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Abstract

Within a 2exible regression model (J.D. Hamilton, Econometrica 69 (3) (2001) 537) we o7er a
battery of new Lagrange multiplier statistics that circumvent the problem of unidenti#ed nuisance
parameters under the null hypothesis of linearity and that are robust to the speci#cation of the
covariance function that de#nes the random #eld. These advantages are the result of (i) switching
from the L2 to the L1 norm; and (ii) assuming that the random #eld is su9ciently smooth
for its covariance function to be locally approximated by a high order Taylor expansion. A
Monte Carlo simulation suggests that our statistics have superior power performance on detecting
bilinear, neural network, and smooth transition autoregressive speci#cations. We also provide an
application to the Industrial Production Index of sixteen OECD countries.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Hamilton (2001) proposed a parametric approach to estimating nonlinear relations
that shares the 2exibility of nonparametric models. He studied a model of the form
yt = �(xt) + �t where the functional form �(xt) is unknown and is assumed to be
the outcome of a Gaussian random #eld with a simple moving average representation.
As a by-product, Hamilton derives a new test for nonlinearity based on the Lagrange
multiplier principle. The proposed statistic depends on a set of nuisance parameters
that are only identi#ed under the alternative hypothesis. On computing the statistic, the
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researcher has to have some priors on the magnitude of the unidenti#ed parameters. In
small samples, dealing with the unidenti#ed nuisance parameter problem by assuming
full knowledge of the parameterized stochastic process that determines the random
#eld, may have adverse e7ects on the power properties of the test, e.g. Hansen (1996).
Simulation studies as in Dahl (2002), based on low dimensional linear and nonlinear
models, indicate that the Hamilton’s test seems to be powerful in comparison to existing
linearity tests. However, in Hamilton’s test as well as in the neural network test (White,
1989), increasing the dimensionality of the model amounts to an increase in the number
of unidenti#ed parameters leaving the performance of this type of tests in large models
an open question. Furthermore, Hamilton’s test is based on a particular speci#cation
of the variance-covariance function that uniquely determines the characteristics of a
zero mean random #eld. A priori, one should expect that di7erent parameterizations
of the variance-covariance function give rise to di7erent tests with di7erent properties
from those of Hamilton’s statistic. These concerns motivate a search for new tests that
are free of unidenti#ed nuisance parameters, regardless of the dimensionality of the
system, as well as robust to the speci#cation of the variance-covariance function of the
random #eld.
In this paper, within the Hamilton’s framework, we construct a battery of tests for

neglected nonlinearity that are characterized, mainly by (1) being free of unidenti#ed
nuisance parameters, and (2) robust to the speci#cation of the variance-covariance
function associated with the random #eld. All the proposed tests are Lagrange multiplier
statistics, of which we present the TR2 version. To achieve our goals, we modify the
Hamilton approach in two directions. First, we specify the random #eld in the L1

norm instead of the L2 norm. The main advantage of the L1 norm is that this distance
measure is a linear function of the nuisance parameters, in contrast to the L2 norm
which is a nonlinear function. Second, we consider random #elds that may not have
a simple moving average representation. Logically, we proceed in an opposite fashion
to Hamilton. Whereas Hamilton #rst proposed a moving average representation of the
random #eld and, secondly, he derived its corresponding variance-covariance function,
we, in our approach, #rst propose a covariance function, and secondly we inquire
whether there is random #eld associated with it. We show that the proposed covariance
function is general enough to accommodate a broad class of covariance functions. We
need to assume that the random #eld is smooth, in this case, the covariance function
is di7erentiable and it can be approximated reasonable well by a high order Taylor
expansion. The local approximation approach is related to Luukkonen et al. (1988) who
used the method to solve the identi#cation problem that arises in Lagrange multiplier
statistics for testing linearity against a STAR alternative, and to the work of TerKasvirta
et al. (1993) that suggested a version of the neural network test free of unidenti#ed
nuisance parameters under the null.
We also show that there is an alternative way of formulating the null hypothesis of

linearity to the one advocated by Hamilton. This alternative approach seems particularly
promising because the number of unidenti#ed parameters under the null is equal to one
regardless of the dimension of the model. Nevertheless, we also provide a Lagrange
multiplier statistic that circumvents the problem of unidenti#ed nuisance parameters
under the null.
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We perform a Monte Carlo study to assess the size and power properties of the
proposed new tests. All together, the evidence from the simulation studies seems to
suggest that the proposed statistics not only fully match the power properties of the
statistic suggested by Hamilton (2001) but also have superior performance on detecting
bilinear, neural network, and smooth transition autoregressive speci#cations. In addition,
we compare our tests with the popular Tsay statistic that is also based on a Taylor
approximation of an unknown but deterministic functional form. Our tests seem to
have better power properties than the Tsay test. This may suggest that treating the
unobserved nonlinear function as random rather than deterministic seems a fruitful
approach for identi#cation of nonlinear components in parametric regression models.
We show the implementation of our tests with an empirical application concerning

the potential nonlinearity of the industrial production index. This example serves to
illustrate the perverse e7ect of a large number of unidenti#ed nuisance parameters. In
large models, tests that assume full knowledge of the parameterized random #eld (a
priori #xing the nuisance parameters) tend to loose power rather quickly.
The paper is organized as follows. In Section 2, we deal with preliminaries o7ering

a summary of the Hamilton’s 2exible regression model, which helps to frame our
contribution, and we present the testing problem. In Section 3, we consider alternative
representations of the random #eld and introduce the concept of structure functions. In
Section 4, we present the battery of Lagrange multiplier tests. Section 5 contains the
results of the Monte Carlo study. In Section 6, we o7er an empirical application of
the proposed tests to detect nonlinearities in the index of industrial production of the
OECD countries. Finally, in Section 7, we conclude.

2. Preliminaries

In this section, we begin with a brief introduction to Hamilton’s (2001) 2exible
regression model, which is the foundation of the test statistics that we propose in the
forthcoming sections, and we introduce the testing problem. We discuss the assumptions
underlying the derivation of the moving average spatial random #eld that governs the
functional form of the conditional mean in a regression model. For a more detailed
analysis of the theory of random #elds, see Yaglom (1962, 1987) and Adler (1981)
and the references herein.

2.1. Hamilton’s :exible regression model approach

Hamilton (2001) suggested representing the nonlinear component in a general regres-
sion model by a homogeneous and isotropic Gaussian scalar random #eld. A scalar
random #eld is de#ned as a function m(!; x) :� × A → R such that m(!; x) is a ran-
dom variable for each x∈A where A ⊆ Rk . A random #eld is also denoted as m(x).
If m(x) is a system of random variables with #nite dimensional Gaussian distributions,
then the scalar random #eld is said to be Gaussian and it is completely determined
by its mean function �(x) = E[m(x)] and its covariance function with typical element
C (x; z) = E[(m(x)− �(x))(m(z)− �(z))] for any x; z∈A. The random #eld is said to
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be homogeneous or stationary if �(x)=� and the covariance function depends only on
the di7erence vector x− z and we should write C (x; z) =C (x− z). Furthermore, the
random #eld is said to be isotropic if the covariance function depends on d(x; z), where
d(·) is a scalar measure of distance. In this situation we write C (x; z) = C (d(x; z)).
The speci#cation suggested by Hamilton (2001) can be represented as

yt = �0 + x′t�1 + �m(g � xt) + �t ; (1)

for yt ∈R and xt ∈Rk , both stationary and ergodic processes. The conditional mean has
a linear component given by �0+x′t�1 and a nonlinear component given by �m(g�xt),
where m(z), for any choice of z, represents a realization of a Gaussian and homogenous
random #eld (to be described shortly); xt could be predetermined or exogenous and
is independent of m(·), and �t is a sequence of independent and identically distributed
N(0; �2) variates independent of both m(·) and xt as well as of lagged values of
xt . The scalar parameter � represents the contribution of the nonlinear part to the
conditional mean, the vector g ∈Rk

