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Abstract
We propose a model for interval-valued time series that specifies the conditional joint distribution of
the upper and lower bounds as a mixture of truncated bivariate normal distributions. It preserves the
interval natural order and provides great flexibility on capturing potential conditional heteroscedasticity
and non-Gaussian features. The standard expectation maximization (EM) algorithm applied to truncated
mixtures does not provide a closed-form solution in the M step. A new EM algorithm solves this
problem. The model applied to the interval-valued IBM daily stock returns exhibits superior
performance over competing models in-sample and out-of-sample evaluation. A trading strategy
showcases the usefulness of our approach.
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Interval data refer to data sets where the observation is an interval in contrast to a single
point. Intervals arise in a variety of situations. There are instances when the data are directly
collected in interval format. A standard example is survey design that avoids asking partici-
pants about private or sensitive information, for example, income, and the answer is pro-
vided in interval format, for example, [$50K, $100K]. In these cases, interval data are the
only data format available to the researchers. In other instances, intervals arise as a result of
aggregating data. The data may be collected at the individual level, for example, gas prices
in a gas station, but the research question deals with a larger unit, for example, gas prices at
the county level. Rather than providing an average of gas station prices, aggregating the
data in interval format for each county is more informative because it preserves the internal
price variation of each county. Aggregating the data into intervals may also provide infor-
mation on volatility, which is particularly useful in financial markets, for example, daily
max/min price interval provides information on both the price level and the daily price vola-
tility. Finally, intervals can also arise because there is uncertainty on the measurement of the
variable of interest. Regardless of the data generation mechanism of intervals, we define an
interval-valued time series (ITS) as a collection of interval data observed over time as
opposed to the classical point-valued time series (PTS) where the observations are scalars
ordered over time.
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The defining feature of an interval is the order of its bounds, that is, the upper bound can-
not be smaller than the lower bound. A formal modeling of ITS with the bound restriction
was introduced by González-Rivera and Lin (2013), who propose a constrained regression
model (GL) that preserves the natural order of the interval. They assume that the bivariate
errors of the system of bounds follow a bivariate truncated normal distribution, where the
truncation encloses the constraint that the upper bound is not smaller than the lower bound.
However, this distributional assumption is restrictive as the consistency of the estimators
heavily depends on it.

Conditional heteroscedasticity and non-Gaussian behavior such as flat stretches, bursts,
outliers, and change points (see Le, Martin, and Raftery 1996; Wong and Li 2000) are also
important features that, to the best of our knowledge, have not been explicitly modeled in
ITS.1 These features open the field for models capable of generating more flexible predictive
densities. Non-Gaussian features have been extensively considered in the PTS literature.
Particularly, Le, Martin, and Raftery (1996) propose a Mixture Transition Distribution
(MTD) model for univariate PTS that accounts for non-Gaussian features. Their idea is to
specify the conditional distribution of the variable of interest as a mixture distribution. The
fact that MTD is able to handle conditional heteroscedasticity is noted and discussed by
Berchtold and Raftery (2002). MTD is further generalized by Wong and Li (2000) under
the name of Mixture Autoregressive (MAR), and by Hassan and Lii (2006), who extend
MTD to marked point processes under a bivariate setting.

In this article, we propose a model for ITS in the spirit of the MTD model and its exten-
sions. We specify the joint conditional distribution of the upper bound (xt) and lower bound
(yt) as a mixture of truncated bivariate normal distributions, where for each component the
bivariate normal distribution is truncated at xt � yt. For each component, the pseudo loca-
tion of the truncated bivariate normal distribution is a linear function of the information
set.2 This model provides several advantages. First, it preserves the natural order of ITS,
that is, the upper bound is not smaller than the lower bound for all the observations in the
ITS. Second, the model captures conditional heteroskedasticity as the covariance matrix of
the process becomes time-varying due to the dynamic truncation and the mixture frame-
work. Third, the mixture distribution provides great flexibility to approximate the underly-
ing true conditional bivariate distribution of the lower/upper bounds, and hence improving
the quality of density forecast.3

For mixture models, the maximum likelihood estimator (MLE) does not have a closed-
form solution because of the complexity of the likelihood function. The standard approach
to find the MLE is to implement the expectation maximization (EM) algorithm due to its
simplicity and monotonicity in the likelihood (Dempster, Laird, and Rubin 1977). The EM
algorithm is based on the idea of data augmentation.4 Specifically, it finds the MLE that

1 Though the model proposed by GL produces conditional heteroskedasticity as a byproduct, its main focus
is the modeling of the conditional mean of ITS.

2 The pseudo location parameter of a truncated bivariate normal distribution can be interpreted as the loca-
tion parameter of the bivariate normal distribution without truncation. It is called pseudo because it no longer
represents the mean (location) of the truncated distribution after the truncation is imposed.

3 In Lin and González-Rivera (2019), the extremes (min/max) are modeled following distributional results
provided by the Extreme Value Theory. The authors show that the conditional mean of the extremes are non-
linear functions of the moments of the underlying process and propose a non-parametric modeling strategy. In
the same vein, here we are proposing a very flexible approach with a semi-parametric bent to approximate the
true density of the extremes, which asymptotically falls within the family of bivariate generalized extreme value
(GEV) distributions. The flexibility comes from the ability of the data guiding the number of components and the
weight of each component in the mixture and the dynamic truncation in each component.

4 The idea of data augmentation has also been explored extensively in Bayesian inference. For example,
Albert and Chib (1993) introduced latent variables in the Probit model to facilitate the posterior sampling. Chib
(1992) applied data augmentation techniques for Bayesian Tobit censored regression models. More recently,
Polson, Scott, and Windle (2013) constructed a new data augmentation algorithm for Bayesian Logit model. It is
worth noting that the EM algorithm was introduced earlier (1977) than the above Bayesian literature. Tanner
and Wong (2010) attributed the widespread application of MCMC methods in Bayesian computation to the
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maximizes the target likelihood function by maximizing a pseudo complete likelihood func-
tion derived from data augmentation. By construction, the pseudo complete likelihood func-
tion is easier to maximize (usually it has closed-form solutions) than the target likelihood
function. However, when the components of the mixture are subject to truncation, the data
augmentation techniques in the standard EM algorithm to estimate mixture models (see
Hamilton 1990; Le, Martin, and Raftery 1996; Hassan and Lii 2006) do not provide
closed-form solutions when maximizing the pseudo complete likelihood function in the
M step. To overcome this problem, we propose a new EM algorithm that considers two
data augmentation processes.5 A first augmentation brings latent variables that will suggest
from which component of the mixture the observation will truly come and, conditional on
this step, a second augmentation provides additional latent variables that will suggest
whether the observation to be generated is invalid and then falls into the truncated region.

Monte Carlo simulations indicate that the new EM algorithm performs well in finite sam-
ples. Even with a small sample size (T¼ 200), the parameter estimates are precise. As
expected, the standard errors of the parameter estimates decrease when the sample size
increases. The standard errors also differ across components of the mixture. Standard errors
in components with large weights tend to be smaller than those in components with smaller
weights. This is also expected because there is less information available for components
with smaller weights. Hence, a larger sample size would be desirable to estimate precisely
the parameters of those components. The Monte Carlo simulations also provide some evi-
dence on the asymptotic normality of the MLE. For a restricted version of the TMT model,
simulation results show that the density of the ML estimator departs from normality in
small samples, but as the sample size increases, we observe a gradual approach toward
normality.

We apply the model to the ITS of the IBM daily stock returns. In sample, the model fits
well the data. We identify four components with the first two explaining 75% of the dy-
namics of the series and capturing periods of low volatility. It is the fourth component,
which has the smaller weight, the one to capture high volatility periods. Out-of-sample, the
proposed mixture model outperforms the best competing model (VAR(7)-DCC-t density)
on approximating the underlying conditional distribution. To demonstrate the usefulness of
the model, we apply a trading strategy developed by González-Rivera, Luo, and Ruiz
(2020) that exploits the probability distribution of high/low return forecasts. Based on the
density forecasts of the proposed mixture model, the trading strategy delivers higher profits
or smaller losses than those based on the density forecasts of the best competing model.

As an alternative procedure to our modeling strategy to avoid the truncation of the den-
sity, we could model the upper bound (xt) and the log of the range of the interval
(logðxt � ytÞ), by employing a bivariate Gaussian mixture distribution (e.g., the MAR model
by Wong and Li 2000). However, this procedure creates new econometric problems, when
we need to recover the range of the interval. The predicted value of range will require some
bias corrections that depend on the assumed range distribution. Furthermore, it is not trivial
to obtain the joint distribution of the upper and lower bounds and to build the prediction
regions from the joint distribution of the upper bound and log of the range. See González-
Rivera, Luo, and Ruiz (2020) for a bootstrap approach that accomplishes such
transformation.

The organization of the article is as follows. In Section 1, we introduce the truncated mix-
ture transition model and discuss some properties. In Section 2, we estimate the model by
MLE and provide a new EM algorithm. In Section 3, we perform Monte Carlo simulations,

data augmentation idea in EM algorithm together with the Markov Chain simulation from the statistical physics
literature.

5 Note that the data augmenting processes are different from the data generating process, which is specified
by the model. See Section 2 for details.
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and in Section 4, we apply our model to ITS of the IBM daily stock returns and implement
a trading strategy to show the usefulness of our proposed model. We conclude in Section 5.
In the Appendix, we provide the technical details of the EM algorithm, a discussion of the
stationary condition, and the consistency of the ML estimator.

1 The Truncated Mixture Transition Model
1.1 Definition

Interval time series data have the following format:

fðxt; ytÞ; t ¼ 1; . . . Tg;

where xt is the upper bound and yt the lower bound of the interval observed at time t and it
is required that xt P yt. Denote the vector Yt ¼ ðxt; ytÞ0. We say that Yt is generated by a
truncated mixture transition (TMT(P, Q)) model if the conditional density function of the
process can be written as

f ðYtjF t�1Þ ¼
XP

j¼1

ajfjðYtjYt�1
t�QÞ;

XP

j¼1

aj ¼ 1; aj > 0; j ¼ 1; . . . ;P;

(1.1)

where F t�1 is the information set up to time t� 1, P is the number of components, assumed
to be fixed, Q is the number of lags in each component,6 and Yt�1

t�Q ¼ ðYt�Q;Yt�Qþ1;
. . . ;Yt�1Þ. The function fjðYtjYt�1

t�QÞ is a truncated bivariate normal probability density,
truncated at xt P yt so that the upper bound is not smaller than the lower bound. The trun-
cated density has the following functional form (see e.g., Nath 1972)

fjðYtjYt�1
t�QÞ ¼

1

2p
ffiffiffiffiffiffiffi
jRjj

p
Ft;j

exp � 1
2

Yt � lt;j
� �0R�1

j ðYt � lt;jÞ
� �

; (1.2)

where the pseudo location is a linear function of the information set, that is,
lt;j ¼ Cj þ Bj;1Yt�1 þ � � � þ Bj;QYt�Q, with constant vector Cj ð2� 1Þ and matrices Bj;r ð2� 2Þ
(r ¼ 1; . . . ;QÞ; Rj ð2� 2Þ is a positive semi-definite matrix and jRjj is the determinant of Rj.
We denote Aj ¼ ðCj;Bj;1; . . . ;Bj;QÞ, and hence the parameter set of the model is
W ¼ faj;Aj;Rjj8jg. The functional form (1.2) differs from a bivariate normal distribution in

the normalization term Ft;j ¼ 1� U
�w0lt;jffiffiffiffiffiffiffiffiffiffi

w0Rjw
p
� �

, which represents the cumulative distribution

of the truncated area (xt � yt), with U being the standard normal cumulative distribution
function and w ¼ ð1;�1Þ0.

