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ABSTRACT 

In the framework of the Engle-type (G)iZRCH models, I demonstrate that 

there is a family of symmetric and asymmetric density functions for which the 

asymptotic efficiency of the semiparametric estimator is equal to the asymp- 

totic efficiency of the maximum likelihood estimator. This family of densities 

is bimodal (except for the normal). I also characterize the solution to the 

problem of minimizing the mean squared distance between the parametric 

score and the semiparametric score in order to search for uninlodal densities 

for which the semiparametric estimator is likely to perform well. The LaPlace 

density function emerges as one of these cases. 

Copyright C 1997 by Marcel Dekker, Inc 
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1 Introduction 

The most preferred estimation method used in models with General- 

ized Autoregressive Conditional Heteroscedasticity, (G)ARCH, (Engle 1982)) 

(Bollerslev 1986) is maximum likelihood (MLE). It produces consistent, ef- 

ficient and asymptotically normal estimators if the mean and the variance 

equations as well as the probability density function of the error term are 

correctly specified. In many empirical studies, the most common assumption 

about the distribution of the error is conditional normality. But this assump- 

tion is rejected very often. Consequently, researchers are using other density 

functions that are closer to the data under study. Among others, Baillie and 

Bollerslev (1989) and Hsieh (1989) used a Student-t to approximate the condi- 

tional distribution of exchange rates, and Nelson (1991) used the Generalized 

Error distribution to model the conditional probability density function of 

stock returns. Since we do not have guidelines on how to choose the density 

function, Engle and Gonzrilez-Rivera (1991) proposed a semiparametsic esti- 

mator, which consists of a parsimonious parametric specification of the mean 

and variance equations and, even though the conditional probability density 

function of the innovations is not known, it is assumed that is sufficiently 

smooth to be approximated by a non-parametric density estimator. 

Consider a random variable yt that is conditionally heteroscedastic with 

conditional variance ht , such that 

where ut are independent and identically distributed random variables, known 

as standardized innovations. This paper focuses in the Engle-type specifica- 

tions of the conditional variance ht. The most popular specifications in the 
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NOTE ON ADAPTATION IN GARCH MODELS 

financial literature are: 

i. Bollerslev (1986), GARCH(p,q), 

ii. Nelson (1991), EGARCH, 

iii. Ding, Granger and Engle (1993), asymmetric power ARCH 

These models are summarized as ht = yt-2, ....; O ) ,  the conditional 

variance is a function of the past information yt-i and the parameter vector 

8. The objective is to estimate the vector 8. The semiparametric estimator 

is a two-step estimator. In the first step, consistent estimates of the param- 

eters of interest are obtained through quasi-maximum likelihood estimation, 

where the likelihood function is written under the assumption of conditional 

normality of the innovations, even though this may be a wrong assumption. 

With the initial consistent estimates of 0, a non-parametric density of the 

standardized innovations is constructed. The second step consists of using 

this non-parametric density to build a non-parametric likelihood that is max- 

imized with respect to 8 (as is explained in more detail in the next section). 

The goal of the semiparametric estimator is to recapture the asymptotic effi- 

ciency losses due to quasi-maximum likelihood estimation, which can be large 

when the true probability density of the standardized innovations is far away 

from normality. 

An issue very closely related to the semiparametric estimation of GARCH 

models is the property of such an estimator to be adaptive An estimator, which 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
0
4
:
3
4
 
3
 
F
e
b
r
u
a
r
y
 
2
0
1
1



is constructed with a data-based procedure, is said to be ndaptzve if knowledge 

of the error probability density function does not help to improve the asymp- 

totic efficiency of the estimator. If the error probability density function is fully 

known, the maximum likelihood estimator will have an asymptotic variance 

which achieves a lower bound, the Cramer-Rao bound, for all regular estima- 

tors. If the semipararnetric estimator is adaptive (the density is unkno'ivn). it 

means that  the semiparametric efficiency bound equals the asynlptotic vari- 

ance of the MLE. 

For the Engle-type (G)ARCH models mentioned above, the variance pa- 

rameters 9 are not generally adaptively estimable (Engle and Gonzblez-Rivera 

1991), (Steigerwald l994), (Drost and Klaassen 1993), (Linton l993), and fur- 

ther research has been directed towards the search for different specifications 

of the variance equation that bring back the property of adaptation. In partic- 

ular, Linton (1993) provides a different specification of the variance equation 

in which the scale effect is separated from the rest of the parameters. Un- 

der the assumption of symmetric densities, he shows that the relative scale 

parameters are adaptively estimable. 