0;+ drives the curvature of the conditional mean,
and the symbol � denotes element-by-element multiplication. Hamilton speci#cation
is also closely related to the cubic spline smoother of Wahba (1978) as discussed in
Dahl (2002).
The random #eld analyzed in Hamilton (2001) is generated as a sequence of un-

correlated random variables. A short description of the construction of this random
#eld follows. De#ne a grid in Rk by the nodes {x(i1; i2; : : : ; ik)} where the index
ij ∈{1; : : : ; N} for j=1; : : : ; k. De#ne the set AN that consists of the Nk distinct points
in Rk covered by this grid. For each x∈AN , associate a random variable e(x) ∼ N(0; 1)
such that e(x) is independent of e(z) for x �= z. De#ne the set BN (x) ⊂ AN of all
points in AN such that the Euclidean distance from x is less or equal to one

BN (x) = {z∈AN : (x− z)′(x− z)6 1}: (2)

Consider the scalar mN (x) associated with every point x in AN

mN (x) = nN (x)−1=2
∑

z∈BN (x)

e(z); (3)

where nN (x) denotes the number of points in BN (x). A random #eld generated as
mN (x) in (3), is said to have a moving average representation, e.g. Yaglom (1962,
pp. 31). If the grid partition becomes arbitrarily #ne, in the limit we have that
mN (x) → m(x), where m(x) represents a continuous valued k-dimensional random
#eld such that for any x, the scalar m(x) ∼ N(0; 1).
Let Hk be the covariance (correlation) function of the random #eld m(·) with typical

element de#ned as Hk(x; z)=E[m(x)m(z)]. Hamilton (2001) proved that the covariance
function depends solely upon the Euclidean distance between x and z, rendering the
random #eld isotropic. For any x and z∈Rk , the correlation between m(x) and m(z)
is given by the ratio of the volume of the overlap of k-dimensional unit spheroids
centered at x and z to the volume of a single k-dimensional unit spheroid. If the
Euclidean distance between x and z is greater than two, the correlation between m(x)



C.M. Dahl, G. Gonz1alez-Rivera / Journal of Econometrics 114 (2003) 141–164 145

and m(z) will be equal to zero. The general expression of the correlation function is

Hk(h) =

{
Gk−1(h; 1)=Gk−1(0; 1) if h6 1;

0 if h¿ 1;

Gk(h; r) =
∫ r

h
(r2 − w2)k=2 dw; (4)

where h ≡ 1
2dL2 (x; z), and dL2 (x; z) ≡ [(x − z)′(x − z)]1=2 is the Euclidean distance

between x and z. 1 In the geostatistical literature, the covariance (4) is widely known
as the spherical covariance function. 2

2.2. The testing problem

Consider the model given in Eq. (1). The contribution of the nonlinear component
to the conditional mean is driven by the parameter � and/or by the parameter vector g.
It is easy to observe that a test for neglected nonlinearity will be subject to a nuisance
parameter problem, where a set of parameters are identi#ed only under the alternative
hypothesis. There are two alternative approaches to specify the null hypothesis of
linearity: (i) If the null hypothesis is written as H0 : �2 = 0, the parameter vector g
is unidenti#ed under the null and the number of unidenti#ed parameters increases
with the dimensionality of the model. For this case, Hamilton (2001) proposed an
LM test where the vector g is #xed to the mean of its prior distribution. (ii) If the
null hypothesis is written as H0 : g = 0k , the parameter � becomes unidenti#ed under
the null. In this case, the number of unidenti#ed parameters remains equal to one
whenever the dimensionality of the model increases. Under this null, the stochastic
process becomes nonergodic. For instance, consider model (1) that, under the null,
becomes yt = �0 + x′t�1 + �m(0k) + �t , where m(0k) ∼ N(0; 1). It is apparent that the
model will be linear on xt , but yt will be nonergodic, since even in the simplest case
where xt is deterministic, we have that cov(ytyt−s) = �2 for any s¿ 0. Ergodicity is
a critical assumption for the law of large numbers to hold. This could imply that a
test for nonlinearity based on the parameter vector g may not have a well de#ned
asymptotic distribution under the null.
We propose a solution to the nuisance parameter problem in (i) and (ii) that is based

on alternative representations of the random #eld m(x), which we discuss in the next
section.

3. Alternative representations of the random �eld

We investigate two representations of a random #eld following two di7erent ap-
proaches. We maintain the assumptions of Gaussianity and homogeneity of the random

1 For a formal proof, see Theorem 2.2 in Hamilton (2001).
2 Within the area of geostatistics, Matheron (1973) suggested an alternative method based on the turning

bands operator to compute the covariance function for any arbitrary value k. Other procedures based on
spectral methods to build permissible covariance functions are described in Christakos (1992).
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#eld while exploring the role played by the isotropy assumption. In the #rst approach,
we construct a random #eld based on the L1 norm and we derive its covariance func-
tion. We show that the change of norm a7ect the isotropic properties of the random
#eld. In the second approach, we propose a potential covariance function and we in-
quire whether there is a random #eld associated with it. In this approach, our main
concern is to assure that the proposed function is non-negative de#nite and, hence, it
can be considered a permissible covariance function.

3.1. A nonisotropic random (eld

Hamilton’s framework is developed by using a moving average representation of
the random #eld under the Euclidean distance or L2 norm. We investigate an alter-
native moving average representation based on the Minkowski distance or L1 norm.
The advantage of the L1 norm is that this distance measure is a linear function of the
unidenti#ed nuisance parameters and that will simplify the tests of neglected nonlinear-
ity, as it will be seen in the forthcoming sections. The general setup follows Hamilton
(2001) but instead of the set BN (x), we consider the set B∗

N (x) de#ned as all points
in AN such that the L1 distance from x is less or equal to one

B∗
N (x) = {z∈AN : |x− z|′–6 1}:

Let m∗
N (x) be a random #eld with the following moving average representation:

m∗
N (x) = n∗N (x)

−1=2
∑

z∈B∗
N (x)

e(z); (5)

where n∗N (x) denotes the number of points in B∗
N (x). As before, if the partition be-

comes arbitrarily #ne, in the limit, we have that m∗
N (x) → m∗(x) where m∗(x) is a

continuously valued k-dimensional random #eld, i.e. m∗(x) ∼ N(0; 1), which is iden-
tical to the distribution of m(x). However, the correlation between m∗(x) and m∗(z)
for any arbitrary x �= z will be di7erent. The correlation between m∗(x) and m∗(z)
is given by the ratio of the volume of the overlap of k-dimensional unit orthogons
centered at x and z to the volume of a k-dimensional unit orthogon. The volume of
the overlap, and hence the correlation between m∗(x) and m∗(z) will be equal to zero
if the L1 distance between x and z is greater than or equal to two. We denote this par-
ticular covariance function H∗

k (x; z). Following pure geometric arguments, we obtain
expressions for H∗

k (x; z) = E[m∗(x)m∗(z)] for the case of k = 1; 2.