According to Extreme Value Theory, extreme processes, that is, max/min, asymptotically
follow a GEV distribution. In Lin and González-Rivera (2019), the marginal conditional
means of the maximum and minimum returns are modeled based on results involving GEV
distributions. However, as they do not consider the joint modeling of the extremes, the in-
terval constraint cannot be guaranteed. The TMT model provides a framework to accom-
modate these issues. The finite mixture of truncated normal densities provides a flexible

6 The analysis in this article can be modified to accommodate the case where Q is allowed to be component
specific.
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approximation to the GEV distribution because the data, via information selection criteria,
determine the number of components and the weight of each component in the mixture as
well as the dynamic truncation in each component. The idea of using finite mixture distribu-
tions to approximate certain distributions is not uncommon, particularly for Bayesian infer-
ence (see Shephard 1994; Chib, Nardari, and Shephard 2002; Nakajima, Kunihama, and
Omori 2017).

1.2 Conditional Moments

From (1.1) and (1.2), we obtain the conditional mean of Yt as:

EðYtjF t�1Þ ¼
XP

j¼1

ajðM1
o;t;j þ lt;jÞ; (1.3)

where

M1
o;t;j ¼

Rjwffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Rjw

p /
�w0lt;jffiffiffiffiffiffiffiffiffiffi

w0Rjw
p
� �

1� U
�w0lt;jffiffiffiffiffiffiffiffiffiffi

w0Rjw
p
� � ; (1.4)

and / is the standard normal density function. The term M1
o;t;j represents the mean shift af-

ter the truncation takes place [see Nath (1972) for moments of truncated normal distribu-
tion]. If there is no truncation, the term M1

o;t;j ¼ 0. Then for the component j, the
conditional mean is no longer lt;j but a nonlinear function of Yt�1

t�Q. The natural order of in-
terval time series is also preserved at the conditional mean level, that is, w0EðYtjF t�1ÞÞ � 0
(see Appendix A.1).

An important feature of TMT model (1.1) is that it captures conditional heteroscedastic-
ity. The conditional variance is time-varying and is calculated as follows:

V YtjF t�1
� �
¼ E YtY 0t jF t�1

� �
� E YtjF t�1

� �
E YtjF t�1
� �0

¼
XP

j¼1

aj M2
o;t;j þ lt;j M1

o;t;j

	 
0
þM1

o;t;jl
0
t;j þ lt;jl

0
t;j

� �

�
XP

j¼1

aj M1
o;t;j þ lt;j

	 
0
@

1
A XP

j¼1

aj M1
o;t;j þ lt;j

	 
0
@

1
A
0

;

(1.5)

where

M2
o;t;j ¼ Rj þ

Rjww0Rj

w0Rjw

�w0lt;jffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Rjw

p /
�w0lt;jffiffiffiffiffiffiffiffiffiffi

w0Rjw
p
� �

1� U
�w0lt;jffiffiffiffiffiffiffiffiffiffi

w0Rjw
p
� � : (1.6)

If there is no truncation, in addition to M1
o;t;j ¼ 0, we have M2

o;t;j ¼ Rj and, for each compo-
nent j, its variance becomes constant.
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2 Maximum Likelihood Estimation: EM Algorithm

We discuss the estimation of the TMT model (1.1) by maximum likelihood (ML).7 Our
goal is to estimate W by maximizing the likelihood function:

L Wð Þ ¼ 1
T �Q

XT

t¼Qþ1

log
XP

j¼1

ajfj YtjYt�1
t�Q;Aj;Rj

	 
2
4

3
5: (2.1)

It is obvious that a closed-form solution is not achievable by maximizing (2.1). The likeli-
hood functions of mixture models are usually non-concave, and often have several local
maxima (see e.g., Redner and Walker 1984). Dempster, Laird, and Rubin (1977) propose
the EM algorithm, which has been widely applied to find the ML estimators for mixture
models due to its simplicity and monotonicity property. The statistical properties of EM al-
gorithm have been studied extensively (see Wu 1983; Meng 1994; McLachlan and
Krishnan 2007; Balakrishnan et al. 2017).

Lee and Scott (2012) apply the EM algorithm to a truncated normal mixture model with
each component truncated in a rectangular fashion, for example, s � Yt � k, where s and
k are vectors with the same dimension as Yt. Although our model has a different type of
truncation (xt � yt or w0Yt � 0), their arguments can be adapted to derive an EM algo-
rithm. However, this modified EM algorithm will not provide a closed-form solution in the

M step, mainly due to the truncation term /ð:Þ
1�Uð:Þ

	 

in the density function (see Appendix

A.2 for details). As a result, numerical maximization is needed in the M step (see Lange
1995) and thus, the simplicity of the EM algorithm is lost. In the following section, we pro-
pose a new EM algorithm that solves this problem.

2.1 A New EM Algorithm

As with any EM algorithm, we begin with the data augmentation procedure. Unlike the data
generating process specified by the model, where only the observation Yt is generated at time t,
the data augmentation involves generating additional latent data.8 To obtain the observation
Yt, we first generate a latent variable zt from a multinomial distribution that will indicate the
component of the mixture distribution from which the observation would be coming from.
Specifically, zt ¼ ðzt1; zt2; . . . ; ztPÞ, where ztj 2 f0;1g is the indicator variable such that ztj ¼ 1
if Yt is generated from component j and 0 otherwise. Next, conditional on zt, we generate an-
other latent variable nt from a geometric distribution that indicates the number of invalid draws
ðxt < ytÞ from the respective component before a valid draw (xt � ytÞ arrives. The valid
ðnt þ 1Þth draw is then treated as the tth observation (Yt). Clearly, the data (Yt) are augmented
by introducing zt, nt, and all the invalid draws. Denote YA

t ¼ fYt;1;Yt;2; . . . ;Yt;nt ;Yt;ntþ1g as all
the draws at time t. We now formalize the above data augmentation process (i.e., pseudo com-
plete data generating process thereafter).

Let zt follow a multinomial distribution:

gðztjWÞ ¼
YP
j¼1

a
ztj

j : (2.2)

7 The consistency of the ML estimator is discussed in Appendix A.6.
8 As pointed out in the introduction, the data augmentation process differs from the data generating process.

The later is assumed to generate the data Yt while the former is constructed to facilitate the ML estimation of the
parameters of the model.
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where
QP

j¼1 a
ztj

j ¼ azt1
1 azt2

2 � � � a
ztP
P . Given the role nt plays in the above pseudo complete data

generating process, it is natural to specify its distribution, conditional on zt, as a geometric
distribution, a discrete probability distribution that describes the number of failures before
the first occurrence of success, that is,

qðntjzt;WÞ ¼
YP
j¼1

½ð1� Ft;jÞnt Ft;j�ztj ; (2.3)

where Ft;j ¼ 1� U
�w0lt;jffiffiffiffiffiffiffiffiffiffi

w0Rjw
p
� �

is the cumulative distribution function of the truncated area

(xt � yt) for component j at time t, and represents the probability of obtaining a valid draw
from the bivariate normal distribution. Then, the conditional density of YA

t is specified as
follows:

h YA
t jzt; nt;W

	 

¼
YP
j¼1

"
f N
t;j Yt;ntþ1ð Þ

Ft;j

Ynt

k¼1

f N
t;j Yt;k
� �

1� Ft;j

 !#ztj

; (2.4)

where f N
t;j ð:Þ is the bivariate normal density of component j at time t.

Next, we construct the joint density function of the pseudo complete data (fYA
t ; zt; ntg),

that is,

lðYA
t ; zt;ntjWÞ ¼ gðztjWÞqðntjzt;WÞhðYA

t jzt;nt;WÞ

¼
YP
j¼1

½ajf N
t;j ðYt;ntþ1Þ

Ynt

k¼1

f N
t;j ðYt;kÞ�ztj ;

(2.5)

so that we write the pseudo complete log-likelihood function as follows:

LCðWÞ ¼ 1
T �Q

XT

t¼Qþ1

XP

j¼1

ztj log aj þ log f N
t;j ðYt;ntþ1Þ þ

Xnt

k¼1

log f N
t;j ðYt;kÞ

" #
: (2.6)

E Step. The above likelihood (2.6) is replaced with its conditional expectation (see
Appendix A.3 for details),

QðWjWlÞ

¼ E½LCðWÞjY;Wl�

¼ 1
T �Q

XT

t¼Qþ1

XP

j¼1

~ztj log aj þ log f N
t;j ðYt;ntþ1Þ þ ~nt;j

ð
log f N

t;j ðYt;kÞ
f N;l
t;j ðYt;kÞ
1� Fl

t;j

0
@

1
AdYt;k

0
@

1
A

2
4

3
5;

(2.7)

where ~nt;j ¼ Eðntjztj ¼ 1;Y;WlÞ ¼ 1�Fl
t;j

Fl
t;j

, f N;l
t;j ð:Þ and Fl

t;j are, respectively, f N
t;j ð:Þ and Ft;j condi-

tional on Wl (the parameter set of the previous (lth) iteration).
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~ztj ¼ Pðztj ¼ 1jY;WlÞ

¼ Pðztj ¼ 1;YtjWlÞ
PðYtjWlÞ

¼
al

jf
l
t;jðYtÞPP

r¼1 al
rf l

t;rðYtÞ
:

(2.8)

M Step. By maximizing QðWjWlÞ, we obtain the iterated rules for W (see Appendix A.4 for
details)

alþ1
j ¼

PT
t¼Qþ1 ~ztj

T �Q
; (2.9)

Alþ1
j ¼ ðX 0jY j þ ~X

0
j
~M

1
d0;T ;jÞ

0ðX 0jXj þ ~X
0
j
~XjÞ�1; (2.10)

Rlþ1
j ¼

PT
t¼Qþ1 ~ztj½ðYt � Alþ1

j Xt�1ÞðYt � Alþ1
j Xt�1Þ0 þ ~nt;jM2

d0;t;j�PT
t¼Qþ1 ~ztjð1þ ~nt;jÞ

; (2.11)

where ~M
1
d0;T ;j ¼ ð ~M

1
d0;Qþ1;j; . . . ; ~M

1
d0;T;jÞ

0 and ~M
1
d0;t;j ¼

ffiffiffiffiffiffiffiffiffiffiffi
~ztj~nt;j

p
ðM1

d;t;j þ ll
t;jÞ.

M2
d0;t;j ¼M2;l

d;t;j þ ðl
l
t;j � llþ1

t;j ÞðM
1;l
d;t;jÞ

0 þ ðM1;l
d;t;jÞðl

l
t;j � llþ1

t;j Þ
0 þ ðll

t;j � llþ1
t;j Þðll

t;j � llþ1
t;j Þ

0:

M1;l
d;t;j and M2;l

d;t;j are, respectively, M1
d;t;j and M2

d;t;j conditional on Wl,

M1
d;t;j ¼

�Rjwffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Rjw

p /
w0lt;jffiffiffiffiffiffiffiffiffiffi
w0Rjw
p
� �

1� U
w0lt;jffiffiffiffiffiffiffiffiffiffi
w0Rjw
p
� � ; (2.12)

M2
d;t;j ¼ Rj þ

Rjww0Rj

w0Rjw

w0lt;jffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Rjw

p /
w0lt;jffiffiffiffiffiffiffiffiffiffi
w0Rjw
p
� �

1� U
w0lt;jffiffiffiffiffiffiffiffiffiffi
w0Rjw
p
� � : (2.13)

Furthermore, ll
t;j ¼ Cl

j þ Bl
j;1Yt�1 þ � � � þ Bl

j;QYt�Q.

Xj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~zjs

1þ2Q
1

q
�X and X ¼ ðs1

T�Q; ðYT�1
Q Þ0; . . . ; ðYT�Q

1 Þ0Þ, where sb
a is a vector of ones

with dimension a� b.

~Xj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~zj � ~njÞs1þ2Q

1

q
�X, ~zj ¼ ð~zQþ1;j; . . . ;~zT;jÞ0, ~nj ¼ ð~nQþ1;j; . . . ~nT;jÞ0, Y j ¼

ffiffiffiffiffiffiffiffi
~zjs2

1

q
�

ðYT
Qþ1Þ

0, and X0t�1 ¼ ð1;Y 0t�1; . . . ;Y 0t�QÞ. The operator � is the Hadamard product.

