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Abstract 

A bivariate GARCH-in-mean model for individual stock returns and the market portfolio 
is designed to model volatility and to test the conditional Capital Asset Pricing Model 
versus the conditional Residual Risk Model. We find that a univariate model of volatility 
for individual stock returns is misspecified. A joint modelling of the market return and the 
individual stock return shows that a major force driving the conditional variances of 
individual stocks is the history contained in the market return variance. We find that a 
conditional residual risk model, where the variance of the individual stock return is used to 
explain expected returns, is preferred to a conditional CAPM. We propose a partial ordering 
of securities according to their market risk using first and second order dominance criteria. 

JEL classification: C22; G12 
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1. Introduct ion  

This paper addresses issues of volatility modelling for individual stocks as well 
as conditional testing of the Capital Asset Pricing Model (CAPM) versus alterna- 
tive specifications. We design a bivariate GARCH-in-mean system where we pair 
each individual stock return with the market portfolio return. The CAPM is tested 
with individual stocks and the approach avoids the need to form portfolios in order 
to correct for measurement error in the betas. The testing of conditional CAPM is 
a one-stage procedure in which betas and risk premia are estimated simultane- 
ously. In contrast to the traditional tests of CAPM, there is no assumption of the 
constancy of the betas and the constancy of the market risk premium. The 
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bivariate GARCH-in-mean model is found to be a parsimonious model, which is 
able to capture enough dynamic structure. Given the availability of the market 
portfolio, we do not need to specify the set of weights required in order to form 
the market portfolio as they are already incorporated in the covariance of the 
individual security with the market return. In previous articles, e.g. Bollerslev et 
al. (1988), and Chan et al. (1992), the weights have to be calculated or obtained 
from other sources. 

2. The model 

Let Rit be the stock return to the firm i at time t, RMt the return to the market 
portfolio and rf the return to a riskless asset. The CAPM (Sharpe, 1964), in its 
conditional formulation, requires 

COVt( Ri, ,RMr ) 
Et(Rir)=rf+ Varr(RM,) (Er(RM)-r f ) ,  (1) 

where E t ( R m t ) -  rf is the market risk premium and covt(Ri,,RM,)/vart(RMt) is 
the quantity of risk or the beta of the asset i. (1) is stated in terms of conditional 
moments, reflecting the behavior of the agents who make their investment 
decisions based on the information available up to time t -  1 and assumes that 
investors maximize their utility period by period. In (1) neither the beta nor the 
risk premium are assumed to be constant over time. Following Merton's intertem- 
poral CAPM (Merton, 1980), there is a positive relation between market risk 
premium and the variance of the market portfolio. Empirical evidence is provided 
in Bollerslev et al. (1988), Chou (1988), French et al. (1987) among others. The 
ratio between risk premium and variance of the market portfolio is given by the 
aggregate relative risk aversion coefficient ~ and is assumed to be constant over 
time. The testable version of conditional CAPM is given by 

Et( git ) = rf + ~covt( eit,RMt ). (2) 

The estimation of (2) requires the specification of the dynamics of covr(Rit,Ret). 
An econometric model ideally suited to estimate it is the bivariate GARCH-in- 
mean, which is the multivariate extension of an ARCH-in-mean model as in Engle 
et al. (1987). We use a bivariate system for the random vector R' r = (Rir,RMt) 
with a variance-covariance matrix H r. This system allows for a rich structure 
permitting interaction effects between the market portfolio and the individual 
security. This is relevant because the consistency of the ARCH-in-mean parameter 

in (2) depends on a well specified volatility process (Pagan and Ullah, 1988). In 
fact, we will show that a univariate GARCH representation of individual securities 
is a misspecified model. 
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We estimate a bivariate GARCH(1,1)-in-mean such as 

R t = d + A v e c h ( H t )  .-b e t 

H t = C ' C + a ' e t _ l e ' t _ , a + B ' n t _ l B  etl~t_ 1 ~ g ( 0 , n t ) ,  (3) 

where vech is the column stacking operator of the lower portion of a symmetric 
matrix, 