Example 1. Let dL1 (xt ; xs) = |xt − xs|′–. Consider the covariance function H∗
k , with

typical element H∗
k (xt ; xs) = E[m∗(xt)m∗(xs)]. For k = 1; 2

H∗
1 (xt ; xs) =

{
1− h∗ts if h∗ts6 1;

0 if h∗ts ¿ 1;

H∗
2 (xt ; xs) =

{
(1− h∗ts)

2 + (1− h∗ts)min{|x1t − x1s|; |x2t − x2s|} if h∗ts6 1;

0 if h∗ts ¿ 1;

where h∗ts =
1
2dL1 (xt ; xs).
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Fig. 1. Illustration of the sets BN (x) and B∗
N (x) as the basis for calculating the spherical covariance function

E(mN (0; 0)mN (1:5; 0))—given by the intersection of the unit circles—and the L1 norm covariance function
E(m∗

N (0; 0)m
∗
N (1:5; 0))—given by the intersection of the two othogons.

Fig. 1 illustrates the di7erence between the sets BN (x) and B∗
N (x) on calculating the

spherical covariance function and the L1 norm-based covariance function. Notice, that
in the case of k = 1 the L2 norm and the L1 norm will provide identical covariance
functions. In the case of k = 2, the volume of the relative overlap based on the L1

norm is equal to the area of a rectangle.
The disadvantage of a random #eld with a moving average representation in L1 is

that the #eld is not isotropic. Consider three orthogons centered at points x and z,
and at the origin, with the property that x and z are equidistant in L1 from the origin.
Calculate the covariance between the orthogon centered at x and the one centered at
the origin; and the covariance between the orthogon centered at z and the one centered
at the origin. It is easy to see that the volume of the overlap between the orthogon
centered at the origin and the orthogon centered at x is di7erent from the overlap
between the orthogon centered at the origin and the orthogon centered at z, even
though the L1 distance from x to the origin is the same as the L1 distance from point
z to the origin. In other words, the location of the points matters, as it can be read
from the formulas of H∗

k (xt ; xs) in the previous example. If the random #eld is not
isotropic, the calculation of its covariance function could be very cumbersome when
the number of regressors is large. However, the functional form of the leading term of
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the covariance function in Example 1 provides a starting point to construct a simple
permissible covariance function of an isotropic random #eld.

3.2. Permissible covariance functions

Consider the following homogeneous and isotropic function Ck(x; z)=Ck(r) for x; z
∈Rk , that depends only on a distance measure (de#ned either in L1 norm or L2 norm)
r = 1

2d(x; z) such that

Ck(r) =

{
(1− r)! if r6 1;

0 if r ¿ 1;
(6)

for !¿ 1. Note that if r = h∗ and ! = k, then it can be shown that Ck(r) equals the
#rst term of H∗

k (x; z), for all k. Two questions are pertinent. First, is (6) a permissible
covariance function? Second, if it is, is there a random #eld associated with it?
A covariance function Ck is said to be permissible if and only if it satis#es the pos-

itive semide#niteness condition, that is q′Ck(x; z)q¿ 0 for all q �= 0T . This condition
for permissibility is impossible to check in practice but there are permissibility crite-
ria that guarantee the positive semide#niteness property. According to Yaglom (1962,
1987) and Christakos (1992) any permissible covariance function associated with a
general homogeneous Gaussian random #eld such that Ck(x; z) = Ck(x − z) must
satisfy the following necessary conditions in the time domain:

Ck(0k)¿ 0;

|Ck(x− z)|6Ck(0k);

Ck(x− z) = Ck(−(x− z));

lim
d(x;z)→∞

Ck(x− z)
d(x; z)(1−k)=2 = 0: (7)

For isotropic random #elds, the norm in which the covariance function is de#ned plays
a crucial role. A function that is a permissible covariance function in the Euclidean
geometry may not be in another geometry such that de#ned in the L1 norm. For
isotropic #elds de#ned in the L2 norm, Christakos (1992, Chapter 7) provided a set of
su9cient conditions for permissibility of a covariance function for k = 1; 2; 3. De#ne
d ≡ dL2 (x; z), su9cient conditions for permissibility are:

dCk(d)|d=0 ¡ 0;

d2Cr(d)¿ 0 in R;∫ ∞

d

u√
u2 − d2

d3Ck(d)¿ 0 in R2;

d2Ck(d)− d× [d3Ck(d)]¿ 0 in R3: (8)

These conditions impose some degree of smoothness on the covariance functions. In
the L2 norm, the function (6) for which r = h ≡ 1

2dL2 (x; z) and ! = k satis#es the
necessary conditions (7) and the su9cient conditions (8).
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The function (6) can be viewed as a particular case of the function studied in
Zastavnyi (2000). He provided necessary and su9cient conditions for the function
(6) to be positive semide#nite in di7erent geometries. In the L2 norm, (6) is positive
semide#nite if and only if !¿ (k+1)=2; and in the L1 norm, (6) is positive semide#nite
if and only if !¿ 2k − 1. Hence, the function (6) for r = h∗ ≡ 1

2dL1 (x; z)

C∗
k (h

∗) =

{
(1− h∗)2k if h∗6 1;

0 if h∗ ¿ 1;
(9)

is a permissible covariance function. The smoothness of the function (9) together with
its simplicity will be important characteristics in the forthcoming sections when we
discuss Taylor approximations of the covariance function Ck(x; z) and when we im-
plement our proposed tests for neglected nonlinearity.
An important question is whether there is a random #eld that can be associated

with (9). The answer is positive in the light of the Khinchin’s (1934) theorem and
Bochner’s (1959) theorem. The basic argument is that the class of functions which are
covariance functions of homogenous random #elds coincides with the class of positive
semide#nite functions. Hence, (9) being a positive semide#nite function must be the
covariance function of a homogenous random #eld.

3.3. The concept of structure functions

In the previous section, we showed that testing for linearity in model (1) with the
null hypothesis H0 : g = 0k produces a nonergodic stochastic process under the null.
We will provide a simple modi#cation of the speci#cation of the function m(x) that
preserves the ergodicity of yt under the null. We write the modi#ed unrestricted model
as yt =�0 +x′t�1 +�m̃(g�xt)+ �t , where m̃(x)=m(x)−m(0k). Notice that m̃(0k)=0,
and the model under the null becomes yt = �0 + x′t�1 + �t restoring the ergodicity
of yt under the null hypothesis, provided that xt and �t are stationary and ergodic.
We need to specify the covariance structure of m̃(x). Since we restrict ourselves to
the class of Gaussian random #elds, m̃(x)—the sum of two Gaussian random #elds—
will also be Gaussian. Let C̃ k be the covariance function that uniquely determines the
random #eld m̃(x). The typical element in C̃ k is de#ned as C̃ k(x; z)=E[m̃(x)m̃(z)]=
E{m(x) − m(0k)}{m(z) − m(0k)}, hence the covariance function can be written as
C̃ k(x; z)=Ck(x; z)+Ck(0k ; 0k)−Ck(x; 0k)−Ck(0k ; z). Yaglom (1962, p. 87) names C̃ k

the structure function. In the case of homogenous random #elds, the structure function
C̃ k is a permissible covariance function provided that Ck is permissible, e.g. Yaglom
(1962, p. 88). This property will be important when we derive the Lagrange multiplier
statistics corresponding to H0 : g = 0k .

4. Lagrange multiplier tests for neglected nonlinearity

We consider two types of Lagrange multiplier tests for neglected nonlinearity. The
#rst type of tests are derived under H0 : �2 = 0, and denoted �-tests. The second type
of tests are derived under H0 : g = 0k , and denoted g-tests. We introduce a �-test for
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neglected nonlinearity that does not require full knowledge of the parametric spec-
i#cation of the covariance function and in particular, it does not require any prior
knowledge of the numerical values of each element in the g vector. Analogously, we
introduce a g-test for neglected nonlinearity that does not depend on the values of �.
It should be emphasized that since the test statistics are all Lagrange multiplier test
statistics, they are characterized by being locally most powerful tests.