Repeat E step and M step until convergence. Clearly, the new EM algorithm provides a
closed-form solution. Furthermore, the constraints on parameters are satisfied by construc-

tion, that is, Rlþ1 is positive semi-definite,
PP

j¼1 alþ1
j ¼ 1, and alþ1

j > 0. Note that Aj has an
iterated rule that resembles the formula of the ML estimates of the parameters of a vector
autoregressive (VAR) model. When truncation is not in present, it becomes
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Alþ1
j ¼ ðX 0jY jÞ0ðX

0
jXjÞ�1. Therefore, (2.10) can be viewed as applying VAR estimation to

the pseudo complete sample.

3 Monte Carlo Simulations
3.1 Finite-Sample Performance of the EM Algorithm

We perform Monte Carlo simulations to evaluate the finite-sample performance of the pro-
posed EM algorithm to estimate the parameters of the TMT model.

In Table 1, we show the design of three data generating processes: DGP 1 and DGP 2 are
TMT(2, 1) and DGP 3 is TMT(3, 1). Specifically, DGP 1 considers two components with
the binding constraint (xt � yt) in one component but not in the other component. The con-
straint is not binding at time t if w0lt;j ¼ w0ðCj þ Bj;1Yt�1 þ � � � þ Bj;QYt�QÞ 	 0 and Rj is
relatively small, while it is binding otherwise.9 Intuitively, when a significant portion of the
bivariate density is truncated, that is, substantial areas of the bivariate contours are above
the 45-degree line, the constraint is said to be binding. DGP 2 considers the case where the
constraint is binding in both components. DGP 3 considers three components with a non-
binding restriction in the first component while binding in the other two components. For
these two components, we also consider a low persistence process in one component and a
high persistence process in the other. To visualize the constraint, we plot the truncations in
DGP 3 in Figure 1. For each component at time t, we are re-centering the component’s
probability density to the origin (i.e., shifting the density by lt;j, where
lt;j ¼ Cj þ Bj;1Yt�1 þ � � � þ Bj;QYt�Q). The truncation line, previously the 45-degree line,
becomes time-varying as it has also been shifted by lt;j. In Figure 1, the gray lines are the
45-degree truncation lines that were shifted at each time t. In panels (a) and (b), we show
how the binding constraints significantly truncate the bivariate densities while is panel (c)
there is no truncation because the constraint is not binding.

For each DGP, the data are generated as follows. First, we set the parameters as in
Table 1. Second, we define gt;j to be the weight for component j at time t before the trunca-
tion is imposed such that the truncation delivers a new component weight aj.

10 The relation-

ship between aj and gt;j is the following: aj ¼
gt;jFt;jPP

j¼1
gt;jFt;j

. Notice that aj is fixed while gt;j

changes with time. Third, independent random draws (e.g., 1000 draws) are extracted from
the bivariate normal mixture distribution (with component weight gt;j). Fourth, we keep the
draws that satisfy the constraint xt � yt, from which one is randomly selected as the actual
observation at time t. Repeat the above steps until we generate a sample with desired size.11

We initialize the EM algorithm by randomly choosing 50 initial values of the parameter
vector.12 For each initial value of the parameter vector, we run the EM algorithm sepa-
rately. We choose the values that achieve the highest likelihood. We consider two sample
sizes (T¼200 and T¼ 1, 000) and we run 100 Monte Carlo replications.

We summarize the Monte Carlo results in Tables 2–4. Across all the experiments, the
EM algorithm performs satisfactorily. Even in small samples, the estimates are rather pre-
cise. As the sample size increases, the point estimates are closer to the true parameter values

9 In our simulations, we fix B and play with the values of C to allow the restriction to be binding or not.
10 The objective is to recover the bivariate normal mixture distribution prior to the truncation, from which

we can draw random samples by using the existing Matlab packages.
11 From the observations that satisfy the constraint, we start collecting from the 101th observation on (the

initial 100 observations are discarded, known as the burn-in period) until the completion of the desired sample
size.

12 Elements of a are uniformly selected from (0, 1) and sum up to one. Elements of B are uniformly selected
from ð�1; 1Þ. Elements of C and off-diagonal elements of L are uniformly selected from ð�3; 3Þ, where L is the
Cholesky decomposition lower triangle matrix of R ¼ LL0. Diagonal elements of L are uniformly selected from
(0, 3). For DGP 3, we choose 200 initial points to account for a higher dimensional parameter space.
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Table 1. Data generating processes (DGP 1–DGP 3)

DGP a C B R

1 NB 0.6
�2
�2

0:7 �0:1
�0:1 0:7

0:4 0:3
0:3 0:4

B 0.4
2
0

0:1 �0:8
�0:8 0:1

0:4 0:3
0:3 0:4

2 B 0.6
2
2

0:2 �0:1
�0:1 0:2

0:4 0:3
0:3 0:4

B 0.4
0
0

0:1 �0:8
�0:8 0:1

0:4 0:3
0:3 0:4

3 B 0.5
2
2

0:1 �0:8
�0:8 0:1

0:4 0:3
0:3 0:4

NB 0.3
2
0

0:3 �0:4
�0:4 0:3

0:4 0:3
0:3 0:4

B 0.2
�2
�2

0:2 �0:1
�0:1 0:2

0:4 0:3
0:3 0:4

Note: B and NB denote binding and not binding interval constraint, respectively.

Figure 1. Truncated areas in the conditional densities of DGP 3. (a) Binding with high persistence. (b) Binding

with low persistence. (c) Non-binding.
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and the standard errors become smaller, as we expected. Whether the constraint is binding
or not does not seem to affect the estimation results in any particular fashion. The same can
be said whether there is low or high persistence in the conditional means.

Table 3. Simulation results for DGP 2

DGP 2 a C B R

True 0.6
2
2

0:2 �0:1
�0:1 0:2

0:4 0:3
0:3 0:4

0.4
0
0

0:1 �0:8
�0:8 0:1

0:4 0:3
0:3 0:4

EM
0:6012
ð0:0415Þ

1:9462
ð0:2226Þ
2:0131
ð0:2178Þ

0:2349 �0:1332
ð0:1950Þ ð0:1854Þ
�0:0790 0:1753
ð0:2044Þ ð0:1960Þ

0:4023 0:2879
ð0:0723Þ ð0:0568Þ
0:2879 0:3944
ð0:0568Þ ð0:0728Þ

(T¼200)
0:3988
ð0:0415Þ

�0:0130
ð0:2122Þ
0:0219
ð0:2326Þ

0:1034 �0:8003
ð0:2689Þ ð0:2610Þ
�0:7720 0:0607
ð0:2643Þ ð0:2704Þ

0:3748 0:2805
ð0:0747Þ ð0:0718Þ
0:2805 0:3878
ð0:0718Þ ð0:0945Þ

EM
0:5990
ð0:0177Þ

1:9644
ð0:1349Þ
2:0605
ð0:1935Þ

0:2187 �0:1178
ð0:0863Þ ð0:0838Þ
�0:1280 0:2271
ð0:1189Þ ð0:1173Þ

0:4085 0:3002
ð0:0353Þ ð0:0306Þ
0:3002 0:4203
ð0:0306Þ ð0:0523Þ

(T¼1000)
0:4010
ð0:0177Þ

�0:0088
ð0:1269Þ
0:0208
ð0:1076Þ

0:0967 �0:7971
ð0:1268Þ ð0:1127Þ
�0:8237 0:1233
ð0:1111Þ ð0:1003Þ

0:3978 0:2940
ð0:0386Þ ð0:0322Þ
0:2940 0:3983
ð0:0322Þ ð0:0462Þ

Note: Standard errors in parenthesis.

Table 2. Simulation results for DGP 1

DGP 1 a C B R

True 0.6
�2
�2

0:7 �0:1
�0:1 0:7

0:4 0:3
0:3 0:4

0.4
2
0

0:1 �0:8
�0:8 0:1

0:4 0:3
0:3 0:4

EM
0:6036
ð0:0319Þ

�1:9644
ð0:4446Þ
�2:0041
ð0:3235Þ

0:6939 �0:1061
ð0:0644Þ ð0:0766Þ
�0:1023 0:6891
ð0:0730Þ ð0:0595Þ

0:3957 0:2997
ð0:0560Þ ð0:0476Þ
0:2997 0:4015
ð0:0476Þ ð0:0661Þ

(T¼200)
0:3964
ð0:0319Þ

1:9385
ð0:7890Þ
0:0510
ð0:4026Þ

0:1054 �0:7978
ð0:0801Þ ð0:0383Þ
�0:7941 0:1185
ð0:0632Þ ð0:1738Þ

0:4177 0:3006
ð0:2974Þ ð0:0986Þ
0:3006 0:4096
ð0:0986Þ ð0:1867Þ

EM
0:6011
ð0:0152Þ

�2:0037
ð0:0625Þ
�2:0038
ð0:0615Þ

0:6995 �0:1023
ð0:0099Þ ð0:0141Þ
�0:1012 0:6985
ð0:0102Þ ð0:0144Þ

0:4011 0:3006
ð0:0234Þ ð0:0212Þ
0:3006 0:3987
ð0:0212Þ ð0:0261Þ

(T¼1000)
0:3989
ð0:0152Þ

2:0073
ð0:0734Þ
0:0038
ð0:0785Þ

0:0983 �0:8009
ð0:0127Þ ð0:0163Þ
�0:8016 0:0989
ð0:0133Þ ð0:0170Þ

0:3937 0:2931
ð0:0253Þ ð0:0230Þ
0:2931 0:3916
ð0:0230Þ ð0:0280Þ

Note: Standard errors in parenthesis.
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Across Tables 2–4, it is interesting to observe that the standard errors of the estimates are
smaller in those components whose weight a is the larger. For example, in Table 4, the stan-
dard errors for C, B, and R are the smallest for the first component that has the largest com-
ponent weight of 0.5, and they increase for the second and third component that have
smaller weights, 0.3 and 0.2, respectively. A possible explanation is that with a smaller com-
ponent weight, relatively fewer observations would be generated from this component and
hence less information is available to accurately estimate this component. As the sample size
becomes larger, such differences in standard errors across components shrink since all the
standard errors decrease with a large sample size. This suggests that a relatively large sam-
ple size would be desirable for more accurate estimation when small components are
present.

In summary, Monte Carlo results seem to suggest that the proposed EM algorithm works
very efficiently identifying the component weights, the dynamics of the conditional means
in each component, and the dynamic truncation (binding or not binding constraints) in the
bivariate density of each component. The two factors that contribute to more efficient esti-
mates are the sample size and the weight of each component in the mixture. A larger sample
size and a large weight provide more information and consequently, we obtain smaller stan-
dard errors.