(.) (00 0 ) 
R ' =  RM, ~eMt] 0 ~z3 ' 

d is 2 × 1 vector of constants, A, B and C are 2 × 2 parameter matrices, and the 

elements of H t are hit = oar t (R i t )  , hiM t =-- c o v t ( R i t , R M t )  , and hMt = var t (RMt)  , 

~2 is the ARCH-in-mean parameter in the equation of Rit that corresponds to 
hiM t and ~23 is the ARCH-in-mean parameter in the equation of RMt correspond- 
ing to hMt. 

The specification of H t in (3) guarantees the positive definiteness of H t, see 
Engle and Kroner (1995), and allows feed-back between the volatility of the 
individual firm and the volatility of the market. We do not require symmetry in 
matrices A and B. If A and B were symmetric and, for instance a12 = 0, we 
would be precluding not only firm effects on the variance of the market but also 
market effects on the variance of the i asset return, that is a21 = 0. The restrictions 
al2 = bl2 = 0 will be tested. 

Since the assumption of conditional normality of e t is not appropriate in 
financial time series, the model (3) is estimated using quasi-maximum likelihood. 
Given standard conditions, the QMLE estimator is consistent and asymptotically 
normal distributed with variance-covariance matrix A - t B A - ~ ,  where A is minus 
the expectation of the hessian and B is the expectation of the outer product of the 
score (Bollerslev and Wooldridge, 1992). 

3. Results 

Our empirical analysis is based on the stock returns of the American computer 
firms recorded in the CRSP tapes. The computer industry is defined in a wide 
sense and includes the computing equipment manufacturers and computer software 
and services. We have selected the sample according to the Standard Industry 
Classification (SIC) codes of." 3573, 3574, 7372 and 7379. We work with weekly 
returns constructed from Tuesday to Tuesday and when Tuesday is a holiday, we 
take the next trading day return. For 89 different companies, the full sample period 
goes from July 7, 1962 to December 29, 1987 with 1330 observations. Not all 
companies are active during the same period. In fact, only the largest companies 
IBM, NCR and Unisys have returns for the whole period 1962-1987. We use the 
NYSE value-weighted index as a proxy for the market portfolio. 
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As a preliminary step we analyze the univariate dynamics of  every firm in the 
sample. We have specified different (G)ARCH models going from parsimonious 
specifications to larger ones. The choice of the best model is based on Wald tests. 
It is surprising to observe that (G)ARCH effects are not a common feature for all 
the companies. Out of  89 firms analyzed, 51 do not show any and in 7 a 
(G)ARCH specification is not appropriate. In general, we find that those compa- 
nies in the computer software and services segment of  the industry do not have 
any univariate (G)ARCH specification Among the 31 companies with GARCH 
effects, the most common specification is a GARCH(1,1) model. The persistence 
of the model, defined as the sum of the ARCH and GARCH coefficients, is high 
and very similar among firms and ranges from .86 to 1. Generally, univariate 
GARCH behavior is associated with big firms rather than small ones. The fact that 
a large proportion of  firms do not show any (G)ARCH effect hints that a 
multivariate approach is more plausible and that the volatility process of  individual 
stock returns may be driven by a set of  factors. 

The estimation of  the bivariate GARCH(1,1)-in-mean model (3) is summarized 
in Table 2. To evaluate the statistical significance of  the estimates of  the system 
(3) we have to consider the problem that arises from the cross-sectional depen- 
dence of  the t-statistics. Given that all the firms considered belong to the same 
industry, we should expect from a moderate to a high correlation among the 
t-statistics. 