4.1. The likelihood function

Consider the model given by Eq. (1). We can write y ∼ N(X�; �2Ck + �2IT ) where
y=(y1; y2; : : : ; yT )′, X1 = (x′1; x

′
2; : : : ; x

′
T )

′; X =(– :X1), �=(�0; �
′
1)

′; �=(�1; �2; : : : ; �T )′

and �2 is the variance of �t . Ck is a generic covariance function associated with the
random #eld, which could be equal to the spherical covariance function in (4), or to
that of the anisotropic #eld in Example 1, or to that of the isotropic #eld in (9). The
log-likelihood function corresponding to this model is

‘(�; �2; g; �2) =−T
2
log(2&)− 1

2
log |�2Ck + �2IT |

− 1
2
(y− X�)′(�2Ck + �2IT )−1(y− X�); (10)

which is the basis for the Lagrange multiplier tests for neglected nonlinearity. We
construct a Lagrange multiplier test for a generic null hypothesis for a parameter vector
#; H0 :# = #̃, where #̃ = (#0

1
′; #̃′

2)
′ with #̃2 being the maximum likelihood estimate

of #2 under the null, and #0
1 the parameter #1 speci#ed under the null. The Lagrange

multiplier statistic is given by LM = s(#̃)′I−1(#̃)s(#̃), where s(#̃) denotes the score
function, and I−1(#̃) the inverse of the information matrix, both evaluated under the
null. We consider two di7erent estimators of the information matrix, both consistent
under the null. The #rst estimator, denoted IH, is based on the Hessian of the log
likelihood function, and the second, denoted IOP, is based on the outer-product of
the score. Using the IOP estimator, we construct the TR2 version of the Lagrange
multiplier, where the R2 is the uncentered coe9cient of determination of a particular
least squares regression. Under the usual regularity conditions, the Lagrange multiplier
statistics will be )2(q)-distributed where q equals the number of restrictions under
the null. When a subset of the parameters in #2 is not identi#ed under the null, it
is not possible to obtain consistent maximum likelihood estimates of this subset of
parameters under the null. In this situation, we say that the testing problem is su7ering
from unidenti#ed nuisance parameters. Methods to solve the problem of unidenti#ed
nuisance parameters depend to some extent on the particular model under consideration.
In the next subsections, we deal with this problem in detail after having speci#ed the
model under the null as well as under the alternative hypothesis.

4.2. Tests based on known covariance functions

Hamilton (2001) derived the �-test for neglected nonlinearity based on the IH es-
timator of the information matrix and with Ck(xt ; xs) = Hk(h) for h = 1

2dL2 (xt ; xs).
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Let us denote Hamilton’s test statistic �EH(g). To deal with the identi#cation issues,
Hamilton suggested #xing g to a given value and proceed to derive the Lagrange mul-
tiplier test, which then follows a standard asymptotic distribution. Heuristically, #xing
g is identical to a derivation of the Lagrange multiplier statistic assuming complete
knowledge of the covariance matrix associated with the random #eld. Our #rst aim
is to derive the TR2 version of the test statistic conditional on full knowledge of the
parameterized covariance function. Recall the log-likelihood function (10). Keeping g
#xed, de#ning = �2Ck + �2IT , and evaluating the score functions under the null of
linearity (H0 : �2 = 0 ⇒ = �2IT ), we can write 3

s(�2)|�2=0;g ≡
@‘(�; �2; g; �2)

@�2

∣∣∣∣
�2=0;g

=− 1
2�2 tr

[
Ck

(
IT − � �′

�2

)]
;

s(�2)|�2=0;g ≡
@‘(�; �2; g; �2)

@�2

∣∣∣∣
�2=0;g

=− 1
2�2 tr

[
IT

(
IT − ��′

�2

)]
;

where s(:)|�2=0;g means the score function evaluated under the null hypothesis �2 = 0
for g #xed. Using the following property of the trace tr(AB) = vec(A)′ vec(B′), the
score functions can be written as

s(�2)|�2=0;g =− 1
2�2 x̃

′
1u; (11)

s(�2)|�2=0;g =− 1
2�2 x̃

′
2u; (12)

where x̃1 = vec(Ck), x̃2 = vec(IT ), and u= vec(IT − � �′=�2). Letting x̃= (x̃1 : x̃2), the
Lagrange multiplier test is 1

2u
′x̃(x̃′x̃)−1x̃′u. Since u′u=T 2 p→1, the TR2 version of the

Lagrange multiplier statistic, which we denote �EOP(g) is

�EOP(g) =
T 2

2
u′x̃(x̃′x̃)−1x̃′u

u′u
∼ )2(1):

The statistic is easily obtained by the following procedure: (1) Estimate the model under
the null and compute �̂ = y − (X ′X)−1(X ′y) and �̂2 = T−1�̂′�̂. (2) Obtain the least
squares estimate of �—denoted �̂—from the auxiliary regression û= ,1x̃1 + ,2x̃2 + �,
using û=vec(IT − �̂�̂′=�̂2). (3) Obtain the uncentered R2 as R2=1− �̂′�̂=û′û. (4) Finally,
the Lagrange multiplier statistic is given as �EOP(g) =

1
2T

2R2.
In order to stress that the above version of the Lagrange multiplier statistic depends

crucially on the choice of a fully speci#ed covariance matrix we write it as �EOP(g).
Notice that since there are T 2 observations in the auxiliary regression, the R2 should
be multiplied by T 2 instead of T in order to make the �EOP(g) statistic asymptotically
)2(1)-distributed.

4.3. �-tests based on unknown covariance functions

In this section, we propose a new statistic to test the null hypothesis of linearity
that circumvents the problem of unidenti#ed nuisance parameters and does not depend

3 Though this null is on the boundary of the parameter space, the properties of the LM test are not altered,
see Godfrey (1988, pp. 92–98).
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on the exact parameterization of the covariance function. The approach we suggest is
based on the substitution of x̃1 = vec(Ck) for a Taylor approximation of x̃1 in the
auxiliary regression. Our approach can be viewed as a further generalization of the
ideas in Luukkonen et al. (1988) where the problem of interest is testing linearity
against a smooth transition autoregressive model. By using the Taylor approximation
we are able to capture the characteristics of a broader class of unknown but continuous
and di7erentiable real-valued nonlinear functions vec(Ck). Since in most situations, the
fully parameterized covariance function will be unobservable, any speci#cation will
constitute only an approximation of the true covariance function. One can argue that
we model this information problem explicitly. The class of models that we consider is
as in (1) where the random #eld m(x) now is assumed to be a smooth—continuous
and di7erentiable—homogenous and Gaussian.
Consider model (1) with covariance function given by (9), i.e. C∗

k (h
∗
ts) = (1 −

h∗ts)
2k1(h∗ts61), where h∗ts ≡ 1

2dL1 (g � xt ; g � xs) = 1
2 r

′
tsg, and rts = {|xt1 − xs1|; |xt2 −

xs2|; : : : ; |xtk − xsk |}′. Since (1−h∗)2k =
∑2k

j=0 (
2k
j )h

∗j
(−1)j we can rewrite the auxiliary

regression as

ûts =,1x̃ts;1 + ,2x̃ts;2 + �ts

=,1


 2k∑

j=0

(
2k

j

)
h∗

j

ts (−1)j


 1(h∗ts61) + ,2x̃ts;2 + �ts

and proceed to calculate the test statistic as in Section 4.2. However, we can construct
a test that does not depend on the nuisance parameters g. The key elements are: (1)
the choice of the norm, and (2) the approximation of the indicator function by a
smooth function. In our case, the L1 norm depends linearly on the parameters g. The
indicator function 1(h∗ts61) can be approximated by a di7erentiable function like the
logistic function, i.e. 1(h∗ts61) ≈ (1 + exp(−-(1 − h∗ts))

