregular spacing of the price

quotes.
Some authors have evaluated the performance of

volatility models with criteria based on economic

loss functions. For example, West, Edison, and Cho

(1993) considered the problem of portfolio alloca-

tion based on models that maximize the utility

function of the investor. Engle, Kane, and Noh

(1997) and Noh, Engle, and Kane (1994) consid-

ered different volatility forecasts to maximize the

trading profits in buying/selling options. Lopez

(2001) considered probability scoring rules that

were tailored to a forecast user’s decision problem

and confirmed that the choice of loss function

directly affected the forecast evaluation of different

models. Brooks and Persand (2003) evaluated vol-

atility forecasting in a financial risk management

setting in terms of value-at-risk (VaR). The com-

mon feature to these branches of the volatility

literature is that none of these has controlled for

forecast dependence across models and the inherent

biases due to data-snooping. Our paper fills this

void.

We consider 15 volatility models for the daily

S&P500 index that are evaluated according to their

out-of-sample forecasting ability. Our forecast eval-

uation is based on two economic loss functions, an

option pricing formula and a utility function, and

two statistical loss functions, a goodness-of-fit

based on a VaR calculation and the predictive

likelihood function. For option pricing, volatility is

a key ingredient. Our loss function assess the

difference between the actual price of a call option

and the estimated price, which is a function of the

estimated volatility of the stock. Our second eco-

nomic loss function refers to the problem of wealth

allocation. An investor wishes to maximize her

utility allocating wealth between a risky asset and

a risk-free asset. Our loss function assesses the

performance of the volatility estimates according

to the level of utility they generate. The statistical

function based on the goodness-of-fit of a VaR

calculation is important for risk management. The

main objective of VaR is to calculate extreme losses

within a given probability of occurrence and the

estimation of the volatility is central to the VaR

measure.

To control for the fact that as the number of

models increases, so does the probability of

finding superior predictive ability among the col-
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lection of models, we implement the ‘‘reality

check’’ of White (2000). A problem associated

with White’s reality check is that the power of

the test is sensitive to the inclusion of a poor

model. The test is conservative in that the null

hypothesis, which involves a benchmark model, is

designed to be the least favorable to the alternative

hypothesis. Hence, the inclusion of a bad model

adversely affects the power of the reality check

test. In this instance, the benchmark model may

hardly be dominated. Hansen (2001) addressed this

issue by suggesting a modification to the White’s

test. In our paper, we also implement Hansen’s

modification.

Concurrently and independently, Hansen and

Lunde (2002) have also examined the predictive

ability of volatility forecasts for the Deutsche

Mark/US Dollar exchange rate and IBM stock prices

with Whites reality check test. The main difference

between their work and ours is the choice of loss

functions and the data set. They have formed statis-

tical loss functions where realized volatility is

proxied by the mean of intraday squared returns as

suggested in Andersen and Bollerslev (1998). None

of their statistical loss functions include either a VaR

goodness-of-fit or a predictive likelihood function.

Our results are also very different. Hansen and

Lunde claimed that the GARCH(1,1) model was

not dominated by any other model. More recently,

Awartani and Corradi (2003) have provided a com-

parison of the relative out-of-sample ability of var-

ious volatility models, with particular attention to the

role of asymmetries. They show that while the true

underlying volatility process is unobservable, using

squared returns may be used as a valid proxy in

assessing the relative predictive performance of var-

ious volatility models.

We claim that the preferred models depend very

strongly upon the loss function chosen by the

researcher. We find that, for option pricing, simple

models such as the exponential weighted moving

average (EWMA) proposed by Riskmetrics per-

formed as well as any GARCH model. For an

utility loss function, an asymmetric quadratic

GARCH model is the most preferred. For VaR

calculations, a stochastic volatility model dominates

all other models. And, for a predictive likelihood

function, modeling the conditional standard devia-
tion instead of the variance results in a dominant

model.

The organization of the paper is as follows. In

Section 2, we present various volatility models. In

Section 3, we discuss the White’s reality check and

the Hansen’s modification. In Section 4, we present

the loss functions. In Section 5, we explain our results

and, in Section 6, we conclude.
2. Volatility models

In this section, we present various volatility mod-

els developed over the last two decades. To establish

notation, suppose that the return series { yt}
T + 1
t = 1 of a

financial asset follows the stochastic process yt + 1 =

lt + 1 + et + 1, where E( yt + 1jFt) = lt + 1(h) andE(e
2
t + 1j

Ft) = r 2
t + 1(h) given the information set Ft (r-field) at

time t. Let zt + 1u et + 1/rt + 1 have the conditional

normal distribution with zero conditional mean and

unit conditional variance. In Table 1, we summarize

the models considered in this paper and introduce

further notation.

These models can be classified in three categories:

MA family, ARCH family, and stochastic volatility

(SV) family.

First, the simplest method to forecast volatility is to

calculate a historical moving average variance,

denoted as MA(m), or an exponential weighted mov-

ing average (EWMA). In the empirical section where

we deal with daily data, we set m = 20 and we follow

Riskmetrics (1995) for the EWMA specification with

k= 0.94. For these two MA family models, there is no

parameters to estimate.

Second, the ARCH family consists of the follow-

ing models: ARCH( p) of Engle (1982); GARCH

model of Bollerslev (1986); Integrated GARCH (I-

GARCH) of Engle and Bollerslev (1986); Threshold

GARCH (T-GARCH) of Glosten, Jaganathan, and

Runkle (1993); Exponential GARCH (E-GARCH)

of Nelson (1991); three variations of quadratic

GARCH models (Q-GARCH), namely, Q-GARCH1

of Sentana (1995), Q-GARCH2 and Q-GARCH3 of

Engle and Ng (1993); Absolute GARCH (ABS-

GARCH) of Taylor (1986) and Schwert (1990);

Logarithmic GARCH (LOG-GARCH) of Geweke

(1986) and Pantula (1986); Asymmetric GARCH

(A-GARCH) of Zakonian (1994); and Smooth Tran-



3 It is a well-known fact that ST-GARCH models face

convergence problem when smoothing parameter d is estimated.

We carried out a grid search for the y in the interval [0, 20] and from
the comparison of likelihood values we arrived at the value d= 3.