In this paper I prove that there is a family of probability density functions 

for which the asymptotic variance of the hILE estimator equals the semipara- 

metric efficiency bound for the Engle-type GARCH models, and consequently 

adaptive estimators exist within this family. This result holds for symmetric 

as well as asymmetric densities. In the next section, I explain the background 

and notation used in the paper. Section 3 contains the main results and pro- 

vides some guidelines about the density functions in which the semiparametric 

estimator is more likely to succeed and section 4 concludes. 
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NOTE ON ADAPTATION IN GARCH MODELS 

2 Background and notation 

Conditioning on the information set that contains information up 

to time t - 1, the random variable yt is distributed as f (0, ht) ,  where ht is the 

conditional variance which is a function of past information and of a set of 

parameters 8, ht = h ( ~ , - ~ ,  yt-2, .. ..; 0).  The probability density function f is 

not specified. In order to estimate this model, consider the standardized vari- 

able ut(8) z yi / f ih t ) .  The random variables ut are assumed to be i.i.d. with 

continuous density function g with mean zero and variance one. The shape 

of g will be obtained independently from location and scale. The parameters 

that define the shape, say 7 ,  are considered nuisance parameters, but they 

may have relevant information for the estimation of the parameters of interest 

0. For a sample of length T, the log-likelihood function can be written as 

To abbreviate notation I write ut for ut(B). The sample score function is 

g' is the derivative of g respect to ut. Note that the first factor in the score 

function, a%, depends solely on past information; it relies on the specifi- 

cation of the variance equation. The second factor, (1 + ui$), is a function 

of ut; it depends on the shape of the density. The factors are independent of 

each other. The expectation of the score is zero for any density function, since 

integration by parts results in E(ui$) = -1. There is a complete description 
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of the estimation of this semiparametric model in Engle and Gonzdez-Rivera 

(1991). 

Let S(q) be the population score vector for the nuisance parameters and 

S(0) the population score vector for the parameters of interest. The set of 

parameters q is unknown and consequently the semiparametric estimator of 9 

cannot exploit the information contained in q. If 7 contains any information 

about 8, the efficient score for 8 is found by calculating the residual vector, 

R(0), from the projection of S(9) on the closure of the set of all linear combina- 

tions of S(q),  or tangent set I. The tangent set consists of linear combinations 

of S(q) and because the utls are random variables with mean zero and vari- 

ance one, the elements of the tangent set are orthogonal to the function vector 

(ut, u: - 1)'. Through the projection, all the variation of S(0) due to S(q)  is 

removed (Newey 1990). The residual vector, R(O), is the difference between 

S(0) and the projection and, by construction, is orthogonal to the projection. 

Hence, R(8) is the efficient score for 0 and the semiparametric bound is 

For a sample of length T, the sample vector residual is 

and 

1 a h t  
Rt(8) = --- 

1 dht 
2ht 36' 

where F(u t )  = (u t ,  u: - 1)'. A proof of this result can be found in Bickel et 

al. (1993) and Steigerwald (1994). 
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NOTE ON ADAPTATION IN GARCH MODELS 61 

3 Probability Density Functions and Vari- 

ance Parameters 

In equation ( 4), Rt(8)  is composed of two terms. The first one is easily 

recognized as the score vector St(8) .  The second term is a weighted residual 

of the projection of a function of the shape of the density, i.e. ( 1  + u t f ) ,  on 

the set F(ut ) .  The smaller the residual the closer Rt(8)  will be to the fully 

parametric score, St (8) .  The limiting case happens when the residual of the 

projection of ( 1  + u, f ) on F(ut  ) is zero for all t .  If this is so, then adaptation 

is possible for the variance parameters, within a family of probability density 

functions. I distinguish between the symmetric and the asymmetric class. 

3.1 Symmetric Densities 

If the residual of the projection of ( 1  + u t $ )  on F(u , )  is zero for all t l  

then 

Let us call tc1 the coefficient of kurtosis under the density g(.)  Considering 

that ut has mean equal to zero and variance equal to  one and that integration 

by parts gives E ( u : f )  = 0 equation ( 5 )  is written as  

Rearranging terms and integrating by parts gives E(u :c )  = -3 and the fol- 
9 

lowing differential equation is obtained 
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Exponential Symmetric Class. L = degrees of freedom 