−1 for #xed - � 0. A second
order Taylor expansion of the logistic function around an average value of h∗ts together
with the computation of the powers of h∗, that is h∗

j
, give rise to the following auxiliary

regression

û ts = W,0 + W,1

k∑
i=1

girts; i + W,2

k∑
i=1

k∑
j¿i

gigjrts; irts; j

+ W,3

k∑
i=1

k∑
j¿i

k∑
l¿j

gigjglrts; irts; jrts; l + · · ·

+ W,2k+2

k∑
i=1

k∑
j¿i

· · ·
k∑
m

gigj · · · gmrts; irts; j · · · rts;m + ,2x̃2; ts + /ts; (13)

where W,j is directly proportional to ,1, that is W,j = cj,1 with cj being the propor-
tionality parameter. The subindex ts attached to the vectors û; x̃2, and � means the tsth
entry/row in the respective vector for t; s = 1; 2; : : : ; T , and gi and rts; i denote the ith
entry in the vectors g and rts, respectively. The second order expansion of the logistic
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function linearizes the auxiliary regression at the expense of increasing the number of
regressors. Notice that now we can proceed to estimate the auxiliary regression (13)
by OLS, treating the nuisance vector g as part of the parameter space. In the exact test
of Section 4.2, ,1 = 0 implied that the null hypothesis of linearity cannot be rejected.
Considering the regression (13), ,1 = 0 implies that W,j = 0; j = 0; 1; 2; : : : ; 2k + 2.
Hence, the regression (13), where

∑2k+2
j=1 ( k+j−1

k−1 ) regressors have been added, is the
basis to compute a Lagrange multiplier test that is free of nuisance parameters but,
in this case, the new test denoted �AOP will be )2-distributed with 1 +

∑2k+2
j=1 ( k+j−1

k−1 )
degrees of freedom.
In most situations the econometrician will not know the parametric form of the

covariance function and any particular choice will be an approximation to the true
function. However, we argue that if we assume the covariance function (9), we are
modeling a very broad class of covariance functions. We need to assume that the
homogenous random function is smooth, in this case the covariance function will be
di7erentiable everywhere, and an approximation by a Taylor expansion will be possible.
This approximation can be viewed either as an approximation to the random #eld (the
conditional mean of yt), or to the log likelihood function. The use of a Taylor expansion
amounts to giving up information about the structure of the model under the alternative
hypothesis in order to circumvent the identi#cation problem. This suggests that there
is a natural trade-o7 between size and power properties of the test when using a fully
known covariance function or using a Taylor expansion in the auxiliary regression.
This type of argument follows very closely TerKasvirta (1998) where he performed a
Taylor approximation of the logistic function in order to deal with the problem of
unidenti#ed nuisance parameters in a Lagrange multiplier type test for linearity against
the STAR alternative.
Consider a higher order Taylor approximation of Ck(h∗ts) around Wh∗ and denote the

approximation of Ck by Dk with typical element given as,

Dk(h∗ts) = Ck( Wh∗) +
n∑

j=2

1
(j − 1)!

(h∗ts − Wh∗)j−1dj−1Ck( Wh∗):

The linearized auxiliary regression then becomes û=,1vec(Dk) +,2x̃2 + � or written
more explicitly

û ts = W,0 + W,1h∗ts + W,2h∗2ts + W,3h∗3ts + · · ·+ W,n−1h
∗(n−1)
ts + ,2x̃2; ts + /ts; (14)

for t; s = 1; : : : ; T , where

W,0 = ,1

{
Ck( Wh∗)− Wh∗dCk( Wh∗)± · · · ± 1

(n− 1)!
Wh∗(n−1)dn−1Ck( Wh∗)

}
;

W,1 = ,1

{
dCk( Wh∗)− Wh∗d2Ck( Wh∗)± · · · ± 1

(n− 2)!
Wh∗(n−2)dn−1Ck( Wh∗)

}
;
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W,2 = ,1

{
1
2
d2Ck( Wh∗)− 1

2
Wh∗d3Ck( Wh∗)± · · · ± 1

(n− 3)!2
Wh∗(n−3)dn−1Ck( Wh∗)

}
;

· · ·

W,n−1 = ,1
1

(n− 1)!
dn−1Ck( Wh∗):

Notice that the auxiliary regression (14) is equivalent to the auxiliary regression (13)
once the powers of h∗ts are calculated and n−1=2k+2. The quantity SSR1= �̂

′�̂ would
be identical when OLS is performed in (14) and in (13). Consequently, the �AOP test
is also a test for nonlinearity when the covariance function is unknown but it can be
approximated reasonably well by a high order Taylor expansion.
Some examples of permissible covariance functions (Yaglom 1962, 1987) whose

characteristics can be captured by the �AOP test are

• Ck(rts) = exp(−∑k
i=1 ai|xti − xsi|q) for xt ; xs ∈Rk ; k¿ 1; q = {1; 2}; {ai¿ 0;∀i}.

This is the multiplicative Ornstein–Uhlenbeck covariance function.
• Ck(rts) = exp(−a2dL2 (xt ; xs)2), for xt ; xs ∈Rk ; k¿ 1.
• Ck(rts) = {1 + exp(−a2dL2 (xt ; xs)2)−b, for xt ; xs ∈Rk ; k¿ 1; b¿ 0.
• Ck(rts) = b ∗ exp(−∑k

i=1 ai|xti − xsi|) cos(
∑k

i=1 ci|xti − xsi|), for xt ; xs ∈Rk ; k¿ 1;
{ai¿ 0;∀i}; b¿ 0; {ci¿ 0;∀i}. This is the damped oscillation covariance function.

4.4. g-tests

Consider model (1) with a random #eld whose structure function is given by
C̃ k(xt ; xs) = Ck(xt ; xs) + Ck(0k ; 0k)− Ck(xt ; 0k)− Ck(0k ; xs), where Ck(xt ; xs) has the
parametric form of (9), with h∗ts ≡ 1

2dL1 (g�xt ; g�xs)= 1
2 r

′
tsg. The likelihood function

is as (10) where Ck is replaced by C̃ k such that =�2C̃ k+�2IT . We proceed with the
derivation of the LM test as in Section 4.2. In the case of the g-tests, the � parameter
is unidenti#ed under the null hypothesis and on calculating the score function we need
to keep � #xed. Evaluating the score function under the null of linearity H0 : g = 0,
keeping � #xed, and |g=0=�2IT , we can write the score functions in vectorized form
as

s(gi)|�2 ;g=0 =− �2

2�2 x̃
′
iu; i = 1; 2; : : : ; k; (15)

s(�2)|�2 ;g=0 =− 1
2�2 x̃

′
k+1u; (16)

where x̃i=9 vec(C̃ k)=9gi|g=0, for i=1; 2; : : : ; k; x̃k+1=vec(IT ), and u=vec(IT−��′=�2). 4

With the scores (15) and (16), we compute the g-test as a TR2 statistic, which is
free of the nuisance parameter �. We denote such a test by gOP. The construction of
the test statistic follows the procedure already outlined in Sections 4.2 and 4.3. After

4 To calculate x̃i , the indicator function has been substituted for a logistic function, i.e. 1(h∗ts61) ≈ (1 +
exp(−-(1− h∗ts))−1 for #xed - � 0.
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having obtained �̂ and �̂2 compute the uncentered R2 from the auxiliary regression
û ts =

∑k
i=1 ,̃ir̃ts; i + ,̃k+1x̃k+1; ts + /̃ts, where r̃ts; i = −k(|xti − xsi| − |xti| − |xsi|), for

t; s=1; 2; : : : ; T . The Lagrange multiplier statistic is then given as gOP= 1
2T

2R2 ∼ )2(k).
Notice that the g-test does not depend on the unidenti#ed nuisance parameter �. In

order to increase power under the alternative hypothesis, the auxiliary regression can
be augmented with higher powers and cross products of r̃ts, thereby increasing the
number of degrees of freedom of the asymptotic distribution of the test.