We use two different tests to analyze the results corresponding to the system 
(3). If  a,.i, b O, ~ii are not statistically significant, for large samples, their 
corresponding t-statistic can be viewed as draws from a N(0,1). Hence, the 
hypothesis that we would like to test is  Ho'(t)l,L ~-0,(t)o " 2 =  1, where (t)~.L is the 
cross-sectional population mean and (')or 2 is the cross-sectional population vari- 
ance of  the t-statistics. The first test is based on the mean of  t-statistics (Christie, 
1982). Under the null, Z = t/~rcs is asymptotically distributed as a N(0,1), where 
]' is the cross-sectional sample mean of  the t-statistics and cr~ is the variance of 
the cross-sectional mean t-statistic and is equal (under H 0) to 

1 n - 1  

n n 

where ~ is the grand mean of  Pij, the correlation coefficient of  t i and tj. 

Table 1 

= 0 ~ = 0.3 ~ = 0.6 ~ = 0.9 

~rcs 0.10 0.55 0.77 0.97 
c 1 8.92 32.68 72.28 

v 89 9.9 2.72 1.2 
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Table 2 
Hypothesis Testing: Ho :u) tx = 0 ('}or 2 = 1 Z='t/crcs ~ N(0,1) Q 
H0 

= nsZ/U)cr 2 = E~t~ ~ c × ~  under 

= 0 ~ = 0.3 ~ = 0.6 ~ = 0.9 

Z Q / c  Z Q/c  z Q /c  z Q /c  

atlll ) 0.013 1.44 761.2 0.27 85.33 0.19 23.29 0.15 10.53 
~c2) 0.15 (0.07) (3) (0.0) (0.39) (0.0) (0.42) (0.0) (0.44) (0.0) 
al2 -0.011 -3.07 285.3 -0 .57 31.98 -0.41 8.73 -0 .32 3.94 

- 0.32 (0.0) (0.0) (0.28) (0.0) (0.34) (0.03) (0.37) (0.06) 
a2, 0.077 1.44 650.5 0.27 72.9 0.19 19.90 0.15 8.99 
~, 0.15 (0.07) (0.0) (0.39) (0.0) (0.42) (0.0) (0.44) (0.0) 
a22 0.099 11.44 1585.6 2.14 177.7 1.54 48.51 1.22 21.93 

1.19 (0.0) (0.0) (0.01 ) (0.0) (0.06) (0.0) (0.11 ) (0.0) 
b H 0.601 180.2 109336 .1  33.84 12257.4 24.35 3345.6 19.32 1512.6 

18.75 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) 
blz -0.018 -4.23 279.2 -0 .79 31.3 -0 .57 8.54 -0.45 3.86 

- 0.44 (0.0) (0.0) (0.21) (0.0) (0.28) (0.03) (0.32) (0.07) 
b21 0.336 5.19 483.5 0.97 54.2 0.70 14.79 0.55 6.68 
) 0.54 (0.0) (0.0) (0.16) (0.0) (0.24) (0.0) (0.29) (0.01) 
b2z 0.678 159.0 57393.9 29.85 6434.2 21.48 1756.2 17.05 794.0 
i 16.54 (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) 

11 0.808 4.13 69.09 0.77 7.74 0.55 2.11 0.44 0.95 
0.43 (0.0) (0.94) (0.22) (0.64) (0.29) (0.49) (0.32) (0.41) 

61z 1.278 1.53 52.8 0.28 5.91 0.20 1.61 0.16 0.73 
0.16 (0.06) (0.99) (0.38) (0.78) (0.42) (0.60) (0.44) (0.47) 

6(t 4) -0 .39  0.86 49.8 0.16 6.14 0.11 1.69 0.09 0.76 
) 0.09 (0.19) (0.99) (0.44) (0.99) (0.45) (0.59) (0.46) (0.46) 

(1) aij, bij, ~)ij are cross-sectional averages of time series regressions for the 89 individual stocks. 
(2) ? is the cross sectional mean of the t-statistics. 
(3) The numbers in parenthesis are p-values. 
(4) The results of this row are based on a trimmed sample (trimmed about 6%) due to heavy outliers. 