Exponential Asymmetric Class 
A=3 ,  B=3 A = 6 ,  B=3 

1 .4f- 1.4- 

FIG. 1 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
0
4
:
3
4
 
3
 
F
e
b
r
u
a
r
y
 
2
0
1
1



NOTE ON ADAPTATION IN GARCH MODELS 63 

where X 5. The solution to equation ( 7) is 

Since g(u t )  has to be a density function, the constant K is found by making 

the integral of g(u t )  equal to one. Furthermore, to solve this integral, it is 

required that X > 0. If we add continuity and differentiability of the density 

function for -cx, < ut < +m, in particular, g(.) should be differentiable at 

ut = 0, then X > 2 or X = 1. With these restrictions in mind the final solution 

It is easy to check that the random variable ut with density function ( 9) 

has, in fact, mean zero and variance equal to 1. The density g ( u t )  belongs to 

the exponential family. In particular, g  is the density of a random variable 

ut that is the ( f )  square root of a X; divided by the degrees of freedom A. 

The restrictions on X impose restrictions on the degree of kurtosis of u,. In 

fact, K has to be bounded between 1 and 2, for X > 2 ,  that is, ut has to be 

platykurtic. The limiting case happens when X = 1 ( K  = 3 ) ,  that is, g(u t )  

is normal. It can be concluded that independently of the specification of the 

variance equation, the variance parameters can be estimated adaptively in the 

family of functions described by equation ( 9). Figure 1 contains plots of the 

density ( 9) for different values of A. 

3.2 Asymmetric Densities 

For asymmetric densities, the same line of argument can be followed. In 

this class ~ ( u a )  = c ,  where c is the coefficient of skewness. 
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The differential equation that follows from ( 5 )  looks like 

where 

Among the possible solutions to ( l o ) ,  the solution implied by J y(u)du = 1 is 

where K1 and h; are the normalizing constants. It should be noted that 

these two constants must be different in order to ensure that the ut's have 

mean zero. This function will be asymmetric for B # 0. It is bimodal and 

because continuity and differentiability of the density are required, A > 2. As 

in the symmetric case, adaptation will be possible in two-parameter family of 

densities if and only if K - c2 < 2. Figure 1 contains plots of the density ( 11) 

for different values of A and B. 

3.3 Unimodal Densities 

The previous subsections have dealt with instances in which the semi- 

parametric score equals the fully parametric score, i.e. Rt(B) = St (0) and as 

a result a class of densities emerge for which adaptive estimators do exist. 

These densities share the property of being bimodal, with the exception of 

the normal density that is a limiting case. In this subsection, I focus on the 

search of unimodal densities for which the semiparametric estimator is likely 

to perform well. 

The performance of the semiparametric estimator depends on the "close- 

ness" of the semiparametric score R(8) to the parametric score S(8) . Using 
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NOTE ON ADAPTATION IN GARCH MODELS 

equation ( 2) and substituting in ( 4), I write 

9' 
- 1  + u t - t ~ u t ~ ~ u t ~ u t ~ - ~ u t }  9 ( 1 2 )  

The goal is to minimize Rt(0) - St(0) according to a mean squared criteriuni, 

respect to a density g(.). 

To characterize the solution to this problem, consider that the quantity 

E (&%) does not depend on the density g ( . )  and the minimum of Q will be 

given by the minimum of 

Working out the previous expression, 

and, since H is non-negative, the solution to the problem ( 13) is characterized 

by the conditions 

for symmetric densities; and 

for asymmetric densities. 

The probability density functions given in ( 8) and ( 1 1 )  satisfy ( C l )  

and (C2) respectively. If I add the restriction that g( . )  should be unimodal, 

a solution to the problem ( 13) is the normal density. For other unimodal 
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TABLE I 

Symmetric Unimodal Densities 

variance equal to one 

Density 
Student-t 
v = 5  
v = 8  
v = 12 
LaPlace (0, l)  
Logistic (0 , l )  

Asymmetric Unimodal Densities 

density functions, the approach I follow is to pick up the function and evaluate 

the conditions (Cl )  and (C2). To abbreviate notation, define d  - E ( l  + 
u , $ ( u , ) ) ~ .  The closer d - -& is to zero, the better the performance of the 

semiparametric estimator. Table I summarizes the findings. 