Table 1

Volatility models

Name Model

MA(m)
r2
t ¼ 1=m

Xm
j¼1

ðyt�j � l̂m
t Þ

2; l̂m
t ¼ 1=m

Xm
j¼1

yt�j

EWMA

r2
t ¼ ð1� kÞ

Xt�1

j¼1

kj�1ðyt�j � l̂tÞ2;

l̂t ¼ 1=ðt � 1Þ
Xt�1

j¼1

yt�j; k ¼ 0:94

ARCH( p)
r2
t ¼ x þ

Xp
i¼1

aie
2
t�i

GARCH rt
2 =x + br2t� 1 + ae2t � 1

I-GARCH rt
2 =x + br2t� 1 + ae2t � 1, a+ b= 1

T-GARCH rt
2 =x + br2t� 1 + ae2t � 1 + ce2t � 11 (et � 1z 0)

ST-GARCH rt
2 =x + br2t� 1 + ae2t � 1 + ce2t� 1F(et� 1,d),

F(et� 1,d)=[1 + exp(det� 1)]
� 1� 0.5

E-GARCH ln rt
2 =x + b lnr2t� 1 + a[Azt� 1A� czt� 1]

Q-GARCH1 rt
2 =x + br2t� 1 + a(et� 1 + c)2

Q-GARCH2 rt
2 =x + br2t� 1 + a(et� 1 + crt � 1)

2

Q-GARCH3 rt
2 =x + br2t� 1 + a(zt� 1 + c)2

ABS-GARCH rt =x + brt � 1 + aAet� 1A
LOG-GARCH lnrt =x + b lnrt � 1 + aAet � 1A
A-GARCH rt =x + brt � 1 + a1e

+
t� 1� a2et� 1

�

SV rt
2 = exp(0.5ht), ln( yt

2) =� 1.27 + ht + nt,
ht= c+/ht � 1 + gt

(1) MA=moving average, EWMA= exponentially weighted MA,

I-GARCH= integrated GARCH, T-GARCH= threshold GARCH,

E-GARCH= exponential GARCH,Q-GARCH= quadratic GARCH,

ABS-GARCH= absolute GARCH, LOG-GARCH = logarithmic

GARCH, A-GARCH= asymmetric GARCH, ST-GARCH= smooth

transition GARCH, SV= stochastic volatility; (2) 1(�) is an indicator

function. For A-GARCH, a1,a2>0, e
+ =max(e,0), and e� =min(e,0).

For ST-GARCH, we fix d= 3 to ease the convergence in estimation.

For SV, gt is i.i.d. N(0,rg
2) and nt is i.i.d. N(0, p

2/2).
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sition GARCH (ST-GARCH) of González-Rivera

(1998).

The EWMA specification can be viewed as an

integrated GARCH model with x = 0, a = k, and

b = 1� k. In the T-GARCH model, the parameter c
allows for possible asymmetric effects of positive

and negative innovations. In Q-GARCH models,

the parameter c measures the extent of the asym-

metry in the news impact curve. For the A-GARCH

model, a1, a2>0, e+ =max(e,0), and e�=min(e,0).
For the ST-GARCH model, the parameter c meas-

ures the asymmetric effect of positive and negative

shocks, and the parameter d>0 measures the

smoothness of the transition between regimes, with

a higher value of d making ST-GARCH closer to
T-GARCH. We fix d = 3 to ease the convergence in

estimation.3

Third, for the SV family, we consider the stationary

SV model of Taylor (1986) where gt is i.i.d. N(0,rg
2)

and nt is i.i.d. N(0,p
2/2). This model is estimated by

quasi-maximum likelihood (QML) method by treating

nt as though it were i.i.d. N(0,p2/2). The Kalman filter

is used to obtain the Gaussian likelihood, which is

numerically maximized. Ruiz (1994) showed that

QML estimation within the Kalman filter algorithm

works well.
3. Reality check

Consider various volatility models and choose one

as a benchmark. For each model, we are interested in

the out-of-sample one-step ahead forecast. This fore-

cast will be fed into an objective function, for in-

stance, a utility function or a loss function. Our

interest is to compare the utility (loss) of each model

to that of the benchmark model. We formulate a null

hypothesis where the model with the largest utility

(smallest loss) is not any better than the benchmark

model. If we reject the null hypothesis, there is at least

one model that produces more utility (less loss) than

the benchmark.

Formally, the testing proceeds as follows. Let l be

the number of competing volatility models (k = 1,. . .,l)
to compare with the benchmark volatility model

(indexed as k = 0). For each volatility model k, one-

step predictions are to be made for P periods from R

through T, so that T=R +P� 1. As the sample size T

increases, P and R may increase. For a given volatility

model k and observations 1 to R, we estimate the

parameters of the model ĥR and compute the one-step

volatility forecast r2
k,R + 1(ĥR). Next, using observa-

tions 2 to R + 1, we estimate the model to obtain

ĥR + 1 and calculate the one-step volatility forecast

rk,R + 2
2 (ĥR + 1). We keep ‘‘rolling’’ our sample one

observation at a time until we reach T, to obtain h
ˆ
T

and the last one-step volatility forecast rk,T + 1
2 (ĥT).

Consider an objective function that depends on vola-



4 The condition (B/Bh)Ef(Z,hy) = 0 is indeed weaker than the

condition E[(B/Bh)f(Z,hy)] = 0, because for example, for the loss

function Q to be defined in the next section, Ef(Z,hy) is

differentiable while f(Z,hy) is not differentiable. See McCracken

(2000, p. 202) and Giacomini and Komunjer (2002, Proof of

Proposition 2). See also Kim and Pollard (1990, p. 205) for a set of

sufficient conditions for continuous differentiability of expectations

of indicator functions. Randles (1982) provides the further

conditions under which the parameter estimators are asymptotically

normal when the condition (B/Bh)Ef(Z,hy) = 0 holds.
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tility, for instance, a loss function L(Z,r2(h)) where Z

typically will consist of dependent variables and

predictor variables. L(Z,r2(h)) needs not be differen-

tiable with respect to h. The best forecasting model is

the one that minimizes the expected loss. We test a

hypothesis about an l� 1 vector of moments, E(fy),

where fyu f(Z,hy) is an l� 1 vector with the kth

element f k
y = L(Z,r0

2(hy))� L(Z,rk
2(hy)), for hy = plim

ĥT . A test for a hypothesis on E(fy) may be based

on the l� 1 statistic f̄uP� 1PT
t¼R f̂t + 1, where f̂t + 1u

f(Zt + 1,ĥt).
Our interest is to compare all the models with a

benchmark. An appropriate null hypothesis is that

all the models are no better than a benchmark, i.e.,

H0: max1 V k V lE( f k
y)V 0. This is a multiple hypoth-

esis, the intersection of the one-sided individual

hypotheses E( f k
y)V 0, k = 1,. . .,l. The alternative is

that H0 is false, that is, the best model is superior to

the benchmark. If the null hypothesis is rejected,

there must be at least one model for which E( f k
y) is

positive. Suppose that M
��
P ( f̄�E(fy))!d N(0,X) as

P(T)!l when T!l, for X positive semi-defi-

nite. White’s (2000) test statistic for H0 is formed as

V̄umax1 V k V lM
��
P f̄k, which converges in distribution

to max1 V k V lGk under H0, where the limit random

vector G=(G1,. . .,Gl)V is N(0,X). However, as the

null limiting distribution of max1 V k V lGk is un-

known, White’s Theorem 2.3 shows that the distri-

bution of M
��
P ( f̄*� f̄ ) converges to that of

M
��
P( f̄�E(fy)), wheref̄* is obtained from the stationary

bootstrap of Politis and Romano (1994). By the

continuous mapping theorem this result extends to the

maximal element of the vector M
��
P( f̄*� f̄ ) so that the

empirical distribution of

V̄* ¼ max
1VkVl

ffiffiffi
P

p
ðf̄k*� f̄kÞ; ð1Þ

may be used to compute the p-value of V̄ (White,

2000, Corollary 2.4). This p-value is called the

‘‘reality check p-value’’.