T h e  s e c o n d  tes t  is b a s e d  on  the va r i ance  o f  the  t -s ta t is t ics .  U n d e r  the  nul l ,  

Q = ns2/C' )cr  2 is a p p r o x i m a t e l y  d i s t r ibu ted  as c×2u, where  c and  the deg rees  o f  

f r e e d o m  v d e p e n d  on  the  deg ree  o f  co r re l a t ion  of  the t -s ta t i s t ics  (see append ix ) .  

T a b l e  1 s h o w s  the va lues  o f  crcs, c and  v for  d i f f e ren t  va lues  o f  ~. 

W h e n  ~ = 0, we  h a v e  n o  co r re l a t ion  in the t -s ta t is t ics  and  Q is d i s t r ibu ted  as a 

×2 wi th  89 deg rees  o f  f r e e d o m  and  2 _ 1 / n  as expec ted .  O'cs -- 
F r o m  T a b l e  2, in genera l ,  bo th  tests,  Z and  Q, ind ica te  tha t  a22, b ~  and  b22 

are s ta t i s t ica l ly  s ign i f i can t  at  the c o n v e n t i o n a l  levels ,  and  tha t  a~2 and  b~2 are no t  

s ign i f i can t ly  d i f f e ren t  f r o m  zero.  H o w e v e r ,  the  tests  d i f fe r  on  the  r e l evance  o f  a ~ ,  

a2~ and  b2~, wi th  the Z ind ica t ing  these  t e rms  are zero  and  the test  Q ind i ca t i ng  

tha t  the  d i spe r s ion  o f  the t -s ta t is t ics  is very  d i f f e ren t  f rom 1. T h e s e  resul t s  imp ly  

tha t  the va r i ance  of  the  m a r k e t  can  be  m o d e l l e d  as a un iva r i a t e  p roces s  wi th  a 

F a c t o r  A R C H  s t ruc ture  b e i n g  appropr ia te  for  ind iv idua l  s tocks.  Also ,  the vo la t i l i ty  
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of the stock returns is explained by their own past conditional variance, the past 
market return volatility and the past conditional covariance between the firm and 
the market. Since the market plays an important role, a univariate representation of 
the conditional variance of stock returns is a misspecified model. The market is 
more important in small firms than in big firms and could be related to the cost of 
information. For small firms, the collection of information is more costly, hence 
investors use the market in order to forecast the volatility of small firms. 

The last three rows of Table 2 show the estimation of the (G)ARCH-in-mean 
parameters. Although the 8~2 is of interest, the estimation of the full variance-co- 
variance matrix H t permits alternative specifications of the mean equation. For 
instance, empirical evidence on residual risk (Lehmann, 1990) shows that var t 
(RM,), is a better predictor of expected returns than coy t ( R , , R M , ) ,  since the 
variance may be considered as a proxy for omitted risk factors and is represented 
by the coefficient 8~, Furthermore, the coefficient 8~3, which corresponds to the 
regressor uar t ( R M t )  , may account for a one-dynamic factor specification, where 
the factor is the return to the market portfolio. 

The estimation results in Table 2 show that there is some support for those 
theories based on residual risk. The coefficient 8j~ is significantly different from 
zero when the cross-correlation of the t-statistics is low. The mean values of 8 ~ is 
0.808. If the t-statistics are not correlated, we find a a marginal association 
between expected returns and the covariance between the individual stock and the 
market. The mean value of 8re is 1.27. This value is an estimate of the coefficient 
of relative risk aversion and it agrees with the existing estimates in the literature 
(Hansen and Singleton, 1983). There is not support for the one-dynamic factor 
model. The coefficient 8j3 is not significant at any level of correlation of the 
t-statistics. In general terms, residual risk models are preferred to conditional 
CAPM and one-dynamic factor models. 

Finally, the bivariate estimation provides a model for the traditional measure of 
risk, ~ i t  = c ° v t ( R , , R M , ) / v a r t ( R M t ) "  The  econometric specification gives direct 
estimates of the hiM t -~ cov t (Ri t ,RMt)  and the hMt = var,(RMt).  We construct the 
time series 13, or quantity of market return risk associated with each stock in the 
sample. Overall the computer industry is a high risk industry with the mean of 13, 
being well above one; only nine securities have a mean below one. 