5. Simulation studies on size and power properties

We perform a Monte Carlo simulation study to analyze the small sample size and
power properties of the various statistics that we propose. 5 The set up of the simulation
follows closely that of Dahl (2002).

5.1. The design of the Monte Carlo experiment

We examine the size and power properties of the tests for neglected nonlinearity by
considering three blocks of linear and nonlinear dynamic models. All the chosen models
have been used in previous studies dealing with testing of linearity. These benchmark
models allow to make comparisons with earlier studies. Their parametric representations
are presented in Table 1. The models included in Block 1 were originally used by Lee
et al. (1993). The models in Block 2 have been more extensively studied by Keenan
(1985), Tsay (1986), Ashley et al. (1986), Chan and Tong (1986), and Lee et al.
(1993). The models in Block 3 have been studied by TerKasvirta et al. (1993).
The #rst #ve models in Block 1 are all characterized by being simple dynamic uni-

variate models, where the dynamic part is represented by one lag of the endogenous
variable. The models are all stationary. The models included are the autoregressive
model (AR), the bilinear model (BL) of Granger and Andersen (1978), the threshold
autoregressive model (TAR) of Tong (1983), the sign autoregressive model (SGN),
and the nonlinear autoregressive model (NAR). We also consider two bivariate rep-
resentations where we do not impose any dynamic structure. We consider a squared
relation (SQ), and an exponential relation (EXP). The models in Block 2 are char-
acterized by having a richer dynamic structure than those in Block 1. Model 1 is an
MA(2) representation, Model 2 is a heteroskedastic MA(2), and Model 4 is an AR(2).
These three models are linear and they are included primarily to evaluate the nominal
size of the tests of linearity and their ability to distinguish between dynamic misspec-
i#cation and misspeci#cation due to nonlinearity in the conditional mean. Model 3,
Model 5 and Model 6 are the truly nonlinear models in Block 2. Model 3 is a non-
linear MA(2), Model 5 is a bilinear autoregressive model, and Model 6 is a bilinear
autoregressive moving average model. In Blocks 1 and 2, �t is a white noise series
distributed N(0; 1). In Block 3, the #rst model is the logistic smooth transition autore-
gressive model (LSTAR) in TerKasvirta (1994). The second model is a special case of

5 Our GAUSS programs can be downloaded, free of charge, from our websites.
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Table 1
Models considered in the Monte Carlos study

Block 1
AR yt = 0:6yt−1 + �t
BL yt = 0:7yt−1�t−2 + �t
TAR yt = 0:9yt−11(|yt−1|61) − 0:3yt−11(|yt−1|¿1) + �t
SGN yt = 1(yt−1¿1) − 1(yt−1¡1) + �t
NAR yt = (0:7|yt−1|)=(|yt−1| + 2) + �t
SQ yt = x2t + et where xt = 0:6xt−1 + �t

et ∼ N(0; �2); �2 = 1; 25; 400
EXP yt = exp(xt) + et where xt = 0:6xt−1 + �t

et ∼ N(0; �2); �2 = 1; 25; 400

Block 2
Model 1 yt = �t − 0:4�t−1 + 0:3�t−2
Model 2 yt = �t − 0:4�t−1 + 0:3�t−2 + 0:5�t�t−2
Model 3 yt = �t − 0:3�t−1 + 0:2�t−2 + 0:4�t−1�t−2 − 0:25�2t−2
Model 4 yt = 0:4yt−1 − 0:3yt−2 + �t
Model 5 yt = 0:4yt−1 − 0:3yt−2 + 0:5yt−1�t−1 + �t
Model 6 yt = 0:4yt−1 − 0:3yt−2 + 0:5yt−1�t−1 + 0:8�t−1 + �t

Block 3
LSTAR yt = 1:8yt−1 − 1:06yt−2 + (0:02− 0:9yt−1 + 0:795yt−2)F(yt−1) + vt

F(yt−1) = [1 + exp(−100(yt−1 − 0:02))]−1

vt ∼ N(0; �2); �2 = 0:022

ESTAR yt = 1:8yt−1 − 1:06yt−2 + (−0:9yt−1 + 0:795yt−2)F(yt−1) + vt
F(yt−1) = 1− exp(−4000(yt−1)2)
vt ∼ N(0; �2); �2 = 0:012

NN yt =−1 + [1 + exp(−100(yt−1 − 0:8yt−2))]−1

+ [1 + exp(−100(yt−1 + 0:8yt−2))]−1 + vt
vt ∼ N(0; �2); �2 = 0:052

BN yt =−1 + [1 + exp(−100(yt−1 − xt))]−1 + [1 + exp(−100(yt−1 + xt))]−1 + vt
xt = 0:8xt−1 + ut

vt ∼ N(0; �2); �2 = 0:052; ut ∼ N(0; �2
u); �2

u = 0:052

the exponential smooth transition autoregressive model (ESTAR) known as the expo-
nential autoregressive model of Haggan and Ozaki (1981). The NN and BN models
are univariate and bivariate neural network models, respectively.

5.2. Results on size and power properties

In Tables 2–5, we report the results of the simulation study. We compare the Hamil-
ton statistic with the three types of Lagrange multiplier tests proposed in Section 4.
Let �EH(g) denote the Hamilton’s Lagrange multiplier statistic based on the Hessian
representation of the information matrix and on the spherical variance-covariance ma-
trix; �EOP(g) be the test based on the outer product of the score and on the variance-
covariance function (9); �AOP be the test based on a higher order Taylor approximation
to the variance-covariance function; and gOP be the statistic proposed in Section 4.4.
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Table 2
Critical values at 5% signi#cance level and asymptotic size of the test statistics for an AR(2) (Model 4)

Test T = 50 T = 100 T = 200

�EH(g) 3.073 3.289 4.038
(3.84) (3.84) (3.84)
[0.079] [0.069] [0.045]

�EOP (g) 3.621 3.335 3.070
(3.84) (3.84) (3.84)
[0.057] [0.067] [0.079]

�AOP 23.434 24.163 25.196
(24.99) (24.99) (24.99)
[0.075] [0.062] [0.047]

gOP 16.015 20.582 18.501
(23.69) (23.69) (23.69)
[0.312] [0.113] [0.185]

The #rst number is the simulated critical value. The number in parenthesis is the asymptotic critical value.
The number in brackets is the asymptotic size of the statistic based on the simulated critical value. Number
of replications is 1000. The tests �EH(g) and �EOP(g) have one degree of freedom. The test �AOP has 15 degrees
of freedom including up to four powers of rts. The test gOP has 14 degrees of freedom because the auxiliary
regression has been augmented to include up to four powers of r̃ts.