Table 4. Simulation results for DGP 3

DGP 3 a C B R

True 0.5
2
2

0:1 �0:8
�0:8 0:1

0:4 0:3
0:3 0:4

0.3
2
0

0:3 �0:4
�0:4 0:3

0:4 0:3
0:3 0:4

0.2
�2
�2

0:2 �0:1
�0:1 0:2

0:4 0:3
0:3 0:4

0:5078
ð0:0427Þ

1:9985
ð0:1535Þ
1:9867
ð0:1433Þ

0:0978 �0:8027
ð0:0551Þ ð0:0687Þ
�0:7980 0:0972
ð0:0515Þ ð0:0642Þ

0:3910 0:2908
ð0:0665Þ ð0:0560Þ
0:2908 0:3911
ð0:0560Þ ð0:0594Þ

EM

(T¼200)
0:2932
ð0:0378Þ

2:0114
ð0:1505Þ
0:0055
ð0:1390Þ

0:2991 �0:3892
ð0:0640Þ ð0:0771Þ
�0:4047 0:3111
ð0:0610Þ ð0:0753Þ

0:3665 0:2736
ð0:0887Þ ð0:0746Þ
0:2736 0:3664
ð0:0746Þ ð0:0792Þ

0:1990
ð0:0294Þ

�2:0138
ð0:2691Þ
�1:8540
ð0:4928Þ

0:2002 �0:1047
ð0:0892Þ ð0:1025Þ
�0:1382 0:2350
ð0:1145Þ ð0:1285Þ

0:3873 0:2917
ð0:0944Þ ð0:0820Þ
0:2917 0:4110
ð0:0820Þ ð0:1459Þ

0:5000
ð0:0178Þ

2:0026
ð0:0583Þ
1:9920
ð0:0574Þ

0:0990 �0:8016
ð0:0223Þ ð0:0247Þ
�0:7969 0:0953
ð0:0220Þ ð0:0249Þ

0:3966 0:2995
ð0:0272Þ ð0:0228Þ
0:2995 0:3991
ð0:0228Þ ð0:0253ÞEM

(T¼1000)
0:3001
ð0:0167Þ

1:9968
ð0:0710Þ
�0:0054
ð0:0707Þ

0:3008 �0:3987
ð0:0273Þ ð0:0304Þ
�0:3983 0:2990
ð0:0263Þ ð0:0308Þ

0:3907 0:2963
ð0:0334Þ ð0:0274Þ
0:2963 0:3986
ð0:0274Þ ð0:0334Þ

0:1999
ð0:0115Þ

�1:9983
ð0:0954Þ
�2:0139
ð0:1007Þ

0:2003 �0:0987
ð0:0298Þ ð0:0437Þ
�0:0960 0:1996
ð0:0310Þ ð0:0427Þ

0:3886 0:2914
ð0:0483Þ ð0:0382Þ
0:2914 0:3906
ð0:0382Þ ð0:0493Þ

Note: Standard errors in parenthesis.
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3.2 Asymptotic Normality of the MLE

We aim to provide evidence of the asymptotic normality of the ML estimator based on the
proposed EM algorithm. This is particularly challenging in a simulation setting because we
are facing the “label switching” issue, that is, in the mixture model it is not possible to iden-
tify to which component the parameter estimates belong. Though (Yao 2015) proposed
some methods to mitigate the label switching issue in simulation experiments, it is not fully
eliminated and, to the best of our knowledge, there is not a satisfactory solution in the cur-
rent literature. Therefore, we only consider a special case of the TMT model where the label
switching issue does not exist.

We introduce a restricted version of the TMT model, RTMT(P), where we impose the re-
striction that in each component, there is only one lag, that is, the pseudo location looks
like lt;j ¼ Cj þ Bj;jYt�j and the matrix B is restricted such that Bj;r ¼ 0 for r 6¼ j. Obviously,
the restricted model does not suffer from the label switching issue as each component has
different lags. We consider a RTMT(2), with parameter values set as DGP 1 in Table 1 with
the discussed restriction. The first component that only includes regressor Yt�1 in the
pseudo location has a weight of 0.6. The second component only includes regressor Yt�2 in
the pseudo location and has a weight of 0.4. We perform 500 Monte Carlo simulations and
we obtain the ML estimators by implementing the proposed EM algorithm.13 We also con-
sider small and large samples (T¼ 50 and T¼ 500).

We present the simulation results in Figures 2–5 where we plot histograms of the parame-
ter estimates and QQ plots.14 The common feature in the four figures is that in small sam-
ples the estimators depart from normality but, as the sample size increases, we observe a
gradual approach toward normality. In Figure 2, the histogram and QQ plot of the estimate
of the constant vectors Cj display fatter right and left tails than those of a normal density.
However, in Figures 3–5, the approach toward normality when T¼500 is more evident,
and even in the small sample T¼ 50 environment, the normal density seems to be a good
approximation for the density of the ML estimators of the pseudo location parameters and
the weight parameter.

4 Empirical Application

We model the ITS of the IBM daily stock returns. The high/low returns are calculated as the
percentage change of the highest/lowest daily price with respect to the closing price of the
previous day. The high return at time t is rhigh;t ¼ 100� ðPhigh;t � Pclose;t�1Þ=Pclose;t�1 and
similarly the low return rlow;t ¼ 100� ðPlow;t � Pclose;t�1Þ=Pclose;t�1. Consequently, the ITS
satisfies rhigh;t � rlow;t. In Figure 6, we plot the time series from January 1, 2004 to April 1,
2018 (3584 observations); in blue, the high returns and in red, the low returns. As in any fi-
nancial time series, heteroscedasticity is a very salient feature with high- and low-volatility
periods in both bounds and low returns that tend to be more volatile than high returns.

4.1 In-Sample Evaluation

We estimate and evaluate the in-sample performance of the models with the entire sample
from January 1, 2014 to April 1, 2018. We start by considering a TMT model with a maxi-
mum of seven components and four lags. That is, P ¼ f2; . . . ;7g, and Q ¼ f1;2; 3;4g, for
a total of 28 specifications.15 We select the best models by the BIC. The selected model is a

13 Differently from Section 4.1, here we use the parameters’ true values as the initial values for EM algorithm
instead of adopting the random initial value approach discussed in that section.

14 Because of space considerations, we present results for a few parameters of the model. Results for the rest
of the parameters are similar and are available upon request.

15 When only one component is involved (TMT(1, Q)) turns out to be the same as that of GL, which will be
discussed separately in the following discussion.
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TMT(4, 2) and we report the estimation results in Table 5.16 We observe that the first two
components account for 75% of the dynamics of the series and the first three components
for 90% and are components with relative small volatility (small R) while the fourth com-
ponent has a lower weight (about 9%) but captures periods of high volatility (large R).
Components 1 and 2 seem to have less persistence than components 3 and 4. In most cases,
the upper bound is positively affected by its own lags while negatively affected by the lags
of lower bound. Similarly, the lower bound is positively affected by its own lags while nega-
tively affected by the lags of upper bound. The standard errors for the parameter estimates
(C, B, and R) increase for components with smaller weights. This aligns with the observa-
tion from Section 3.

In summary, the importance of the estimation results shown in Table 5 lies on their con-
tributions to our understanding of the dynamic truncations in the conditional density war-
ranted by the data as well as the estimation of the conditional means, variances, and
correlation. We proceed to analyze these features.

In Figure 7, we show the time-varying truncations (as explained in the simulation Section
3.1) in the bivariate density of each component after re-centering (shifted by lt;j for each t
and each j). The truncations are very different across components; the interval constraint is
not binding for Components 1 and 2 but it is for Components 3 and 4, which means that
the time-varying heteroscedasticity is driven mainly by these last two components.

Figure 2. Histogram and QQ plot of the first element of C1 (true value is �2). T¼ 50 in top panel and T¼ 500

in bottom panel. The solid curves in the histograms are normal densities.

16 Standard errors are calculated using the block bootstrap (Politis and White 2004).
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In Figure 8, we plot the fitted conditional means (1.3) together with the realized data.
The persistency in the data seems to be well captured by the model. We also plot the fitted
conditional variances and correlation coefficients (1.5) of the high/low returns. The condi-
tional variances are capturing the volatility clustering in the data very well. The contempo-
raneous conditional correlations between low and high returns tend to be very high and
positive, around 0.8, in low volatility periods and substantially lower in high volatility
times.

In Figure 9, we plot two estimated conditional densities of the bivariate process, one in
December 18, 2008 and the other in December 29, 2017, to illustrate the flexibility of the
truncated normal mixture distribution. The shapes are rather different. In 2008, the density
seems to be bimodal and very asymmetric; in contrast in 2017, the density is unimodal and
mostly symmetric. The number of components and the truncations provide enough flexibil-
ity to adapt to the time-varying conditional density of the data.

We also consider a more parsimonious specification of the model, the restricted model
RTMT(P), as described in Section 3.2. We consider up to seven components
(P ¼ f1; . . . ;7g) for RTMT. We also compare the TMT and RTMT models with five other
models. For all models, the number of lags in the conditional means is selected by BIC. We
set up a linear VAR model as the benchmark. We consider two multivariate GARCH mod-
els to account for conditional heteroskedasticity in the data, one with a conditional normal
density for the errors (VAR�DCC�N) and the other with a Student-t density
(VAR�DCC� t). We also estimate the one-component model proposed by GL. Notice

Figure 3. Histogram and QQ plot of the first element of B1;1 (true value is 0.7). T¼ 50 in top panel and T¼ 500

in bottom panel. The solid curves in the histograms are normal densities.
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that VAR, VAR�DCC�N, and VAR�DCC� t models cannot preserve the natural or-
der of the ITS. In-sample comparison of the six models is summarized in Table 6.

The worst performer is the VAR(7), with the largest BIC and the smallest log-likelihood,
though it is the most parsimonious. It is clear that modeling the heteroscedasticity in the
data with either of the two multivariate GARCH models improves the performance, in par-
ticular when we fit the Student-t to the errors. Neither of these three models considers the
natural order of the high/low interval. Among the models that satisfy the interval restric-
tion, the GL(7), one-component model, does not seem to capture enough heteroscedasticity
and suggests the need for the introduction of more components. The RTMT(5) and TMT(4,
2) are the best performers with the smallest BIC and the largest log-likelihood though there
is an increase in the number of parameters to estimate.

4.2 Out-of-Sample Evaluation

We split the data into an in-sample period (from January 1, 2004 to December 31, 2013)
for model estimation and an out-of-sample period (from January 1, 2014 to April 1, 2018)
for model evaluation. We focus on comparing two of the best models, TMT(4, 2) and
VARð7Þ �DCC� t, according to the analysis in Section 4.1. As we mention before, the
TMT model considers the restriction in the interval bounds but the VAR�DCC� t does
not.17

Figure 4. Histogram and QQ plot of a1 (true value is 0.6). T¼ 50 in top panel and T¼ 500 in bottom panel. The

solid curves in the histograms are normal densities.

17 Within the in-sample period, the best model selected by BIC is the TMTð4; 2Þ:
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Both models are estimated recursively. We construct the one-step-ahead density forecasts
in the out-of-sample period. First, we evaluate the density forecasts following Diebold,
Gunther, and Tay (1998) and Diebold, Hahn, and Tay (1999) by obtaining the correspond-
ing probability integral transformations (PITs) of the densities associated with rhigh;t; rlow;t,
and rhigh;tjrlow;t.

18 If the density forecasts coincide with the underlying true conditional den-
sities, then the PITs should be i.i.d. (i.e., identically and independently distributed) uni-
formly distributed, U(0, 1). In Figures 10 and 11, we plot the PITs for TMT(4, 2) and
VARð7Þ �DCC� t.19 The TMT(4, 2) model seems to generate density forecasts that better
approximate the underlying true conditional densities when compared with those from the
VARð7Þ �DCC� t model because its PITs are closer to the uniform distribution. For the
VARð7Þ �DCC� t, there is a clear rejection of uniformity. To assess the dependence of the
PITs, we plot the autocorrelation functions of the PITs and those of their squares, third, and
fourth powers in Figures 12 and 13.20 The main difference between these two figures lies in
the slightly significant autocorrelations in plots (b) and (d) of the TMT model compared
with those generated by the VAR�DCC� t model. It seems that there is slight advantage
of the VAR�DCC� t specification on explicitly modeling the heteroscedasticity in the

Figure 5. Histogram and QQ plot of the first element of R1 (true value is 0.4). T¼ 50 in top panel and T¼ 500

in bottom panel. The solid curves in the histograms are normal densities.

18 The PITs from the forecast densities of rhigh;t and rlow;t are needed to evaluate their marginal densities and
those of rlow;t and rhigh;t jrlow;t for the evaluation of the joint densities.