Among the symmetric densities considered, the semiparametric estimator 

is likely to perform well within the family of densities as the Student-t with 

more than 12 degrees of freedom, LaPlace distributions and Logistic distri- 

butions. Among the asymmetric densities, the Chi-square distributions with 

more than 12 degrees of freedom are also good candidates. These results are 

not surprising because the larger the degrees of freedom, the closer to the nor- 

Density 
Lognormal (0 , l )  
Chi-square 
v = 5  
v = 6  
v = 8 
v = 1 2  

d  

1.25 
1.45 
1.60 

1.0 
1.43 

v is degrees of freedom. 
All densities have been standardized, the random variables ut ls  have mean zero and 

d 
35.72 

10.0 
6.0 
4.0 
3.0 

R 

9.0 
4.5 

3.75 
6.0 
4.2 

d - 5  

0.75 
0.31 
0.14 
0.20 
0.18 

R 

116.9 

5.4 
5.0 
4.5 
4.0 

( 

6.18 

1.26 
1.15 
1.0 

0.81 

d-- 
35.65 

8.57 
4.50 
3.40 
1.30 
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NOTE ON ADAPTATION IN GARCH MODELS 67 

ma1 density. However, the LaPlace result is interesting because of the high 

kurtosis and the relative small distance d - 5. 

4 Conclusions 

In the framework of the Engle-type (G)ARCH models, I have shown that 

there is a family of density functions for which the efficiency of the semipara- 

metric estimator is equal to the efficiency of the maximum likelihood estimator, 

either with symmetric or asymmetric densities. This family of densities share 

the property of being bimodal (except for the normal) and that explains part 

of the Monte-Carlo results found in Steigerwald (1994), where the performance 

of the semiparametric estimator under bimodality is consistently superior to 

the one under more standard distributions as the Student-t and Lognormal. 

I have characterized the solution to the problem of minimizing the mean 

squared distance between the semiparametric score and the fully parametric 

score, R(8) - S(0). Conditions (Cl)  and (C2) should be satisfied by those 

densities for which the asymptotic efficiency of the semiparametric estimator 

equals to  the efficiency of the maximum likelihood estimator. Among unimodal 

densities, I have searched for instances in which, even though (Cl)  and (C2) 

are not satisfied, the semiparametric estimator is likely to perform well. I 

found that the LaPlace density function emerges as one of those cases. 

ACKNOWLEDGEMENTS 

I would like to thank Douglas Steigerwald and Feico Drost for useful 

conversations and an anonymous referee who made a valuable comment. I 

benefit from the suggestions of the participants at the European Econometric 

Society Meeting. I gratefully acknowledge the Intramural Research Grant of 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
0
4
:
3
4
 
3
 
F
e
b
r
u
a
r
y
 
2
0
1
1



68 GONZALEZ-RIVERA 

the Academic Senate of the University of California, Riverside. Any remaining 

errors are mine. 

References 

Baillie, R., and T .  Bollerslev, (1989). The message in daily exchange rates: 
A conditional variance tale. Journal of Business and Economic Statistics 
7:297-305. 

Bickel, P., (1982). On adaptive estimation. Annals of Statistics lO:G47-671. 

Bickel, P., C. Klaassen, Y. Ritov, and J. Wellner, (1993). Eficient  and 
Adaptive Statistical Inference for Semiparametric Models. John Hopkins 
University Press. 

Bollerslev, T., (1986). Generalized autoregressive conditional heteroscedas- 
ticity. Journal of Econometrics 31:307-327. 

Ding, Z., R. F. Engle, and C. Granger, (1993). A long memory property 
of stock market returns and a new model. Journal of Empirical Finance 
1:83-106. 

Drost, F.,  and C. Klaassen, (1993). Adaptivity in semiparametric GARCH 
models. Tilburg University. 

Engle, R., and G. Gonzdez-Rivera, (1991). Semiparametric ARCH models. 
Journal of Business and Economic Statistics 9:345-360. 

Engle, R. F., (1982). Autoregressive conditional heteroscedasticity with 
estimates of the variance of U.K. inflation. Econometrica 50:987-1008. 

Hsieh, D., (1989). Modeling heteroscedasticity in daily foreign-exchange 
rates. Journal of Business and Economic Statistics 7:307-317. 

Linton, O., (1993). Adaptive estimation in ARCH models. Econometric 
Theo y 9:539-569. 

Nelson, D., (1991). Conditional heteroskedasticity in asset returns: A new 
approach. Econometrica 59:307-346. 

Newey, W., (1990). Semiparametric efficiency bounds. Journal of Applied 
Econometrics 5:99-135. 

Steigerwald, D., (1994). Efficient estimation of models with conditional 
heteroscedasticity. Working Paper. Department of Economics. University of 
California, Santa Barbara. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
0
4
:
3
4
 
3
 
F
e
b
r
u
a
r
y
 
2
0
1
1