3.1. Remarks

The following four remarks, each related to the

issues of (i) differentiability of the loss function and

the impact of parameter estimation error, (ii) nested-

ness of models under comparison, (iii) the forecast-
ing schemes, and (iv) the power of the reality

check test, are relevant for the present paper.

First, White’s Theorem 2.3 is obtained under the

assumption of the differentiability of the loss function

(as in West, 1996, Assumption 1). Also, White’s

Theorem 2.3 is obtained under the assumption that

either (a) the same loss function is used for estimation

and prediction (i.e., FuE[(B/Bh)f(Z,hy)] = 0) or (b)

(P/R)log log R! 0 as T!l; so that the effect of

parameter estimation vanishes (as in West, 1996,

Theorem 4.1(a)). Thus, White’s Theorem 2.3 does

not immediately apply to the nonsmooth functions

and the presence of estimated parameters. Neverthe-

less, White (2000, p. 1113) notes that the results

analogous to Theorem 2.3 can be established under

similar conditions used in deriving the asymptotic

normality of the least absolute deviations estimator.

When no parameter estimation is involved, White’s

procedure is applicable to nondifferentiable f. We

expect that the approach of Randles (1982) and

McCracken (2000, Assumption 4) may be useful here,

where the condition E[(B/Bh)f(Z,hy)] = 0 is modified to

(B/Bh)Ef(Z,hy) = 0 to exploit the fact that the expected

loss function may be differentiable even when the loss

function is not.4 We conjecture that when parameter

estimation is involved, White’s procedure continues to

hold either when (B/Bh)Ef(Z,hy) = 0 or when P grows

at a suitably slower rate than R. This proof is much

involved and has to be pursued in further work. Since

we are using different criteria for in-sample estimation

and forecast evaluation, there is no reason to expect

that (B/Bh)Ef(Z,hy) = 0. Hence, it is important to have

very large R compared to P. In our empirical section,

for the option loss function, we have R = 7608/(s� t)

and P= 429, where the maturity s of the option is

(s� t) ahead of the current date t. For the other three

loss functions (utility function, VaR loss function,
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and predictive likelihood), we have R = 6648 and

P= 999. Supporting evidence is provided by Monte

Carlo experiments reported in Sullivan and White

(1998), where, for the case of the indicator function

and with parameter estimation, the stationary boot-

strap reality check delivers quite good approxima-

tions to the desired limiting distribution (White,

2000, p. 1113).

Second, White (2000) does not require that X be

positive definite (that is required in West, 1996), but

that X be positive semi-definite (White, 2000, pp.

1105–1106). Hence, it is required that at least one of

the competing models (k= 1,. . .,l) is nonnested with

respect to the benchmark.

Third, White (2000, pp. 1107–1108) discussed

that it would not be necessary to deal explicitly

with the forecast schemes such as the ‘‘recursive’’,

‘‘rolling’’, and ‘‘fixed’’ forecasting schemes, defined

in West and McCracken (1998, p. 819). West and

McCracken (p. 823) and McCracken (2000, p. 203)

showed how X may be differently affected by

parameter estimation uncertainty depending on the

choice of the forecasting schemes. When there is no

parameter estimation involved, we may not need to

deal explicitly with the forecasting schemes in using

the bootstrap reality check. However, when param-

eters are to be estimated, we note that this may be a

nontrivial issue due to the potential effect of the in-

sample parameter estimation errors and that Corradi

and Swanson (2003a, 2003b) have examined the

validity of the block bootstrap in the presence of

the parameter estimation error for the fixed fore-

casting scheme and for the recursive forecasting

scheme. While the recursive scheme has the advan-

tage of using more observations, we use the rolling

forecasting scheme, as described in the beginning of

the section, because it may be more robust to a

possible parameter variation during the nearly 30-

year sample period in the presence of potential

structural breaks.

Finally, we note that the White’s reality check may

be quite conservative when a poor model is included

in the set of l competing models. The inclusion of f̄k in

Eq. (1) guarantees that the statistic satisfies the null

hypothesis E(f̄k*� f̄k) = 0 for all k. This setting makes

the null hypothesis the least favorable to the alterna-

tive and consequently, it renders a very conservative

test. When a poor model is introduced, the reality
check p-value becomes very large and, depending on

the variance of f̄k, it may remain large even after the

inclusion of better models. Hence, the White’s reality

check p-value may be considered as an upper bound

for the true p-value. Hansen (2001) considered differ-

ent adjustments to Eq. (1) providing a lower bound for

the p-value as well as intermediate values that depend

on the variance of f̄k. In Hansen, the statistic (1) is

modified as

V̄* ¼ max
1VkVl

ffiffiffi
P

p
ð f̄ k*� gð f̄kÞÞ: ð2Þ

Different g(�) functions will produce different

bootstrap distributions that are compatible with the

null hypothesis. If g( f̄k) =max( f̄k,0), the null hypoth-

esis is the more favorable to the alternative, and the p-

value associated with the test statistic under the null

will be a lower bound for the true p-value. Hansen

(2001) recommended setting g(�) as a function of the

variance of f̄k, i.e.

gðf̄kÞ ¼
0 if f̄kV� Ak

f̄k if f̄k > �Ak

8<
: ð3Þ

where Ak= (1/4)P
� 1/4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðP1=2 f̄ kÞ

p
with the variance

estimated from the bootstrap resamples.

In our empirical section, we report three reality

check p-values: the upper bound p-values with

g( f̄k) = f̄k as in Eq. (1) (denoted as White), lower

bound p-values with g( f̄k) =max( f̄k,0) (denoted as

HansenL), and intermediate p-values with g( f̄k) de-

termined from Eq. (3) (denoted as Hansen).
4. Loss functions

In this section, we present the four loss functions

(to be denoted as O, U, Q, and W) through which we

evaluate the predictive ability of the various volatility

models. We deal with two economic loss functions

where volatility is of paramount importance. The first

function (O) is based on the Black–Scholes option

pricing formula. The second function (U) deals with

maximizing the utility of an agent who holds a



6 We understand that using the Black–Scholes formulation for

option pricing is a strong simplification of the problem. It is

conceivable that one separately derives the option pricing formula

for each of the volatility models. Heston (1993) and Heston and

Nandi (2000) provide the closed-form option pricing formula for

stochastic volatility and GARCH volatility dynamics, respectively.