For comparison reasons, we also consider the Tsay’s linearity test (Tsay, 1986) that
has good power properties and is based on a second order Taylor approximation of an
unknown, but in contrast to the statistics proposed in this paper, deterministic func-
tional form. Brie2y sketched, the Tsay test is computed by the following procedure: (1)
Estimate the model under the null and compute �̂= y− (X ′X)−1(X ′y) and SSR0 = �̂′�̂.
(2) Obtain the least squares residuals of �—denoted �̂—from the auxiliary regression
of �̂ on X and on m auxiliary regressors given by powers and cross products of the
regressors in X ; for instance, if we have two regressors in X , say yt−1 and yt−2, the
auxiliary regression will consist of regressing �̂ on yt−1; yt−2; y2

t−1; yt−1yt−2, and y2
t−2.

Calculate SSR= �̂′�̂. (3) Compute the F-statistic F =[(T − k−m)=m](SSR0−SSR)=SSR
that is distributed as an F(m; T−k−m) where k is the number of regressors considered
in X .
In Table 2, we report the critical values and the asymptotic size of the proposed

statistics when the model under the null is an AR(2). The speci#cation is that of Model
4 in Table 1. The �-tests have a better size than the g-tests. The �EH(g) and �AOP have
a size very close to the nominal size of 5% for sample sizes of 200. The g-test is
undersized; the simulated critical value is smaller than the asymptotic critical value,
which implies that the test will reject less often the true null hypothesis. However, the
bootstrapped size is very close to 5%, as we show in the forthcoming tables.
In Tables 3–5, we report the bootstrapped rejection frequencies of the statistics. We

observe that the bootstrap procedure increases the size of the g-tests substantially. For
instance, in Table 4, for Model 4, which is an AR(2), the bootstrapped size is 4.9% for
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Table 3
Power of the test statistics. Rejection frequencies for bootstrapped p-values at the 5% signi#cance level.
1000 replications and 100 resamples

Test AR BL TAR SGN NAR SQ EXP

�EH(g)
T = 50 5.2 10.7 57.8 70.5 7.7 100.0 96.3
T = 100 4.4 19.0 93.7 97.9 11.1 100.0 100.0
T = 200 4.5 24.9 99.9 100.0 16.7 100.0 100.0

�EOP(g)
T = 50 5.0 3.5 39.6 51.3 5.0 99.2 91.0
T = 100 4.7 6.5 86.9 93.0 7.3 100.0 99.9
T = 200 6.3 8.2 99.8 100.0 9.6 100.0 100.0

�AOP
T = 50 4.5 23.7 52.5 66.0 6.6 100.0 98.3
T = 100 3.6 37.7 90.9 96.6 9.8 100.0 100.0
T = 200 4.7 53.0 99.9 100.0 16.8 100.0 100.0

gOP
T = 50 3.9 31.5 9.9 45.8 5.5 100.0 97.0
T = 100 2.6 49.8 31.8 92.2 7.7 100.0 100.0
T = 200 3.9 70.6 78.8 100.0 11.1 100.0 100.0

Tsay
T = 50 3.1 16.8 3.1 11.1 10.3 100.0 98.9
T = 100 3.2 31.2 5.7 13.9 12.6 100.0 100.0
T = 200 4.6 39.9 4.7 14.5 21.2 100.0 100.0

sample sizes of 200. The Monte Carlo bootstrap procedure that we have implemented
consists of the following steps: (1) Estimate the model under the null hypothesis of
linearity, i.e. y = X� + �, obtain {�̂′; �̂2} and compute the test statistic of interest,
say T = T(y;X). (2) Resample {�̂} from the distribution N(0; �̂2) and construct ŷ
based on the resampled residuals. (3) Compute T∗

1 = T∗
1 (ŷ;X). (4) Repeat steps 2

and 3 up to R times and obtain {T∗
r }R

r=2. (5) The bootstrapped p-value is equal to
7R

r=11(T
∗
r ¿T)=R. For each Monte Carlo replication, we compute the bootstrapped

p-value of step 5, and the bootstrapped rejection frequency is the percentage number
of replications in which the bootstrapped p-value is less than 5%.
In Table 3, we report the bootstrapped rejection frequencies for the models in Block

1. We observe that all tests are extremely powerful when the nonlinearity does not
included lagged endogenous variables, such as the SQ and EXP models. For bilinear
models, the gOP test is the most powerful, for instance, for a sample size of 200, the
power of gOP is 71% while the Tsay test has 40% power, and the Hamilton statistic
25%. For TAR and SGN models, the �EH(g) and �AOP tests are the best performers
with 100% power for samples of 200. For NAR models, the tests have, in general,
low power; the Tsay test, with 20% power for a sample size of 200, is comparable
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Table 4
Power of the test statistics. Rejection frequencies for bootstrapped p-values at the 5% signi#cance level.
1000 replications and 100 resamples

Test Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

�EH(g)
T = 50 5.5 6.5 36.6 4.1 60.2 40.4
T = 100 5.1 8.3 68.4 4.8 94.0 74.2
T = 200 5.7 13.8 93.6 4.5 99.9 97.7

�EOP(g)
T = 50 4.7 5.4 7.0 4.9 13.9 7.0
T = 100 4.8 4.3 15.5 6.0 50.7 28.5
T = 200 5.3 6.8 48.0 5.1 95.3 79.0

�AOP
T = 50 4.2 5.1 39.4 3.5 67.9 46.2
T = 100 4.2 10.4 72.9 4.8 97.2 78.9
T = 200 5.4 15.0 96.8 4.7 99.9 97.9

gOP
T = 50 5.2 15.4 47.1 3.5 49.9 56.3
T = 100 3.6 22.3 79.8 3.4 89.8 78.6
T = 200 4.9 28.6 98.4 4.7 99.8 95.9

Tsay
T = 50 3.6 10.5 48.8 3.5 74.6 54.5
T = 100 5.2 11.6 82.9 4.2 94.1 76.9
T = 200 6.5 20.4 98.8 5.2 99.0 90.6

to the �EH(g) and �AOP tests. In Table 4, we consider the power of the tests for the
models in Block 2, which exhibit higher dynamics than those of Block 1. Models 1
and 4 are linear models and the bootstrapped power is close to the nominal size of
5%, as we should expect. Model 2 is also linear but has heteroscedastic errors. In this
case, the gOP and the Tsay tests seem to reject linearity more often than the remaining
tests �EH(g), �EOP(g), and �AOP. In particular, �EOP(g) seems to discriminate very well
between nonlinearity and conditional heteroscedasticity, for instance, for a sample size
of 200, the power is around 7%, which is close to the nominal size of 5%. The gOP
and the Tsay tests are the best performers on detecting the nonlinear MA speci#cation
of Model 3 with almost 100% power. These two tests together with �AOP and �EH(g),
are able to detect bilinear ARMA models (Models 5 and 6) very strongly. In Table 5,
we report the bootstrapped power for models in Block 3. The #ve tests are powerful
to detect LSTAR speci#cations, with the Tsay and �AOP tests being the best performers.
However, when the model is the ESTAR, the �AOP test outperforms, by a wide margin,
the remaining tests; for instance, for a sample size of 200, the power of �AOP is 94%
while the Tsay test has 10% power and the Hamilton statistic 71%. For the NN models,
there is a superior performance of the �-tests over the Tsay test. The former have 100%
power while the Tsay test has between 10% and 20% power.
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Table 5
Power of the test statistics. Rejection frequencies for bootstrapped p-values at the 5% signi#cance level.
1000 replications and 100 resamples

Test LSTAR ESTAR NN BN

�EH(g)
T = 50 27.7 16.8 54.3 54.3
T = 100 63.8 33.8 89.4 90.5
T = 200 97.2 71.3 99.9 99.9

�EOP(g)
T = 50 8.2 7.0 34.7 28.8
T = 100 39.1 19.5 84.3 83.2
T = 200 90.7 59.5 99.9 100.0

�AOP
T = 50 55.0 26.2 41.6 47.3
T = 100 93.9 58.2 84.5 92.0
T = 200 99.9 94.1 99.9 100.0

gOP
T = 50 31.5 11.5 14.8 19.8
T = 100 64.8 22.9 41.7 52.4
T = 200 96.9 55.6 87.9 93.1

Tsay
T = 50 62.1 7.9 9.0 13.8
T = 100 93.7 7.4 9.7 15.8
T = 200 99.9 9.5 9.9 16.8

Overall, three clear results emerge. First, the gOP tests seem a promising alternative to
existing tests when the alternative is a bilinear type model, most tests have di9culties
identifying nonlinearities of this type, e.g. Lee et al. (1993). Second, the �AOP tests,
which do not require the explicit knowledge of the functional form of the covariance
matrix, emerge as a powerful alternative across models. Third, the �-tests are superior
on detecting neural network speci#cations. In addition, the � and g-tests match the
simplicity of the Tsay statistic.