19 The two horizontal lines represent the 95% confidence interval.
20 Let pt be the PIT of the corresponding density forecast of rlow;t . Panels (a)–(d) show their sample autocorre-

lations of ðpt � pÞ; ðpt � pÞ2; ðpt � pÞ3, and ðpt � pÞ4, respectively, where p is the sample mean of pt. ACF plots
for rhigh;t and rhigh;t jrlow;t for the two models considered provide similar information. These results are not
reported but are available upon request.
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data. For both models, plots (a) and (c) do not exhibit any autocorrelation statistically dif-
ferent from zero.

We also evaluate the density forecasts by a battery of powerful tests, called the
Generalized AutoContour (G-ACR) tests, introduced by Gonzalez-Rivera, Senyuz, and

0 500 1000 1500 2000 2500 3000 3500
-10

-5

0

5

10

15

High return
Low return

Figure 6. Daily IBM high/low stock returns (January 1, 2004 to April 1, 2018).

Table 5. Estimation results of the TMT(4, 2)

Component a C B1 B2 R

1
0:4184
ð0:0428Þ

0:3916
ð0:0535Þ
�0:2864
ð0:0688Þ

0:0681 �0:1033
ð0:0331Þ ð0:0412Þ
�0:0683 0:0801
ð0:0411Þ ð0:0501Þ

�0:0276 0:0327
ð0:0368Þ ð0:0370Þ
�0:1285 0:1480
ð0:0402Þ ð0:0397Þ

0:1838 0:1600
ð0:0230Þ ð0:0195Þ
0:1600 0:1909
ð0:0195Þ ð0:0204Þ

2
0:3635
ð0:0450Þ

0:3678
ð0:0859Þ
�0:4786
ð0:0886Þ

0:1758 �0:1563
ð0:0781Þ ð0:0829Þ
�0:0843 0:1641
ð0:0819Þ ð0:1001Þ

0:0152 �0:0857
ð0:0442Þ ð0:0587Þ
�0:2135 0:1674
ð0:0531Þ ð0:0856Þ

0:5367 0:5165
ð0:0883Þ ð0:0832Þ
0:5165 0:7006
ð0:0832Þ ð0:0840Þ

3
0:1323
ð0:0508Þ

0:4125
ð0:1946Þ
�0:1677
ð0:1054Þ

0:6549 �0:5425
ð0:1715Þ ð0:1354Þ
�0:1510 0:1473
ð0:0973Þ ð0:0821Þ

0:1157 �0:2460
ð0:1214Þ ð0:0968Þ
0:1101 �0:2316
ð0:0632Þ ð0:0693Þ

0:3476 0:1228
ð0:0819Þ ð0:0606Þ
0:1228 0:1778
ð0:0606Þ ð0:0617Þ

4
0:0857
ð0:0189Þ

0:1484
ð0:3580Þ
�0:9836
ð0:4077Þ

0:1015 �0:1265
ð0:1948Þ ð0:1856Þ
�0:1358 0:3614
ð0:1980Þ ð0:1778Þ

0:5265 �0:3146
ð0:2271Þ ð0:1736Þ
�0:0414 0:2858
ð0:2525Þ ð0:1805Þ

5:9263 5:4043
ð0:8068Þ ð0:7199Þ
5:4043 6:2028
ð0:7199Þ ð0:8251Þ

Note: Standard errors in parenthesis.
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Yoldas (2011) and generalized to multivariate densities by Gonzalez-Rivera and Sun
(2015). In Figure 14, we plot the PITs of rlow;t against those of rhigh;t jrlow;t for both models.
If the density forecasts coincide with the underlying true conditional densities, the points in
the plots should be uniformly distributed across the area of the unit square and show no de-
pendency. It is clear that comparing the unit squares from the two models, the unit square
from the VARð7Þ �DCC� t does not exhibit a uniform distribution of the PITs in the
square as there are missing points in the lower region of the square. This is not the case for
the TMT(4, 2) model. We also conduct formal G-ACR tests to test the null hypothesis that
the density forecasts coincide with the underlying true conditional densities. We report the
results in Tables 7 and 8. The null hypothesis cannot be rejected for the TMT model at the
1% significance level except for a few lags and autocontour levels while it is strongly
rejected for the VARð7Þ �DCC� t model. Such results are consistent with those observed
in the plots of Figure 14.

4.3 A Trading Strategy

To demonstrate the usefulness of our model, particularly the density forecasts, we apply a
trading strategy developed by González-Rivera, Luo, and Ruiz (2020). The trading strategy
exploits the probability distribution of high/low return forecasts. Consider the ratio

Figure 7. Truncations in the bivariate density of each component of the model TMT(4, 2). (a) First component.

(b) Second component. (c) Third component. (d) Fourth component.
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Figure 8. Estimated conditional mean, variance, and correlation of daily IBM high/low stock returns (January

1, 2004 to April 1, 2018). (a) Estimated conditional mean. (b) Estimated variance (high returns). (c) Estimated

variance (low returns). (d) Estimated correlation.
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Figure 9. Estimated conditional bivariate density contours. (a) December 18, 2008. (b) December 29, 2017.

Luo & González-Rivera j Truncated Mixture Transition Model 1149

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/22/4/1130/7242476 by guest on 30 August 2024



st ¼ jOt�r̂ low;t;1j
ĵrhigh;t;1�Ot j, where Ot is the opening return at day t, calculated using the opening price at

day t with respect to the closing price at day t�1, and r̂high;t;1 and r̂low;t;1 are the one-step
ahead high and low return forecasts, respectively. If st < 1, then the return is more likely to
go up than down in the next day. If this is observed for several days, it is reasonable to be-
lieve that the market is forming an upward trend and a “buy alert signal” should be gener-
ated. A similar argument can be applied to the “sell alert signal.” Figure 15 illustrates the
proposed trading strategy. Note that st is the absolute value of the slope of any line that con-
nects point A 
 ðOt;OtÞ and any other point below the 45� line. The slope of line AB is
equal to (minus) one and it is perpendicular to the 45

�
line. Hence, the area under the 45

�

line is divided into two areas by the line AB: st > 1 to the left of line AB and st < 1 to the
right of line AB. With the predicted probability distribution of high/low return forecasts,

Table 6. In-sample evaluation of competing models

Model Log-likelihood Number of parameters BIC

VAR(7) �8604 30 17,454
VARð7Þ �DCC�N �8155 39 15,991
VARð7Þ �DCC� t �7367 40 15,061
GL(7) �8486 33 17,243
RTMT(5) �6975 49 14,352
TMT(4, 2) �6833 55 14,117

Figure 10. PITs from TMT(4, 2) density forecasts.
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the probabilities of st < 1 and st > 1 can be computed through numerical integration. Note
that González-Rivera, Luo, and Ruiz (2020) compute the probabilities of st < 1 and st > 1
using the Bootstrap method. They count the number of Bootstrap realizations within the
prediction region to approximate the probabilities, while we directly integrate over the pre-
dicted probability distribution. The trading strategy then consists of the following steps:

• At day t, plot Figure 1 based on Ot. Given the one-step-ahead predictive density of high
and low returns, calculate Probðst < 1Þ and Probðst > 1Þ. If Probðst < 1Þ > Prob
ðst > 1Þ, a “buy alert signal” is generated.

• If the “buy alert signal” is observed for m consecutive days beginning with day t, buy
the asset on day t þm� 1 using the closing price on that day.

• After buying the asset, on any other day d, watch for the “sell alert signal”; that is,
Probðst < 1Þ < Probðst > 1Þ. If the “sell alert signal” is observed for m consecutive
days from day d, sell the asset on day d þm� 1 using the closing price on that day.
Otherwise, hold the asset.

We evaluate this trading strategy over the out-of-sample period (January 1, 2014, to April
1, 2018) for TMT(4, 2) and VARð7Þ �DCC� t models. For the implementation, the
choice of m should not be too small because it will introduce substantial noise in trading,
but it should not be too large either because we could miss profitable trades. We consider
m¼ 4 and 5. We apply a transaction cost of 0.1% and we annualize the profit/loss for each
trade because each trade will have a different holding period. The annualized return is

Figure 11. PITs from VAR(7)-DCC-t density forecasts.
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calculated as ARt ¼ Pclose;tþj�Pclose;t

Pclose;t
� 0:001

	 

365

j

	 

, where Pclose;tþj (j> 0) and Pclose;t are the

closing prices for the selling and buying days, respectively. The investor can buy the asset
again before the previous bought asset is sold. At the end of the evaluation period, if there
are still assets that have not been sold, these assets will not be considered when calculating
the profits.

Table 9 reports the average of ARt. TMT model achieves on average higher profit than
VAR�DCC� t for m¼ 4. For m¼ 5, although both models incur losses, loss from the
TMT model is on average less than VAR�DCC� t. Figure 16 plots the histograms of
profits/losses over trades for two models. It is interesting to see that the TMT model is able
to pick up a few very profitable trades on the right tails of the histograms while the VAR�
DCC� t model misses them.

5 Conclusions

We have proposed a truncated mixture transition model for the ITS that guarantees the nat-
ural order of the data (upper bound greater than lower bound).The model enjoys great flex-
ibility in terms of both parameter and density specifications and captures data features such
as heteroscedasticity and non-Gaussianity. However, the standard EM algorithm to esti-
mate truncated mixture models does not provide closed-form solutions in the M step.
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Figure 12. ACF of functions of PITs extracted from the rlow;t densities generated by TMT(4, 2) model. pt is the

PIT and p is the sample mean of pt.
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Figure 13. ACF of functions of PITs extracted from the rlow;t densities generated by VAR(7)-DCC-t model. pt is

the PIT and p is the sample mean of pt.
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Figure 14. G-ACR plots for TMT(4, 2) and VAR(7)-DCC-t models.
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Therefore, we have proposed a new EM algorithm with a novel data augmentation process
that encloses a closed-form solution in the M step. We prove the consistency of the MLE
and simulation results indicate good convergence properties of the estimator in small and
large samples. We have illustrated the performance of the model with an application to the

Table 7. G-ACR tests for TMT(4, 2) model

G-ACR t-statistics

Lag

1 2 3 4 5

Alpha 0.01 �0.47 0.10 �0.18 0.39 �1.03
0.05 1.40 �0.16 2.02 2.38 0.46
0.1 1.45 0.03 1.47 1.56 0.73
0.2 0.88 0.53 1.51 1.22 1.41
0.3 2.30 2.21 2.74 2.50 2.67
0.4 2.68 2.14 2.44 2.23 2.62
0.5 2.47 2.45 2.79 2.27 2.61
0.6 2.73 2.71 3.38 2.91 2.53
0.7 1.99 1.83 2.64 2.14 1.83
0.8 1.01 0.62 0.99 0.70 0.53
0.9 1.50 1.42 1.93 1.56 1.40

0.95 1.53 1.53 1.62 1.52 1.51
0.99 1.45 1.45 1.45 1.45 1.45

C-statistic 17.69 17.39 24.56 22.30 17.47

Notes: The 1% and 5% critical values for the t-statistic are 2.58 and 1.96, respectively. The 1% and 5% critical
values for the C-statistic are 27.69 and 22.36. Critical values are based on the asymptotic distributions of the
corresponding statistic.

Table 8. G-ACR tests for VAR(7)-DCC-t model

G-ACR t-statistics

Lag

1 2 3 4 5

Alpha 0.01 �2.17 �1.60 �2.17 �1.60 �3.01
0.05 �0.76 �1.00 �0.15 �0.14 0.82
0.1 3.38 2.63 2.90 3.41 4.51
0.2 6.90 6.49 7.65 7.18 8.16
0.3 10.07 10.29 10.87 10.18 10.71
0.4 10.94 11.20 11.50 11.10 11.22
0.5 11.39 11.82 11.85 11.74 11.68
0.6 9.63 9.61 9.69 9.68 9.57
0.7 8.70 8.64 8.83 8.67 8.52
0.8 7.71 7.59 7.64 7.68 7.57
0.9 4.99 5.06 5.05 4.98 4.97

0.95 3.72 3.72 3.81 3.71 3.71
0.99 1.45 1.45 1.45 1.45 1.45

C-statistic 177.59 186.69 190.22 175.75 185.23

Notes: The 1% and 5% critical values for the t-statistic are 2.58 and 1.96. The 1% and 5% critical values for C-
statistic are 27.69 and 22.36. Critical values are based on the asymptotic distributions of the corresponding
statistic.
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Figure 15. Buy and sell signals from trading strategy.