But given the varied nature of the volatility models considered here,

it is nearly impossible to get a closed-from option pricing formula

for nonlinear volatility models. Even finding the ordinary differ-

ential equation (that needs to be solved numerically) is nontrivial for

some models considered here. The only work that comes close to

providing a solution is that of Duan (1997) (in the form of an
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portfolio of a risk-free asset and a risky asset. We also

consider two statistical loss functions. The loss func-

tion (Q) is a goodness-of-fit measure for a value-at-

risk calculation. As the loss Q is a nondifferentiable

function, we also use a smooth approximation to Q,

denoted as Q̃, which is differentiable. The second

statistical loss function is based on the predictive log-

likelihood function (W) under the assumption of

conditional normality.5

4.1. Option pricing-based loss function

We consider an European call option written on

a stock. A holder of a call option has the right to

buy the stock at the expiration date of the option,

at the strike price agreed in the contract. Black and

Scholes (1973) and Merton (1973) derived the price

of a call option under the assumption of no market

imperfections, continuous trading, no borrowing

constraints, no arbitrage opportunities, and geomet-

ric Brownian dynamics for the stock price. Under

these assumptions, the price of a call option is

given by

Ctþ1;t ¼ Stexp½�dtðs � tÞUðd1Þ � X exp½rtðs � tÞ
� Uðd2Þ; ð4Þ

where Ct + 1,t is the one-period ahead predicted price

of the call option at time t that expires in (s� t)

periods; St is the price of the underlying stock at

time t; (s� t) is the option time to maturity; rt is the

risk-free interest rate at time t; dt is the dividend

yield on the underlying stock at time t; X is the strike

stock price; U(�) is the normal cumulative distribu-

tion function; d1=[ln(St/X)+(rt� dt+ 0.5rs,t
2 )(s� t)]�

rs,t

ffiffiffiffiffiffiffiffiffiffi
s � t

p
; d2 = d1� rs,t

ffiffiffiffiffiffiffiffiffiffi
s � t

p
; and rs,t

2 is the

volatility of the stock price at time t to remain

constant till the expiration time s.
For the derivation of the result and other option

related issues, we refer to Hull (2000) and Merton

(1992). In the call option formula, the only
5 Strictly speaking, we do not need conditional normality

because the QML estimators will be consistent. Also, the condition

(B/Bh)Ef(Z,hy) = 0 or E[(B/Bh)f(Z,hy)] = 0 will be satisfied when we

use the same loss function for the out-of-sample forecast evaluation

(Gaussian predictive likelihood) as for the in-sample estimation.
argument that is not observable is the volatility.

For each volatility model, we can compute a

volatility forecast that will be fed into the option

formula to produce the predicted option price. Our

volatility model evaluation is based on comparing

the predicted option price with the actual option

price.6

An important issue is the computation of the

volatility forecast for s� t periods. The question

becomes on how to construct the volatility forecast

in order to be faithful to the assumption of constant

variance over the expiration period.

The first approach is due to Noh et al. (1994),

whose estimator of volatility is an average of multi-

step forecasts of a GARCH model over the expiration

period of the option. Aside the fact that this approach

allows for time-varying variances during the expira-

tion time of the option, we do not follow Noh et al.

approach because of mainly two reasons. One reason

is related to the properties of a multistep forecast. If

the process is stationary, the multistep forecast of the

conditional variance should converge to the uncondi-

tional variance of the process as the forecasting

horizon increases. Since our purpose is to differentiate

among variants of GARCH models, an average of

multistep forecasts will not be helpful when the

expiration time of the option is relatively long because

the average will be dominated by the unconditional

variance of the process and thus produce under-

estimates of long-horizon volatility. Another reason

is that multistep forecasts of GARCH processes are
augmented GARCH model), which provides a diffusion approx-

imation to many symmetric and asymmetric GARCH. Unfortu-

nately, it does not shed any light on the corresponding option

pricing formulas. Thus, we take the Black–Scholes formula and, to

account for the constancy of volatility over the expiration period, we

do suitable aggregation as discussed shortly.
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highly complicated mainly when the model includes

nonlinear features.

The second approach, which is the popular indus-

try practice (e.g., Riskmetrics, 1995) for computing

multistep volatility forecasts, is to scale up the high-

frequency volatility forecasts to get a low-frequency

volatility measure (i.e., converting 1-day standard

deviation to h-day standard deviation by scaling with

M
��
h ). See Diebold, Hickman, Inoue, and Schuermann

(1998) and Tsay (2002, p. 260). However, Christof-

fersen, Diebold, and Schuermann (1998), Diebold et

al., and Tsay (p. 267) showed that this method will

produce over-estimates of long-horizon volatility and

hold only for the special case of Riskmetrics’ EWMA

model.

The third approach is based on temporal aggre-

gation formulae as presented in Drost and Nijman

(1993), who addressed the issue of temporal aggre-

gation for linear ARCH models and showed that

‘‘weak GARCH’’ models can be temporally aggre-

gated. As Christoffersen and Diebold (2000, p. 13)

pointed out, this approach has some drawbacks; i.e.,

the aggregation formulae assume the fitted model

as the true data generating process and there are

no formulae yet available for nonlinear GARCH

models.7

The fourth approach that we use in this paper is to

work directly at the horizons of interest, thereby

avoiding temporal aggregation entirely (Christof-

fersen & Diebold, 2000, p. 13). The approach consists

of calculating one-step forecast of the variance of an

aggregated process where the level of aggregation is
7 The issue of aggregation is an open question in the realm of

nonlinear GARCH models. Drost and Werker (1996) provides the

result for the GARCH models and show the strong and semi-strong

GARCH models are not robust to temporal aggregation. To the best

of our knowledge, no such result is available for the host of

GARCH models that we consider here. We do acknowledge that the

ranking may depend on the extent of aggregation. As our result is

based on averaging over s= 39 levels of aggregation, we believe

that any abnormal performance of a given model for a given level of

aggregation will also be smoothed out. Alternatively, we may use

simulation to find the relationship between parameters of different

levels of aggregation. It is possible to use simulation if the data

generating process is closed under aggregation. Otherwise, it is very

difficult to locate the right model for the different level of

aggregation. Thus, to find the actual relationship between the

disaggregated and aggregated parameters might be very difficult.
dictated by the expiration time of the call option. If the

option expires in m days, the stock price series is

aggregated at m period intervals and we forecast one-

step ahead (that is m days) conditional variance from

the aggregated process. Effectively, from the current

period through the expiration time of the option the

conditional variance is constant.