A previous study by Baillie and Myers (1991) has considered the times series 
properties of the estimated [3. We propose to compare market  risk among 
securities from the empirical cumulative distribution function of the 13,, using the 
concepts of first order and second order stochastic dominance criteria. Dominance, 
in this sense, means less risky. Let F~(13) and Gy(13) be the cumulative distribution 
function of 13 for assets x and y respectively. We say that x dominates y (first 
order stochastic dominance) if F,([3)> Gy(13) for all 13. In other words, the 
cumulative distribution of x lies to the left of the cumulative distribution of y, and 
they are not allowed to cross each other. If the distributions cut each other, we say 
that x dominates y (second order stochastic dominance) if f ~_ ~(E~(13) - Gy(13)) d13 
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Fig. 1. Cumulative distribution function of beta for the SP500 companies. 

> 0 for all 13. Note the reverse sign of the inequalities compared to the standard 
definition of first and second order stochastic dominance. In the present context 
the dominance criteria is established respect to a variable which is non-desirable 
by the investor. 

Fig. 1 presents the empirical cumulative distribution of [3i, for the SP500 
companies. The cumulative distribution function is represented by the 1, 5, 10, 25, 
50, 75, 90, 95, 99 and 100 percentiles. For the sample period and in comparison 
with the SP500 companies, the leader of the industry, IBM, is the least risky, as it 
is popularly perceived in the financial markets. 

4. Conclusions 

We test a CAPM versus Residual Risk models for individual stocks using a 
bivariate GARCH-in-mean specification. Issues of volatility modelling have been 
addressed and we find that a univariate model of conditional variances is misspeci- 
fied and that the market variance has information to forecast the individual stock 
variance. This is of particular importance because as Pagan and Ullah (1988) 
pointed out misspecification of the variance equation will bias the estimate of the 
GARCH-in-mean parameter. Individual risk premium is better explained by the 
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variance of the individual security than by the covariance between the market and 
the security. This finding can be understood as further support for multi-factor 
theories. The market does not contain enough information to explain the variability 
of expected returns and the variance of the individual stock is working as a proxy 
for those omitted factors. Finally we construct the betas for each stock and a 
partial ordering of the stocks according to the market risk is offered using the 
cumulative distribution function of the conditional beta. 
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Appendix A. Distribution of  Q = n s 2 / ¢ r  2 for correlated random variables. 

Under the assumption that the n × 1 vector t -=, N(~, ~), it can be easily 
proven (Mathai and Provost, 1992) that Q = ( t -  ~ ) ' ( t  - p ~ ) / ~ 2  can be written as 

n 

Q = Y'. x , u / ,  
i=l 

where h i are the eigenvalues of .E and U i are mutually independent standard 
normal random variables. 

The joint null hypothesis that we test is 

H o:p~ = 0 ~ = ~no 

where 

~ ' H  ° ___~ P12 1 P23 

~P.l P,2 
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Under the null 
n 

O =  Et2i = tYl.= ~ ) k i e i  2 : E~kiX ~ 
i i = 1  i = 1  

where h i are the eigenvalues of  Y'no. Approximate eigenvalues of  this matrix are 

this approximation satisfies the condition ~iXs = tr(X2Ho) = n. 

In order to compute the probability associated with a specific value x, we use 
the approximation of  Patnaik (1949): (x) 

P r ( Q < _ x ) = P r  X2o_< , 

where 

X,x~, (X~x~) 2 n 
c = • i h i  - 1 + ( n -  1)~ 2 v -  ~',i~-""~i -- 1 + ( n -  1)5 2 

and 5 2 is the grand average of  Pi~, and X2v is a Gamma variate with parameters 
e~ = v / 2 and  [3 = 2. 
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