Table 9. Trading strategy comparison for IBM average annualized returns over the out-of-sample period from

January 1, 2014 to April 1, 2018

m 4 5

TMT 17.23% �7.50%
VAR-DCC-t 5.23% �12.56%

Figure 16. Histograms of the annualized trading returns over the out-of-sample period from January 1, 2014

to April 1, 2018. (a) VAR-DCC-t (m ¼ 4). (b) TMT (m ¼ 4). (c) VAR-DCC-t (m ¼ 5). (d) TMT (m ¼ 5).
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IBM daily high/low stock returns and provided evaluation metrics in-sample and out-of-
sample. We have also offered a comparison with several competing specifications and have
shown the advantages of the truncated mixture transition model in generating the best den-
sity forecasts among the models considered and implemented a trading strategy that delivers
better results when density forecasts are based on those generated by the truncated mixture
model.

Appendix

A.1 Proof of w 0EðYt jF t�1ÞÞ � 0

It is sufficient to show that w0M1
o;t;j þw0lt;j � 0 for all j. Thus, it suffices to prove that

/
�w0ljffiffiffiffiffiffiffiffiffiffi
w0Rjw
p
� �

1� U
�w0ljffiffiffiffiffiffiffiffiffiffi
w0Rjw
p
� � � �w0ljffiffiffiffiffiffiffiffiffiffiffiffiffi

w0Rjw
p :

Let k ¼ �w0ljffiffiffiffiffiffiffiffiffiffi
w0Rjw
p . When k � 0, the above inequality obviously holds.

When k > 0; 1� UðkÞ ¼ 1
2 erfc kffiffi

2
p
	 


, where erfc is the complementary error function de-

fined as erfcðzÞ ¼ 2ffiffi
p
p
Ð1
z expð�t2Þdt. In addition, /ðkÞ ¼ 1ffiffiffiffi

2p
p expð� k2

2 Þ. The inequality

becomes

1ffiffiffiffiffiffi
2p
p exp � k2

2

� �
� 1

2
erfc

kffiffiffi
2
p
� �

k:

Using the property of erfc function: erfcðzÞ � 2ffiffi
p
p expð�z2Þ

zþ
ffiffiffiffiffiffiffi
z2þ4

p

p , when z> 0, we have

1ffiffiffi
p
p

exp � k2

2

	 

k

kffiffi
2
p þ

ffiffiffiffiffiffiffiffiffiffiffi
k2

2 þ 4
p

q � 1
2

erfc
kffiffiffi
2
p
� �

k:

With this upper bound of 1
2 erfc kffiffi

2
p
	 


k, and it suffices to show that

1ffiffiffiffiffiffi
2p
p exp � k2

2

� �
� 1ffiffiffi

p
p

exp � k2

2

� �
k

kffiffiffi
2
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2
þ 4

p

s

() 1 � 1

1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þ 2

pk2

r ;

which obviously holds when k > 0.
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A.2 The EM Algorithm for Truncated Normal Mixture Model

Lee and Scott (2012) apply the EM algorithm to the multivariate truncated normal mixture
model with each component truncated by a rectangle, for example, s � Y � k, where s
and k are vectors with the same dimension as Y. We adapt their arguments to derive the
EM algorithm as below. To demonstrate, the derivations are made without specifying the
dynamics of lj. The idea remains the same when such dynamics are added. The parameter
set to be estimated is denoted as H ¼ faj;lj;Rjj8jg.

It is not difficult to derive the pseudo complete log-likelihood function for H:

LCðHÞ ¼ 1
T

XT

t¼1

XP

j¼1

ztj log aj þ
1
T

XT

t¼1

XP

j¼1

ztj log fjðYtjlj;RjÞ; (A.1)

where T is the sample size. The EM algorithm begins by initializing the parameter set, H0,
followed by the E and M steps.

E Step: Because ztj is not observed, LCðHÞ is replaced with its conditional expectation
(QðHjHlÞ) conditional on the observed data (Y) and the parameter set from the previous it-
eration (Hl).

QðHjHlÞ ¼ EðLCðHÞjY;HlÞ ¼ 1
T

XT

t¼1

XP

j¼1

~ztj log aj þ
1
T

XT

t¼1

XP

j¼1

~ztj log fjðYtjlj;RjÞ; (A.2)

~ztj 
 EðztjjYt;H
lÞ

¼ PðztjjYt;H
lÞ

¼ Pðztj;Yt;H
lÞ

PðYt;H
lÞ

¼
al

jfjðYtjll
j;R

l
jÞPP

k¼1 al
kfkðYtjll

j;R
l
jÞ
:

(A.3)

M Step:

alþ1
j ¼

PT
t¼1 ~ztj

T
; (A.4)

llþ1
j ¼

PT
t¼1 ~ztjYtPT

t¼1 ~ztj

� vjðllþ1
j ;Rlþ1

j Þ; (A.5)

Rlþ1
j ¼

PT
t¼1 ~ztjðYt � llþ1

j ÞðYt � llþ1
j Þ

0PT
t¼1 ~ztj

þ Ijðllþ1
j ;Rlþ1

j Þ; (A.6)

where vjðllþ1
j ;Rlþ1

j Þ and Ijðllþ1
j ;Rlþ1

j Þ are nonlinear functions of llþ1
j and Rlþ1

j . Details are
discussed in Appendix A.2.1.
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A.2.1 Derivation of the EM algorithm
Let Y follows a truncated bivariate normal distribution:

f ðYÞ ¼ 1

2p
ffiffiffiffiffiffi
jRj

p
1� U �w0lffiffiffiffiffiffiffiffiffi

w0Rw
p
	 
h i exp

�
� 1

2
Y � lð Þ0R�1ðY � lÞ

�
; (A.7)

Denote Yo ¼ Y � l, and its first and second moments are given as (Nath 1972):

M1
o ¼

Rwffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p

/
�w0lffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p
� �

1� U
�w0lffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p
� � ;

M2
o ¼ Rþ Rww0R

w0Rw
�w0lffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p

/
�w0lffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p
� �

1� U
�w0lffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p
� � :

In E step, the conditional expectation of the pseudo complete log-likelihood function can be
obtained as:

QðHjHlÞ ¼ EðLCðHÞjY;HlÞ ¼ 1
T

XT

t¼1

XP

j¼1

~ztj

�
log aj � log 2p� 1

2
log jRjj

� 1
2

Yt � lj
� �0R�1

j ðYt � ljÞ � log 1� U
�w0ljffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Rjw

p
 ! !�

;

where 1� U
�w0ljffiffiffiffiffiffiffiffiffiffi
w0Rjw
p
� �

¼ 1ffiffi
p
p
Ð1
�w0ljffiffiffiffiffiffiffiffiffi
2w0Rjw
p expð�t2Þdt.

First, take the derivative of log 1� U
�w0ljffiffiffiffiffiffiffiffiffiffi
w0Rjw
p
� �� �

with respect to lj

@

@lj
log 1� U

�w0ljffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Rjw

p
 ! !" #

¼ 1

1� U
�w0ljffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Rjw

p
 ! 1ffiffiffi

p
p wffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

w0Rjw
p exp �

�w0ljffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w0Rjw
p

 !2
0
@

1
A

8<
:

9=
;

¼
/
�w0ljffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Rjw

p
 !

1� U
�w0ljffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Rjw

p
 ! wffiffiffiffiffiffiffiffiffiffiffiffiffi

w0Rjw
p

¼
ww0M1

o;j

w0Rjw
;

where M1
o;j is M1

o with l ¼ lj and R ¼ Rj.
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Next, take the derivative of QðHjHlÞ with respect to lj

@

@lj
QðHjHlÞ
h i

¼ 1
T

XT

t¼1

~ztj R�1
j Yt � R�1

j lj �
ww0M1

o;j

w0Rjw

" #
¼ 0:

Rearrange the above equation gives:

lj ¼
PT

t¼1 ~ztjYtPT
t¼1 ~ztj

� vjðlj;RjÞ;

where vjðlj;RjÞ ¼
Rjww0M1

o;j

w0Rjw
.

Now, take derivative of QðHjHlÞ with respect to Rj to obtain:

w0M2
o;jw ¼ w0Rjwþw0Rjw

�w0ljffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Rjw

p
 ! /

�w0ljffiffiffiffiffiffiffiffiffiffi
w0Rjw
p
� �

1� U
�w0ljffiffiffiffiffiffiffiffiffiffi
w0Rjw
p
� �

2
6664

3
7775;

where M2
o;j is M2

o with l ¼ lj and R ¼ Rj.

Next, take derivative of log 1� U
�w0ljffiffiffiffiffiffiffiffiffiffi
w0Rjw
p
� �� �

with respect to Rj

@

@Rj
log 1� U

�w0ljffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Rjw

p
 ! !" #

¼ 1

1� U
�w0ljffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Rjw

p
 ! 1ffiffiffi

p
p

w0lj

2
ffiffiffi
2
p

w0Rjwð Þ
3
2

ww0 exp �
�w0ljffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

w0Rjw
p

 !2
0
@

1
A

2
4

3
5

8<
:

9=
;

¼ 1
2

�w0ljffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Rjw

p
 ! /

�w0ljffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Rjw

p
 !

1� U
�w0ljffiffiffiffiffiffiffiffiffiffiffiffiffi
w0Rjw

p
 !

0
BBBBB@

1
CCCCCA
�ww0

w0Rjw

 !

¼ 1
2

w0M2
o;jw�w0Rjw

w0Rjw
�ww0

w0Rjw

 !

¼ 1
2

w
1

w0Rjw
�

w0M2
o;jw

w0Rjwð Þ2

" #
w0:

Then, take the derivative of QðHjHlÞ with respect to Rj

@

@Rj
Q HjHl
� �� �

¼ 1
T

XT

t¼1

~ztj �
1
2

R�1
j þ

1
2

R�1
j Yt � lj
� �

Yt � lj
� �0R�1

j �
1
2

w
1

w0Rjw
�

w0M2
o;jw

w0Rjwð Þ2

" #
w0

( )
¼ 0:
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Some linear algebra properties were used: @ log jAj
@A ¼ ðA0Þ�1 and @x0A�1x

@A ¼ �A�1xx0A�1.
Finally, it can be shown that:

Rj ¼
PT

t¼1 ~ztjðYt � ljÞðYt � ljÞ0PT
t¼1 ~ztj

þ Ijðlj;RjÞ;

where Ijðlj;RjÞ ¼ Rjw 1
w0Rjw

� w0M2
o;jw

ðw0RjwÞ2

� �
w0Rj.