Now, we define our option-based loss function,

denoted as O. We consider call options on the

S&P500 index with strike prices X ranging from

1200 through 1600 index points with intervals of 25

points, with a total of 17 different strike prices Xi

(i= 1,. . .,17). The option data was collected for 11

months ( j = 1,. . .,11), with expiration dates ranging

from January 2000 through November 2000. Hence,

we index the price of a call option expressed in Eq. (4)

by using indices i and j, that is Ct + 1, t
i, j . The maximum

life for the traded options is rounded up to 39 days

because we observe only significant trading over this

time span. We denote the maximum life of the options

by s = 39.
Let Ĉ t + 1,t

i, j be the one-period ahead predicted call

option price at time t using the formula in Eq. (4). Let

Ct + 1
i, j be the actual price at time t + 1 for the same call

option and let x t + 1
i, j be the volume share of the option

with strike price Xi expiring in month j with respect to

the total volume of the call option across all strike

prices for month j. Define the volume-weighted sum

of squared pricing errors (WSSE) (sum for the options

with 17 different strike prices)

WSSE
j
tþ1u

X17
i¼1

xi;j
tþ1ðĈ

i;j
tþ1;t � C

i;j
tþ1Þ

2: ð5Þ

Then the option-based loss function for the option

expiring in month j ( j = 1,. . .,11) will be defined as

O jus�1
X39
t¼1

WSSE
j
tþ1: ð6Þ

Instead of evaluating models in terms of O j for

each month j, we take the average of O j over the 11

months and define our first loss function O as

OuJ�1
XJ¼11

j¼1

O j ¼ ðJ � sÞ�1
XJ¼11

j¼1

Xs¼39

t¼1

WSSE
j
tþ1: ð7Þ



G. González-Rivera et al. / International Journal of Forecasting 20 (2004) 629–645 637
The advantage of using O as a loss function instead

of O j is two-fold: one is to simplify the presentation

of results and another is to increase the out-of-sample

size for the reality check from s = 39 to Pu J� s =
11� 39 = 429, which contributes to improve the pow-

er of the reality check tests.8

4.2. Utility-based loss function

In the exchange rate market, West et al. (1993)

evaluated the performance of a GARCH model

against ARCH, ABS-ARCH, and nonparametric

models using a utility-based criterion. They consid-

ered an agent who optimizes the one period

expected wealth when holding a portfolio of two

assets: a foreign asset and a domestic asset. In this

paper, we borrow their utility-based criterion to

compare the predictive performance of many more

volatility models controlling, at the same time, for

potential data snooping problems. In our case, the

agent maximizes her expected utility given that her

wealth is allocated between a risky asset (S&P500

index) and a riskless asset (the 3-month treasury

bill)

max
at

EðUtþ1 j FtÞuEðwtþ1 � 0:5cw2
tþ1 j FtÞ;

s:t: wtþ1 ¼ atytþ1 þ ð1� atÞrtþ1 ð8Þ

where wt + 1 is the return to the portfolio at time

t + 1, c is a risk aversion parameter, at is the weight

of the risky asset in the portfolio, yt + 1 is the

S&P500 return, and rt + 1 is the risk-free rate, which
8 Our effective sample size is 429 because we consider 11

different expiration months and 39 time period for each expiration

months. It is possible that there are contemporaneous observations

but there is no repetition of the observations, as two options trading

in the same time but expiring at different months are not identically

priced. Also, to make sure that the time series dependence (if any)

across the options over the 11 different expiration months may not

affect the bootstrap adversely, we have used various smoothing

parameters q of the stationary bootstrap that is corresponding to the

mean block length (1/q) of the stationary bootstrap. The results were

robust to the various values of q= 0.25, 0.50, 0.75, and 1.00 ( q= 1

corresponds to the mean block length 1).
is assumed known. In West et al. (1993) frame-

work, it is assumed that all relevant moments of the

return distribution are known except for the condi-

tional variance. Solving (utility) gives the maximum

expected utility

EðUtþ1* j FtÞ ¼Eðctþ1ðcÞ þ dtþ1ðcÞxðe2tþ1; r̂
2
tþ1ÞjFtÞ;

ð9Þ

where et + 1u yt + 1� rt + 1 is the excess return to the

risky asset, r̂t + 1
2 is the estimated conditional vari-

ance of et + 1, and lt + 1uE(et + 1jFt),

ctþ1ðcÞurtþ1 � 0:5cr2tþ1; ð10Þ

dtþ1ðcÞul2
tþ1

ð1� crtþ1Þ2

c
; ð11Þ

and

xðe2tþ1; r̂
2
tþ1Þu

1

ðl2
tþ1 þ r̂2

tþ1Þ

� 0:5
ðl2

tþ1 þ e2tþ1Þ
ðl2

tþ1 þ r̂2
tþ1Þ

2
: ð12Þ

We should note that this utility function is asym-

metric. Miscalculations of the conditional variance are

paid in units of utility. A risk averse agent will have

lower expected utility when the conditional variance

is underestimated than when it is overestimated.

Based on this criterion, our second economic loss

function is

Uu� P�1
XT
t¼R

Û tþ1*

¼ �P�1
XT
t¼R

ðctþ1ðcÞ þ d̂tþ1ðcÞx̂ðe2tþ1; r̂
2
tþ1ÞÞ ð13Þ

where d(̂�) and x(ˆ �,�) are obtained from Eqs. (11) and

(12) by replacing lt + 1 with the predicted excess
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return l̂t + 1. In the empirical section, c is set at 0.5 but

we have experimented with different values of the risk

aversion coefficient and our results remain un-

changed. Note that U is to be minimized.9

4.3. VaR-based loss function

The conditional value-at-risk, denoted as VaR t + 1
a ,

can be defined as the conditional quantile

Prðytþ1VVaR
a
tþ1 j FtÞ ¼ a: ð14Þ

If the density of y belongs to the location-scale

family (e.g., Lehmann, 1983, p. 20), it may be

estimated from

VaRa
tþ1 ¼ ltþ1ðĥtÞ þ U�1

tþ1ðaÞrtþ1ðĥtÞ; ð15Þ

where Ut + 1(�) is the forecast cumulative distribu-

tion (not necessarily standard normal) of the stan-

dardized return, lt + 1(h) =E( yt + 1jFt) is the condi-

tional mean forecast of the return, and r t + 1
2 (h) =

E(e t + 1
2 jFt) the conditional variance forecast based

on the volatility models of Section 2, and ĥt is the

parameter vector estimated by using the information

up to time t. We fit an AR(0) model with a

constant term in the mean equation and the esti-

mated values of the constant are very close to zero.

We assume conditional normality of the standard-

ized return.10 We consider the quantile a = 0.05 and

thus U t + 1
� 1 (0.05) =� 1.645 for all t.
9 It may be noted that r̂ t + 1
2 is not the optimal forecast of the

conditional variance under the asymmetry of the loss function.

Christoffersen and Diebold (1996) provide some results for the

GARCH(1,1) under the LinLin loss. It will be difficult to derive the

optimal volatility forecast for all volatility models and for our loss

functions. But we do acknowledge that the forecasts need not be

optimal when the models are estimated by QML, while the forecasts

are evaluated via asymmetric loss functions.
10 We did carry out the analysis with Student’s t distribution

and qualitative nature of the result is same as what we obtained

under conditional normality.
Our first statistical loss function Q is the loss

function used in the quantile estimation (see, e.g.,

Koenker & Bassett, 1978), that is, for given a,

QuP�1
XT
t¼R

ða � da
tþ1Þðytþ1 � VaRa

tþ1Þ; ð16Þ

where dt + 1
a u1( yt + 1 <VaR t + 1

a ). This is an asymmet-

ric loss function that penalizes more heavily with

weight (1 � a) the observat ions for which

y�VaRa < 0. Smaller Q indicates a better goodness

of fit.