6. Empirical illustration

We apply the proposed tests for neglected nonlinearity to the industrial produc-
tion (IP) index of sixteen OECD countries and Europe, the latter is an aggregate of
European countries that are OECD members. The IP is considered a leading indica-
tor of the business cycle. The data is seasonally adjusted with quarterly frequency
from 1960-Q1 to 2001-Q3, for a total of 167 observations. We analyze the quar-
terly growth rate of the index. The results of the linearity testing are summarized in
Table 6.
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Table 6
Bootstrapped p-values of the tests for neglected nonlinearity for the quarterly growth rate of the Industrial
Production Index. 1960Q1–2001Q3. Seasonally adjusted data. 1000 resamples

Country Lags �EH(g) �EOP(g) �AOP gOP Diagnosis

USA 8 0.109 0.822 0.018 0.016 Nonlinear
Japan 8 0.506 0.703 0.223 0.188 Linear
Austria 5 0.176 0.284 0.344 0.248 Linear
Belgium 6 0.336 0.600 0.275 0.393 Linear
Finland 5 0.417 0.870 0.014 0.001 Nonlinear
France 5 0.102 0.911 0.001 0.001 Nonlinear
Germany 5 0.317 0.981 0.004 0.009 Nonlinear
Greece 5 0.577 0.730 0.898 0.469 Linear
Ireland 5 0.824 0.418 0.366 0.026 ?
Italy 5 0.061 0.878 0.021 0.001 Nonlinear
Holland 5 0.731 0.847 0.196 0.407 Linear
Norway 5 0.016 0.082 0.002 0.002 Nonlinear
Portugal 5 0.695 0.567 0.238 0.001 ?
Spain 5 0.533 0.510 0.044 0.050 Nonlinear
Sweden 5 0.230 0.723 0.500 0.675 Linear
G.Britain 5 0.412 0.679 0.002 0.003 Nonlinear
Europe 5 0.655 0.674 0.767 0.969 Linear

We need to choose the number of lags in the linear and in the nonlinear com-
ponents of the model. For the linear component, the Akaike Information Criterium
selects between one (Finland, France, and Great Britain) and eight (USA and Japan)
lags. Conservatively, a moderate number of lags is recommended to guard against dy-
namic misspeci#cation. We use the same number of lags in the nonlinear part of the
model. When we have a large number of regressors in the nonlinear part of the model,
the implementation of the auxiliary regression required in the test �AOP, and described in
Section 4.3, may be di9cult because, for moderate sample sizes, we run out of degrees
of freedom. In this case, we constrain the auxiliary regression to second order terms, or
alternatively, one may remove the terms that involve cross-products and leave the high
power terms. For all four tests, we have bootstrapped their distribution and reported
the bootstrapped p-value, as described in Section 5.2. The most striking feature of the
results presented in Table 6 is the di7erent diagnosis provided by the tests �EH(g) and
�EOP(g) in one hand, and the tests �AOP and gOP on the other. In sixteen out of the all
seventeen series, �EH(g) and �EOP(g) fail to reject linearity. This is a re2ection of the
nuisance parameter problem that we argue in this paper. When the number of nuisance
parameters grows, the tests �EH(g) and �EOP(g) tend to loose power; on the contrary, the
tests �AOP and gOP are immune to the number of nuisance parameters and have higher
power. The tests �AOP and gOP deliver the same diagnosis in #fteen series, the exception
being Ireland and Portugal where �AOP fails to reject linearity and gOP rejects it. In the
seventeen series, we #nd nonlinearity in eight, we fail to reject linearity in seven, and
we #nd mixed results in two. A similar data set was used in TerKasvirta and Anderson
(1992), where the authors tested the null hypothesis of linearity against LSTAR and
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ESTAR speci#cations. Our results, although not strictly comparable because of the
time period and the seasonality adjustment, are roughly in agreement with those of
TerKasvirta and Anderson (1992). In general, they reject linearity in favor of a LSTAR
speci#cation more often than we do, as for instance, in the cases of Japan, Austria,
Belgium, and Sweden. However, we have shown in our Monte Carlo study that our
test �AOP has power of almost 100% for sample sizes of 200 against either LSTAR or
ESTAR models. A reason that can explain the di7erent diagnosis may be the potential
misspeci#cation of the number of lags in the nonlinear component of the model.

7. Conclusion

Within a 2exible regression model (Hamilton, 2001), we have o7ered a battery of
Lagrange multiplier tests for neglected nonlinearities. We have classi#ed the tests in
two categories: �-tests and g-tests. The statistic proposed by Hamilton is a �-test where,
under the null hypothesis of linearity, the number of unidenti#ed nuisance parameters
increases with the dimensionality of the model and where the covariance function that
de#nes the random #eld is spherical, which is based on the L2 norm. The presence of
unidenti#ed nuisance parameters may have adverse consequences on the power of the
test, and the choice of a particular covariance function may result on a test statistic
that has power against a certain class of random functions. The tests that we have
proposed aim to generalize and complement the Hamilton statistic. They are free of
unidenti#ed nuisance parameters under the null hypothesis of linearity and they are
able to capture a broad class of covariance functions. These advantages are the result
of two new directions. First, we have switched from the L2 norm to the L1 norm, and
second, we have assumed that the random #eld is su9ciently smooth for its covariance
function to be locally approximated by a higher order Taylor expansion.
The payo7 of this strategy has been con#rmed in an extensive Monte Carlo study.

The simulation evidence suggests that for small and moderate sample sizes, the pro-
posed statistics not only match the power properties of Hamilton test but also have
superior power against bilinear models, neural network, and smooth transition autore-
gressive speci#cations. We have also compared our tests with the Tsay’s statistic since
this is also based on a Taylor expansion of an unknown but deterministic functional
form. Compared to the Tsay’s test, the �-tests and g-tests have superior power properties
against speci#cations such as threshold autoregressive, sign autoregressive, exponential
smooth transition, and neural networks.
Finally, we have o7ered an application of our tests to detect nonlinearities in the In-

dustrial Production Index of sixteen OECD countries. TerKasvirta and Anderson (1992)
studied the same index, testing linearity against exponential and logistic smooth tran-
sition autoregressive models. Our tests are ideal candidates to assess linearity given
their superior performance to detect smooth transition dynamics. Broadly speaking, our
results agree with those of TerKasvirta and Anderson, although they found more nonlin-
earity than we did; for instance, in Japan, Austria, Belgium, and Sweden, they rejected
a linear model in favor of a logistic smooth transition, but our tests seem to indicate
that linearity cannot be rejected. This empirical application also illustrates that a large
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number of nuisance parameters have a pernicious e7ect on the power of those tests
that #x the unidenti#ed parameters to certain values.
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