A.3 E Step of the New EM Algorithm

E LCðWÞjY;Wl
h i
¼ Ez;njY;WlfE LCðWÞjz; n;Y;Wl

h i
g

¼ Ez;njY;Wl E
1
T

XT

t¼Qþ1

XP

j¼1

ztjðlog aj þ log f N
t;j ðYt;ntþ1Þ þ

Xnt

k¼1

log f N
t;j ðYt;kÞÞjz;n;Y;Wl

2
4

3
5

8<
:

9=
;

¼ Ez;njY;Wl

1
T

XT

t¼Qþ1

XP

j¼1

ztj log aj þ log f N
t;j ðYt;ntþ1Þ þ ntE log f N

t;j ðYt;kÞjz;n;Y;Wl
h i	 
8<

:
9=
;

¼ EzjY;Wl

1
T

XT

t¼Qþ1

XP

j¼1

ztj log aj þ log f N
t;j Yt;ntþ1ð Þ þ E ntjz;Y;Wl

� �
E log f N

t;j Yt;k
� �

jz; n;Y;Wl
h i	 
8<

:
9=
;

¼ EzjY;Wl

1
T

XT

t¼Qþ1

XP

j¼1

ztj

 
log aj þ log f N

t;j ðYt;ntþ1Þ þ
 X1

nt¼0

nt

YP
h¼1

ð1� Fl
t;hÞ

nt Fl
t;h

h izth

! ð
log f N

t;j ðYt;kÞ
YP
m¼1

 
f N;l
t;m ðYt;kÞ
1� Fl

t;m

!ztm

dYt;k

!!8<
:

9=
;

¼ 1
T

XT

t¼Qþ1

XP

j¼1

EzjY;Hl ztjðlog aj þ log f N
t;j ðYt;ntþ1Þ þ

 X1
nt¼0

nt

YP
h¼1

ð1� Fl
t;hÞ

nt Fl
t;h

h izth

! ð
log f N

t;j ðYt;kÞ
YP
m¼1

 
f N;l
t;m ðYt;kÞ
1� Fl

t;m
Þztm dYt;k

!!8<
:

9=
;

¼ 1
T

XT

t¼Qþ1

XP

j¼1

PðztjjY;WlÞ log aj þ log f N
t;j ðYt;ntþ1Þ þ

1� Fl
t;j

Fl
t;j

 ð
log f N

t;j ðYt;kÞ
 

f N;l
t;j ðYt;kÞ
1� Fl

t;j

!
dYt;k

!2
4

3
5

¼ 1
T

XT

t¼Qþ1

XP

j¼1

~ztj log aj þ log f N
t;j ðYt;ntþ1Þ þ ~nt;j

 ð
log f N

t;j ðYt;kÞ
 

f N;l
t;j ðYt;kÞ
1� Fl

t;j

!
dYt;k

!2
4

3
5;

where Ez;njY;Wl ð:Þ takes the joint expectation of z and n conditional on Y and Wl. Law of iter-
ated expectation EðYjXÞ ¼ E½EðYjZ;XÞjX� was used.

A.4 M Step of the New EM Algorithm

To begin with, we derive the first two moments for Y coming from the invalid truncation
area (x< y), whose density has the following form:

f ðY;l;RÞ ¼ 1

2p
ffiffiffiffiffiffi
jRj

p
½1� U w0lffiffiffiffiffiffiffiffiffi

w0Rw
p
	 


�
exp½� 1

2
Y � lÞ0R�1ðY � lÞ�:
�

(A.8)

Let Yd ¼ Y � l. Then, the first and second moments of Yd ¼ xd

yd

� �
are:
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M1
d ¼

�Rwffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p

/
w0lffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p
� �

1� U
w0lffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p
� � ;

M2
d ¼ Rþ Rww0R

w0Rw
w0lffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p

/
w0lffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p
� �

1� U
w0lffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p
� � :

• It is not difficult to take the derivative of (2.7) with respect to aj, subject to the restriction

that
PP

j¼1 aj ¼ 1. One can obtain alþ1
j ¼

PT

t¼Qþ1
~ztj

T�Q .
• Next, take the derivative of (2.7) with respect to R�1

j .

@QðWjWlÞ
@R�1

j

¼ 1
T �Q

XT

t¼Qþ1

~ztj

"
1
2

Rj �
1
2
ðYt � llþ1

t;j ÞðYt � llþ1
t;j Þ

0þ

~nt;j
Ð  1

2
Rj �

1
2
ðYt;k � llþ1

t;j ÞðYt;k � llþ1
t;j Þ

0
!

f N;l
j Yt;k
� �

1� Fl
j

0
@

1
AdYt;k

#
¼ 0

)
XT

t¼Qþ1

~ztjRj �
XT

t¼Qþ1

~ztjðYt � llþ1
t;j ÞðYt � llþ1

t;j Þ
0 þ

XT

t¼Qþ1

~ztj~nt;jRj �
XT

t¼Qþ1

~ztj~nt;jM2
d0;t;j ¼ 0

) Rlþ1
j ¼

PT
t¼Qþ1 ~ztj½ðYt � llþ1

t;j ÞðYt � llþ1
t;j Þ

0 þ ~nt;jM2
d0;t;j�PT

t¼Qþ1 ~ztjð1þ ~nt;jÞ
;

where llþ1
t;j ¼ Alþ1

j Xt�1, M2
d0;t;j ¼M2;l

d;t;j þ ðll
t;j � llþ1

t;j ÞðM
1;l
d;t;jÞ

0 þ ðM1;l
d;t;jÞðll

t;j � llþ1
t;j Þ

0 þ ðll
t;j

�llþ1
t;j Þðll

t;j � llþ1
t;j Þ

0, M1;l
d;t;j, and M2;l

d;t;j are M1
d and M2

d with l ¼ ll
t;j; R ¼ Rl

j.
• Finally, take the derivative of (2.7) with respect to Aj.

Notice that maximizing QðWjWlÞ is equivalent to minimizing the following expression for
the purpose of taking derivative with respect to Aj:

LðAÞ ¼
XT

t¼Qþ1

XP

j¼1

~ztj

"
ðYt � AjXt�1Þ0R�1

j ðYt � AjXt�1Þþ

~nt;j

ðTr

ððYt;k � AjXt�1Þ0R�1
j ðYt;k � AjXt�1ÞÞ

f N;l
t;j ðYt;kÞ
1� Fl

t;j

0
@

1
AdYt;k

#

¼
XP

j¼1

f½vecðYjÞ � ðI2 �XjÞvecðA0jÞ�
0ðR�1

j � IT�QÞ½vecðY jÞ � ðI2 �XjÞvecðA0jÞ�þð
½vecð~YjÞ � ðI2 � ~XjÞvecðAj0 Þ�0ðR�1

j � IT�QÞ½vecð~Y jÞ � ðI2 � ~XjÞvecðAj0 Þ�f l
j ð~YjÞd~Yjg;

where ~Yj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~zj � ~njÞs

p
� Yk and Yk ¼ ðYQþ1;k; . . . ;YT;kÞ0. Take the derivative of L(A)

with respect to vecðA0jÞ:
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@LðAÞ
@vecðA0jÞ
¼ �2ðI2 �XjÞðR�1

j � IT�QÞvecðYjÞ þ 2ðI2 �XjÞ0ðR�1
j � IT�QÞðI2 �XjÞvecðA0jÞþÐ

½�2ðI2 � ~XjÞðR�1
j � IT�QÞvecð~YjÞ þ 2ðI2 � ~XjÞ0ðR�1

j � IT�QÞðI2 � ~XjÞvecðAj0 Þ�f ð~Y jÞd~Y j

¼ �ðI2 �XjÞ0ðR�1
j � IT�QÞvecðYjÞ þ ðI2 �XjÞ0ðR�1

j � IT�QÞðI2 �XjÞvecðA0jÞ�
ðI2 � ~XjÞ0ðR�1

j � IT�QÞvecð ~M
1
d0;T ;jÞ þ ðI2 � ~XjÞ0ðR�1

j � IT�QÞðI2 � ~XjÞvecðA0jÞ
¼ �½ðR�1

j � ~X
0
jÞvecð ~M

1
d0;T ;jÞ þ ðR�1

j �X
0
jÞvecðY jÞ� þ ½ðR�1

j �X
0
jXjÞ þ ðR�1

j � ~X
0
j
~XjÞ�vecðA0jÞ

¼ �½vecð~X 0j ~M
1
d0;T ;jR

�1
j Þ þ vecðX 0jY jR

�1
j Þ� þ ½R�1

j � ðX
0
jXj þ ~X

0
j
~XjÞ�vecðA0jÞ

¼ �ðR�1
j � I2Þvecð~X 0j ~M

1
d0;T ;j þX

0
jY jÞ þ ½R�1

j � ðX
0
jXj þ ~X

0
j
~XjÞ�vecðA0jÞ

¼ 0:

Then, we can write down vecðA0jÞ as:

vecðA0jÞ
¼ ½R�1

j � ðX
0
jXj þ ~X

0
j
~XjÞ��1ðR�1

j � I2Þvecð~X 0j ~M
1
d0;T ;j þX

0
jY jÞ

¼ ðI2 � ðX
0
jXj þ ~X

0
j
~XjÞ�1Þvecð~X 0j ~M

1
d0;T ;j þX

0
jY jÞ

¼ vec½ðX 0jXj þ ~X
0
j
~XjÞ�1ð~X 0j ~M

1
d0;T ;j þX

0
jY jÞ�:

Therefore, we have

Alþ1
j ¼ ð~X 0j ~M

1
d0;T ;j þX

0
jY jÞ0ðX

0
jXj þ ~X

0
j
~XjÞ�1:

A.5 Discussion of Stationarity Conditions

Deriving the stationarity conditions is not straightforward as the model is highly nonlinear
and the errors (if we write the conditional mean of the model in a regression form) are de-
pendent due to the time-varying truncations. We notice that the TMT model can be inter-
preted as a special case of a nonlinear autoregressive model with Markov switching, for
which the stability problem has been studied by Yao and Attali (2000). However, their
results cannot be directly applied as the i.i.d. assumption does not hold for the TMT model.
The truncation imposed on the distribution of the error term varies over time as a function
of the information set, rendering heteroscedastic and dependent errors. Nevertheless, we
provide some heuristic and theoretical reasoning to understand stationarity conditions of
the model.

Suppose the TMT model has only one component and no truncation (i.e., it becomes a
standard bivariate VAR model). If the process generated from this model is stationary, we
would expect the process generated from the model with truncation (i.e., one component
TMT) to be also stationary because imposing the truncation would not introduce any deter-
ministic or stochastic trend to the process. The same reasoning could be extended to the
multiple components case. Because the component weights are fixed, positive, and sum up
to one, we have a convex combination of stationary processes, which would also be
expected to be stationary. If the process generated from a bivariate MAR model is station-
ary, it is reasonable to expect that the process generated from the TMT model is also sta-
tionary. The stationarity conditions for the MAR model have been studied (see Wong and
Li 2000; Fong et al. 2007).
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Another perspective is to analyze the nonlinearity of the model to understand whether it
can be approximated by a linear relationship under certain conditions. The nonlinearity of

the TMT model comes from the truncation, which is the inverse Mills ratio (IMR), /ðxÞ
1�UðxÞ,

see Equation (1.4). IMR is approximately linear for some range of x (see Figure 17 for a
plot of IMR).

We analyze IMR into two parts: (a) when IMR goes towards zero on the left side, we
have the case where the interval constraint is not binding. In this case, the model looks like
a standard VAR. Equations (1.3) and (1.5) are linear. (b) When the interval constraint is
binding, we move to right side of Figure 15 and IMR is mostly linear. This makes
Equations (1.3) and (1.5) linear in these components. Overall, when we have a mixture of
components, some with binding constraints, Equations (1.3) and (1.5) can be approxi-
mately linear. Hence, a stable solution can be found.

We now demonstrate the above reasoning with a simple example. For a TMT model with
only one component and binding interval constraint, the regression form of the model can
be written as follows:

Yt ¼ lt þ
Rwffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p

/ �w0ltffiffiffiffiffiffiffiffiffi
w0Rw
p
	 


1� U �w0ltffiffiffiffiffiffiffiffiffi
w0Rw
p
	 
þ et;

where et ¼
eu;t

el;t

� �
follows a truncated normal distribution such that w0et � w0G, where

G ¼ lt þ Rwffiffiffiffiffiffiffiffiffi
w0Rw
p

/ �w0ltffiffiffiffiffiffiffi
w0Rw
p
	 


1�U �w0ltffiffiffiffiffiffiffi
w0Rw
p
	 
 and EðetÞ ¼ 0. When the constraint is binding, we can approxi-

mate IMR with a Taylor expansion, expanded at �w0ltffiffiffiffiffiffiffiffiffi
w0Rw
p ¼ 0.