Note that the loss Q is not differentiable due to the

indicator function. As discussed in Section 3.1,

White’s (2000) procedure may continue to be valid

and applicable for nondifferentiable losses. We expect

that when parameter estimation is involved, the im-

pact of parameter estimation uncertainty is asymptot-

ically negligible when P grows at a suitably slower

rate than R. Thus, in our empirical work, we choose

the prediction period (P= 999) that is much smaller

than the estimation period (R = 6648).

Granger (1999, p. 165) notes that the problem of

nondifferentiability may be just a technicality because

there may exist a smooth function that is arbitrarily

close to the nonsmooth function. Hence, we deal with

the nondifferentiability of Q by running our experi-

ments with a smoothed version of the loss Q where

the indicator function is replaced with a continuous

differentiable function. We denote this smoothed Q as

Q̃ and define

Q̃uP�1
XT
t¼R

ða � mdðytþ1;VaR
a
tþ1ÞÞðytþ1 � VaRa

tþ1Þ;

ð17Þ

where md(a,b)=[1 + exp{d(a� b)}]� 1. Note that

md(a,b) = 1�md(b,a). The parameter d>0 controls the

smoothness. A higher value of d makes Q̃ closer to Q.

For Q̃, we consider many values of d and we find that

for values of d>10 the loss values for both Q and Q̃ are

very similar. We report the results for d = 25. The
results with other values of d are available and very

similar to those reported here. The results ofQ and Q̃ in

Section 5 indicate the validity of the stationary boot-
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strap reality check with respect to the nondifferentiable

loss.11

4.4. Predictive likelihood-based loss function

Our second statistical loss function is the predictive

likelihood. The negative average predictive likelihood

under the conditional normality assumption, denoted

W, is given by

Wu� P�1
XT
t¼R

loglðZtþ1; ĥtÞ;

where

loglðZtþ1; ĥtÞ ¼ �logð
ffiffiffiffiffiffi
2p

p
Þ � 1

2
logr2

tþ1ðĥtÞ

�
e2tþ1ðĥtÞ
2r2

tþ1ðĥtÞ
;

11 We do not have a theoretical proof on the consistency and

asymptotic refinement of the stationary bootstrap with respect to the

non-differentiable loss Q. As the Edgeworth expansion of the

indicator function is very complicated as discussed by De Angelis,

Hall, and Young (1993), we do not know whether the bootstrap can

provide the asymptotic refinement for the non-smooth estimators

(although we suspect so). Our experiment (with replacing the

indicator function with a smooth function, thereby producing a

modified objective function Q̃ whose derivatives are continuous) is

to show (empirically) that bootstrap may work for the non-smooth

loss function. In fact, the reality check results using the smoothed

objective function Q̃ and the original non-smooth objective function

Q are virtually identical. Hence, this confirms the theoretical results

on the bootstrap consistency for the smoothed LAD estimator

(Horowitz, 1998) and for the smoothed maximum score (MS)

estimator (Horowitz, 2002), where a smooth kernel is used to

replace the indicator function. It may be carried over to the other

quantiles than the median. It may be shown that the smoothed and

unsmoothed estimators are first-order asymptotically equivalent. We

can also show the asymptotic normality of the quantile estimators

(see Komunjer, 2003). Due to the first-order asymptotic equivalence

of the smoothed and unsmoothed quantile estimators, due to the

asymptotic normality of the quantile estimators, and due to the

virtually identical empirical results we obtained for Q and Q̃, we

conjecture that the bootstrap will work for the unsmoothed objective

function Q. However, this is only a conjecture because the

theoretical results of Horowitz (1998, 2002) and Hahn (1995) do

not cover the dependent series and the theoretical result of

Fitzenberger (1998) does not cover the parameter estimation error

in the out-of-sample forecasting. The extension of Corradi and

Swanson (2003a, 2003b) to the case non-smooth estimators (e.g.,

quantile estimator) would be an interesting future research topic.
et + 1(h) = yt + 1� l t + 1(h) is a forecast error, lt + 1(h) =
E( yt + 1jFt), r t + 1

2 (h) =E(e t + 1
2 jFt), and ĥt is the pa-

rameter vector estimated by using the information up

to time t. The loss W is to be minimized. See

Bjørnstad (1990) for a review on predictive likeli-

hood. Note that we evaluate the conditional models

for lt + 1(h) and r t + 1
2 (h) in terms of the Gaussian

predictive likelihood, which is different from a density

forecast evaluation (e.g., Diebold, Gunther, & Tay,

1998).
5. Empirical results

In this section, we describe the data and explain the

results presented in Tables 2 and 3.

5.1. Data

We consider closing prices of call options on the

S&P500 index with strike prices ranging from 1200

through 1600 index points with intervals of 25 points,

traded in the Chicago Board of Options Exchange

(CBOE). We have omitted those options for which

the trading volume is mostly zero. We consider

mostly at-the-money options. The time period con-

sidered is 39 trading days before expiration since the

number of days with nonzero volume is quite small.

The option data was collected for 11 months, with

expiration dates ranging from January 2000 through

November 2000. The option data was purchased from

Dialdata.com.

We consider 7647 daily observations of the S&P500

index from April 1, 1970 till November 17, 2000. The

index was collected from finance.yahoo.com. The

daily dividend data was collected from Datastream

for the same period as that of the index. The risk-free

rate is the secondary market 3-month treasury bill rate

and it was retrieved from St. Louis Federal Reserve

Bank.

For the option-based loss function we used the

S&P500 percentage returns from April 1, 1970 until

the date on which the option is traded to forecast one-

step ahead conditional variance of the properly aggre-

gated return series. This in turn was used to estimate

the price of the call option.

For the utility-based loss function, VaR-based loss

function, and predictive likelihood function, no ag-

http://www.finance.yahoo.com


Table 2

Reality check

Panel A. Based on economic loss functions

Benchmark O White Hansen HansenL U White Hansen HansenL

GARCH 58,441.8 0.969 0.515 0.456 � 0.024 0.286 0.000 0.000

Q-GARCH1 58,378.7 0.971 0.524 0.468 � 0.027 1.000 0.518 0.495

E-GARCH 62,361.5 0.818 0.570 0.102 � 0.022 0.206 0.000 0.000

T-GARCH 65,906.5 0.714 0.366 0.133 � 0.023 0.219 0.000 0.000

ST-GARCH 60,364.3 0.862 0.487 0.144 � 0.023 0.251 0.000 0.000

I-GARCH 62,501.5 0.775 0.475 0.088 � 0.024 0.331 0.000 0.000

Q-GARCH2 59,706.5 0.876 0.225 0.207 � 0.023 0.221 0.000 0.000

Q-GARCH3 75,971.6 0.575 0.104 0.091 � 0.022 0.150 0.000 0.000

ARCH(5) 60,682.2 0.868 0.475 0.184 � 0.023 0.229 0.000 0.000

ABS-GARCH 57,828.0 0.999 0.963 0.867 � 0.024 0.302 0.000 0.000

A-GARCH 122,546.0 0.111 0.076 0.075 � 0.023 0.207 0.000 0.000

EWMA 58,030.4 0.976 0.654 0.466 � 0.023 0.246 0.000 0.000

MA(20) 58,528.9 0.965 0.548 0.431 � 0.022 0.168 0.000 0.000

LOG-GARCH 58,116.2 0.977 0.606 0.546 � 0.023 0.215 0.000 0.000

SV 233,962.0 0.000 0.000 0.000 0.010 0.000 0.000 0.000

Panel B. Based on statistical loss functions

Benchmark Q White Hansen HansenL W White Hansen HansenL

GARCH 1.807 0.000 0.000 0.000 1.602 0.532 0.040 0.015

Q-GARCH1 1.807 0.000 0.000 0.000 1.602 0.521 0.034 0.007

E-GARCH 1.509 0.000 0.000 0.000 1.608 0.523 0.129 0.051

T-GARCH 1.796 0.000 0.000 0.000 1.592 0.719 0.189 0.018

ST-GARCH 1.771 0.000 0.000 0.000 1.587 0.843 0.072 0.059

I-GARCH 1.880 0.000 0.000 0.000 1.603 0.547 0.068 0.038

Q-GARCH2 1.745 0.000 0.000 0.000 1.585 0.913 0.101 0.086

Q-GARCH3 1.614 0.000 0.000 0.000 1.638 0.376 0.004 0.004

ARCH(5) 1.659 0.000 0.000 0.000 1.637 0.373 0.004 0.004

ABS-GARCH 1.760 0.000 0.000 0.000 1.603 0.536 0.018 0.004

A-GARCH 1.737 0.000 0.000 0.000 1.581 0.993 0.914 0.530

EWMA 1.830 0.000 0.000 0.000 1.607 0.469 0.024 0.019

MA(20) 1.818 0.000 0.000 0.000 1.639 0.384 0.024 0.023

LOG-GARCH 1.816 0.000 0.000 0.000 1.611 0.465 0.006 0.000

SV 1.041 1.000 0.516 0.495 2.632 0.000 0.000 0.000

(1) We compare each model as the benchmark model with all the remaining l = 14 models. (2) ‘‘White’’, ‘‘Hansen’’ and ‘‘HansenL’’ denote

reality check p-values of the White’s test, Hansen’s intermediate test, and Hansen’s liberal test, respectively. The bootstrap reality check p-values

are computed with 1000 bootstrap resamples and smoothing parameter q= 0.25. See Politis and Romano (1994) or White (2000) for the details.

The p-values for q= 0.75 and 0.50 are similar and are not reported. (3) The sample period of the data is from April 1, 1970 to November 17,

2000 with T= 7647 observations. (4) For the O loss function, R = 7608/(s� t), where the maturity of the option is (s� t) ahead of the current

date. For the O loss function, the forecast horizon for every option is 39 periods but as we aggregate across months P= s� J= 39� 11 = 429. (5)

For the loss functions U, Q, and W, the models are estimated using R = 6648 observations and the forecast evaluation period is P= 999. (6) All

the loss functions are to be minimized.
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gregation of the data was needed. We divide the

S&P500 data into two subsamples: the most recent

999 observations is the forecasting period (P= 999)

and the rest is the estimation period (R = 6648%). We

choose large R to make (P/R)log log R small to reduce

the impact of the parameter estimation uncertainty

(White, 2000, Theorem 2.3) while we also keep P
reasonably large enough to maintain the power of the

reality check (White, 2000, Proposition 2.5).

5.2. Results

We evaluate the out-of-sample predictive ability of

the various volatility models described in Section 2,



Table 3

Reality check based on smoothed VaR loss function

Benchmark Q̃ White Hansen HansenL

GARCH 1.808 0.000 0.000 0.000

Q-GARCH1 1.808 0.000 0.000 0.000

E-GARCH 1.508 0.000 0.000 0.000

T-GARCH 1.797 0.000 0.000 0.000

ST-GARCH 1.771 0.000 0.000 0.000

I-GARCH 1.879 0.000 0.000 0.000

Q-GARCH2 1.745 0.000 0.000 0.000

Q-GARCH3 1.614 0.000 0.000 0.000

ARCH(5) 1.659 0.000 0.000 0.000

ABS-GARCH 1.760 0.000 0.000 0.000

A-GARCH 1.737 0.000 0.000 0.000

EWMA 1.830 0.000 0.000 0.000

MA(20) 1.818 0.000 0.000 0.000

LOG-GARCH 1.816 0.000 0.000 0.000

SV 1.041 1.000 0.516 0.496

For the loss function Q̃, the models are estimated using R = 6648

observations and the forecast evaluation period is P= 999. For Q̃,

the smoothing parameter d is set to be 25.
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using the evaluation methods described in Section 3

and the objective functions of Section 4. We consider

a total of 15 models.

In Table 2, we take into account the specification

search and we present a multiple comparison of the

benchmark model with all of the remaining 14 mod-

els. The p-values are computed using the stationary

bootstrap of Politis and Romano (1994) generating

1000 bootstrap resamples with smoothing parameter

q = 0.25. The p-values for q = 0.75 and 0.50 are similar

(not reported), which is consistent with White (2000,

p. 1116). The null hypothesis is that the best of the

remaining 14 models is no better than the benchmark.

For example, when GARCH is the benchmark

White’s p-value is 0.969, which indicates the null

hypothesis may not be rejected. When SV is the

benchmark White’s p-value is 0.000 and so the null

hypothesis is clearly rejected and there exists a better

model than SV.

For the option loss function, we find that the

White’s reality check p-values for most of the bench-

mark models are very high. On the other hand, the

Hansen’s p-values seem to discriminate better among

models. The stochastic volatility model is clearly

dominated by the rest. The A-GARCH model comes

next as the second least preferred model. In contrast,

the ABS-GARCH seems to be the most preferred, it

has the largest Hansen’s p-value. Once again the
simplest models such as EWMA and MA(20) are as

good as any other specification. In general, there is not

a highly preferred specification; none of the models

that incorporate asymmetries seem to dominate the

symmetric models, even under the most liberal Han-

sen’s test. It seems that only three specifications—the

stochastic volatility model, the A-GARCH model, and

to a lesser extent the Q-GARCH3 model—are clearly

dominated models.

For the utility function, there is a most preferred

model that clearly dominates all the rest, this is the Q-

GARCH1, which is an asymmetric model. We run the

experiment for several values of the absolute rate of

risk aversion to assess the robustness of our results.

The values considered are 0.5, 0.6. 0.75, 0.8, 0.85,

0.9, and 0.95. Even though, the value of the loss

function changes, the Q-GARCH1 remains the pre-

ferred model. The worst seems to be the SV model.

With the exception of the SV model, there are not

very large differences across models.

For VaR-based loss functions Q, the SV model

clearly dominates all the other models. It is interesting

to note that the worst performers are IGARCH and

EWMA, which are the popular models proposed by

Riskmetrics (1995) for the VaR computation.

For the predictive likelihood, there seems to be a

preference for asymmetric models and the preferred

one is the A-GARCH, followed by the Q-GARCH2

and the ST-GARCH. Modeling the conditional stan-

dard deviation (A-GARCH, ABS-GARCH, and LOG-

GARCH), instead of the variance, seems to be a

dominant modeling strategy.

In Table 3, we consider the smoothed version of

the VaR loss function. As discussed in Section 3,

White’s Theorem 2.3 does not readily apply to non-

differentiable loss functions and the presence of

estimated parameters, and thus the effect of parameter

estimation might not vanish asymptotically (as in

West, 1996, Theorem 4.1(b)). While the theoretical

results for this nondifferentiable case are not yet

available, we confirm the Monte Carlo results

reported in Sullivan and White (1998), where it is

shown that, for the case with the indicator function

and with the parameter estimation, the stationary

bootstrap reality check delivers quite good approxi-

mations to the desired limiting distribution. We note

that the differences between the estimated loss func-

tion Q (Table 2) and its smoothed version Q̃ (Table 3)
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are negligible, implying that the differentiability of the

loss function is not an issue for the implementation of

the stationary bootstrap reality check. The bootstrap p-

values for Q and Q̃ are also virtually the same.

The different p-values differ substantially for loss

functions O, U, and W, when the SV model is not

used as a benchmark, and for the Q loss function

when the SV is used as the benchmark. This is due

to fact that the inclusion of a bad model adversely

affects the power of the reality check test. A problem

in White’s (2000) set-up may be that the null

hypothesis is composite, H0: max1 V k V lE( f k
y) V 0.

When E( f k
y) = 0 for all 1 V k V l, then the reality

check p-value of White (2000) will provide an

asymptotically correct size. However, when some

models are strictly dominated by the benchmark

model, i.e., E( f k
y) < 0 for some 1V kV l, i.e., when

bad models are included in the set of the competing

models, White’s test tends to behave conservatively.

Hansen’s (2001) modification is basically to remove

those (very) bad models in the comparison and to

restore the test power. Note that Hansen’s p-values

are lower than White’s p-values.
12 While the data snooping bias may be caused by the pair-wise

tests, potential bias may also be caused from taking different models

as benchmarks. It is probably not a big problem, but we

acknowledge that this type of dependence is not being taken into

account in our current testing framework.
6. Summary and concluding remarks

In this paper, we have analyzed the predictive

performance of multiple volatility models for stock

returns. We have considered linear and nonlinear

GARCH processes, some of the models are nested

and some others are not, such as the stochastic

volatility model. We have also included simple mod-

els that do not involve the parameter estimation such

as MA and EWMA.

To evaluate the performance of this models, we

have chosen both economic and statistical loss func-

tions. Statistical functions that are based on some

function of the forecast error are not the most appro-

priate to evaluate volatility models because volatility

is not observable and any proxy to realized volatility

is subject to estimation error. Our choice of loss

functions spans the fields of finance, risk manage-

ment, and economics. We have considered two statis-

tical loss functions: the goodness-of-fit for a VaR

calculation and the average predictive likelihood,

where no assumption is required regarding the real-

ized value of volatility.
For each loss function, the statistical framework in

which the volatility forecast models are evaluated is

that of White (2000). A pairwise comparison of

models may result in data snooping biases because

the tests are mutually dependent. Since we have

multiple volatility models, it is important to take this

dependence into account.12

As we were expecting there is not an unique

model that is the best performer across the four loss

functions considered. When we consider an option

loss function, simple models like the Riskmetrics

EWMA and MA(20) are as good performers as any

of the more sophisticated specifications. This is

interesting because either EWMA or MA(20) do

not require statistical parameter estimation, and their

implementation is almost costless. When we consider

the VaR loss function the stochastic volatility model

performs best. EWMA was proposed by Riskmetrics

to calculate VaR but, in our analysis, this model is

the worst performer in terms of the conditional

quantile goodness-of-fit. When the utility loss func-

tion is considered, the Q-GARCH1 model performs

best, but, with the exception of the SV model, there

are not large differences among the remaining mod-

els. We also find that different degrees of risk

aversion do not affect the robustness of our results.

Finally, for the predictive likelihood-based loss func-

tion, asymmetric models, based on the conditional

standard deviation (A-GARCH, ABS-GARCH, and

LOG-GARCH) instead of the conditional variance,

are preferred, with the A-GARCH performing the

best.

Different loss functions are relevant for different

decision makers, as different types of forecast errors

are penalized for different decisions. Our results of

particular ranking of the models obtained across the

different loss functions is in fact consistent with

various important features of different models. For

the option loss, the EWMA and a long distributed

lag MA(20) models work well, reflecting high

persistence in the implied volatility process. The

utility loss function penalizes underforecasts more
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than overforecasts. The asymmetric GARCH mod-

els may be more adequate for this particular loss.

For the VaR loss, which has a focus on the tails of

the density, the SV model can be more flexible

than the ARCH class because the volatility equa-

tion—allowing for an extra innovation term—per-

forms the best when it is evaluated in terms of the

tail quantiles. The predictive likelihood, which deals

with the whole distribution in contrast to the VaR

loss, places much less emphasis on large values in

the tails, so a standard deviation-based model is

better than the variance-based models since the

impact of large values is magnified in the vari-

ance-based models.13

Finally, we note that the validity of the stationary

bootstrap reality check (White, 2000, Theorem 2.3) is

proved under the absence of parameter estimation

uncertainty; i.e. under the assumption that either the

same loss function is used for estimation and predic-

tion or the estimation sample is suitably larger than

the prediction sample. However, in the present paper,

we do not use the same loss function for estimation

and prediction (except for the predictive likelihood for

which we use the Gaussian likelihood for both esti-

mation and prediction). While the volatility models

are estimated using the Gaussian likelihood, the fore-

casts are compared by different loss functions. Re-

cently, Christoffersen and Jacobs (2004), Patton and

Timmermann (2003), and Skouras (2001) emphasize

the importance of matching the in-sample estimation

criterion to the forecast evaluation criterion. We leave

this interesting issue for the future research.
13 While we emphasize these different aspects of various loss

functions, we note that our results (on ranking) may not be

immediately generalizable to other data sets. Further studies in this

line of research with different data sets would be warranted. That the

out-of-sample loss function is different from the estimation loss

function is one reason that this may not be generalized. The fact that

the loss function plays a critical role in the evaluation of nonlinear

models has previously been observed in a series of papers by

Diebold and co-authors, among others. Chritoffersen and Jacobs

(2003) presented results on a similar question using our option

pricing loss function that there is a clear link between which loss

function is used to estimate the model parameters and which loss

function is use to evaluate forecasts. However, we note that our

empirical findings and the particular ranking of the models obtained

across the different loss functions are consistent with various

important features of the loss functions and models, as summarized

here.
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