Figure 17. Inverse Mills ratio.
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/ �w0ltffiffiffiffiffiffiffiffiffi
w0Rw
p
	 


1� U �w0ltffiffiffiffiffiffiffiffiffi
w0Rw
p
	 
 ¼ /ð0Þ

1� Uð0Þ þ Sð0Þ �w0ltffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p
� �

;

where S(0) is the first derivative of IMR evaluated at zero. Sð0Þ ’ 0:6, and /ð0Þ
1�Uð0Þ ’ 0:8.

Then,

Yt ¼ lt þ
Rwffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p 0:8þ 0:6

�w0ltffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p
� �� �

þ et

¼ Cþ BYt�1 þ
Rwffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p 0:8þ 0:6

�w0ðCþ BYt�1Þffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p

� �� �
þ et

¼ KþHYt�1 þ et

;

where K ¼ Cþ Rwffiffiffiffiffiffiffiffiffi
w0Rw
p 0:8� 0:6

w0Cffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p

� �
and H ¼ B� 0:6Rww0Bffiffiffiffiffiffiffiffiffi

w0Rw
p are functions of the model

parameters. The stationary condition would be all values of z satisfying jI �Hzj lying out-
side of the unit circle.

A.6 Consistency of the ML Estimator

We discuss the consistency of the ML estimator. Let #j ¼ fAj;Rjg for j ¼ 1; . . . ;P. The fol-
lowing parameter restrictions are necessary to ensure that the same TMT model cannot be
obtained by relabeling the components.

a1 > a2 > . . . > aP > 0 and #i ¼ #j onlyif 1 � i ¼ j � P: (A.9)

The following theorem shows that under some regular conditions, the MLE is consistent.
We begin by imposing the following assumptions:

Assumption 1. The process fYtg is generated from (1.1) and is strictly stationary and
ergodic.

Assumption 2. The true parameter set, W0, is an interior point of N, where N is a
compact subset of
fW 2 ð0; 1ÞP�1 � R

ð5þ4QÞP : 6:9 holds and Rj are positive definite 8jg.

Assumption 3. EðjjYtjj2Þ < 1, where jj:jj is the Euclidean norm.

These assumptions are fairly regular in the literature. Assumption 1 is the most challeng-
ing because the model is highly nonlinear; nevertheless, we provide an extensive discussion
on the stationarity of the model in Appendix A.5. Assumptions 2 and 3 are sufficient to en-
sure the uniform convergence of the likelihood function.

The following theorem establishes the strong consistency of ML estimator.

Theorem 1. Under Assumptions 1, 2, and 3, the MLE Ŵ ¼ argmax
W2N

LðWÞ is strongly
consistent, that is Ŵ ! W0 a.s.
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Proof of Theorem 1.
To proof consistency, we will need to show that the finite mixtures of truncated
normal distributions are identifiable. The identification of mixture distributions and
models has been extensively studied in the literature (see e.g., Teicher 1963;
Yakowitz and Spragins 1968; Leroux 1992). We introduce a lemma that shows the
finite mixtures of truncated normal distributions are identifiable up to the label
switching.

Lemma 1. Let � ¼ ðl;RÞ, and suppose that K ¼ fFðY; �Þ; � 2 R
6;Y 2 R

2g is the
family of cumulative distribution functions whose density is given by

f ðY; �Þ ¼ 1

2p
ffiffiffiffiffiffi
jRj

p
1� U �w0lffiffiffiffiffiffiffiffiffi

w0Rw
p
	 
h i exp

"
� 1

2
ðY � lÞ0R�1ðY � lÞ

#
: (A.10)

Then, the family of finite mixtures of K is identifiable up to label switching. That is,PP
i¼1 aif ðY; �iÞ ¼

PP
j¼1 ajf ðY; �jÞ implies that for each 1 � i � P, there is some j

such that ai ¼ aj and vi ¼ vj assuming that a0is and v0is are, respectively, distinct.

Proof of Lemma 1.
First, we define distributions that belong to the exponential family for later use.
If, for some r�finite measure l,

dGðY; sÞ ¼ aðsÞbðYÞ exp½s0hðYÞ�dlðYÞ; (A.11)

for Y 2 R
n; sðm� 1Þ, and hðYÞ ðm� 1Þ, where aðsÞ > 0; bðYÞ � 0 and a;b;hj; for

j ¼ 1;2; . . . ;m are all measurable, then G is called an exponential family member.

Let HðYÞ ¼
PP

i¼1 aiGðY; siÞ be the finite mixtures. Denote G the class of all n-dimensional
cdf’s G and H the induced class of mixtures of H. Barndorff-Nielsen (1965, Corollary 3)
shows that H is identifiable up to label switching if (a) l is n-dimensional Lebesgue measure,
(b) functions hj; j ¼ 1;2; . . . ;m, are all continuous, and (c) the set fy : y ¼ hðYÞ; bðYÞ >
0;Y 2 R

ng contains a nonempty open set.21

The truncated normal distribution FðY; �Þ whose density is given by 6.10 belongs to ex-
ponential family as after re-parameterized it can be written as:

dF Y; sð Þ
dl Yð Þ

¼ 1

2p
ffiffiffiffiffiffi
jRj

p
1� U

�w0lffiffiffiffiffiffiffiffiffiffiffiffi
w0Rw
p
� �� � exp � 1

2
Y � lð Þ0R�1 Y � lð Þ

� �

¼ a sð Þb Yð Þ exp s0h Yð Þ½ �;

where l is two-dimensional Lebesgue measure. s ¼ R�1l; � 1
2
ð
!

R�1Þ
� �

, aðsÞ ¼
ffiffiffiffiffiffi
jRj

pn
½1� Uð �w0lffiffiffiffiffiffiffiffiffi

w0Rw
p Þ� expð12 l0R�1lÞg�1, bðYÞ ¼ 1

2p, and hðYÞ ¼
	

Y; ð
!

YY 0Þ

0

.

21 Their results are built for the general mixtures of exponential families, and can be applied here for the fi-
nite mixtures.
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The image of the mapping h: R2 ! R
6, for x � y is the set X ¼ fhðYÞ; x � yg, which con-

tains an open set X0 ¼ fhðYÞ;x > yg. In addition, the map from s to � is unique. Lemma 1
follows. h

Now, we proceed to prove Theorem 1. It is straightforward to see that LðWÞ is a measur-
able function of data for each W 2 N, and continuous in W. Therefore, it suffices to show
that (a) the log-likelihood follows a uniform strong law of large numbers:
sup
W2N
jLðWÞ � E½LðWÞ�j ! 0 a.s. as T !1; (b) the identification condition:

E½LðWÞ� � E½LðW0Þ�, and E½LðWÞ� ¼ E½LðW0Þ� implies W ¼ W0. (see Amemiya 1973,
Lemma 3).

Let LðWÞ ¼ 1
T�P

P
t lðWÞ. By Assumption 1 and continuity of lðWÞ; lðWÞ is stationary and

ergodic (see Krengel 1985, Proposition 4.3), and hence E½LðWÞ� ¼ E½lðWÞ�. To verify (a), it
suffices to show that E½sup

W2N
jlðWÞj� < 1 [see Rao (1962) or Straumann and Mikosch (2006,

Theorem 2.7)]. Kalliovirta, Meitz, and Saikkonen (2016) prove that the above inequality
holds for the likelihood in their model. We adapt similar procedures here. It can be obtained
that

l Wð Þ ¼ log
XP

j¼1

aj 2pð Þ�1jRjj�1=2

exp � 1
2

Yt � AjXt�1
� �0R�1

j Yt � AjXt�1
� �� �

=
1
2

erfc �w0AjXt�1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w0Rjw

p	 
� ��
;

where w ¼ ð1;�1Þ0. Assumption 2 implies that, D � jRjj � d, 8j for some d > 0, and D < 1,
and that w0Rjw � c; 8j for some c > 0. Furthermore, exp½� 1

2 Yt � AjXt�1Þ0
�

R�1
j ðYt � AjXt�1Þ� � 1. In addition, when �w0AjXt�1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w0Rjw

p
� 0, erfcð�w0Aj

Xt�1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w0Rjw

p
Þ � 1, and thus lðWÞ � logðp�1d�1=2Þ. When �w0AjXt�1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w0Rjw

p
> 0, us-

ing the inequality erfcðxÞ � 1
2 expð�2x2Þ to get (see Chang, Cosman, and Milstein 2011,

Theorem 2):

erfcð�w0AjXt�1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w0Rjw

p
Þ � 1

2
expð�w0AjXt�1X0t�1A0jw=w0RjwÞ

� 1
2

exp

"
� 1

c
trðXt�1X0t�1A0jww0AjÞ

#

� 1
2

exp

"
� 1

c
trðXt�1X0t�1ÞtrðA0jww0AjÞ

#

� 1
2

exp

"
� j

c
X0t�1Xt�1

#
;

where the last inequality holds by compactness of N (Assumption 2). That is,
trðA0jww0AjÞ � j; 8j for some 0 < j < 1. Now, it can be seen that
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l Wð Þ � log
XP

j¼1

aj 2pð Þ�1
d�1=24 exp

j
c

X0t�1Xt�1

� �8<
:

9=
;

¼ log 2p�1d�1=2ð Þ þ j
c

X0t�1Xt�1:

Therefore, regardless of the value of �w0AjXt�1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w0Rjw

p
, lðWÞ � logð2p�1d�1=2Þ

þ j
c X0t�1Xt�1.
On the other hand, it can be seen that

ðYt � AjXt�1Þ0R�1
j ðYt � AjXt�1Þ

¼ tr½ðYt � AjXt�1ÞðYt � AjXt�1Þ0R�1
j �

� tr½ðYt � AjXt�1ÞðYt � AjXt�1Þ0�trðR�1
j Þ

¼ ðYt � AjXt�1Þ0ðYt � AjXt�1ÞtrðR�1
j Þ

� ð1þ Y 0tYt þX0t�1Xt�1Þq;

where the first inequality holds because both ðYt � AjXt�1ÞðYt � AjXt�1Þ0 and R�1
j are posi-

tive semi-definite. The second last inequality is implied by Cauchy–Schwarz inequality and
Assumption 2 (trðR�1

j Þ � q; 8j for some 0 < q < 1). Furthermore,
erfcð�w0AjXt�1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w0Rjw

p
Þ � 2, thus

l Wð Þ � log
XP

j¼1

aj 2pð Þ�1
D�1=2 exp � 1

2
1þ Y 0tYt þX0t�1Xt�1
� �

q

� �8<
:

9=
;

¼ G1 �
1
2

q 1þ Y 0tYt þX0t�1Xt�1
� �

;

for some finite G1. Overall, G1 � 1
2 qð1þ Y 0tYt þX0t�1Xt�1Þ � lðWÞ � logð2p�1d�1=2Þ

þ j
c X0t�1Xt�1, from which E½sup

W2N
jlðWÞj� < 1 holds because X0t�1Xt�1 ¼ 1þ

Y 0t�1Yt�1 þ � � � þ Y 0t�QYt�Q, and EðY 0tYtÞ < 1 for all t by Assumption 3.
Now, we verify (b). Let sðYt�1

t�Q;W0Þ be the stationary distribution of Yt�1
t�Q, then

E½LðWÞ� � E½LðW0Þ�

¼
Ð Ð

sðYt�1
t�Q;W0Þ

"XP

j¼1

aj;0fjðYtjYt�1
t�Q;Aj;0;Rj;0Þ

#
log

PP
j¼1 ajfjðYtjYt�1

t�Q;Aj;RjÞPP
j¼1 aj;0fjðYtjYt�1

t�Q;Aj;0;Rj;0Þ
dYtdYt�1

t�Q

Ð
sðYt�1

t�Q;W0Þ
Ð "XP

j¼1

aj;0fjðYt jYt�1
t�Q;Aj;0;Rj;0Þ

#
log

PP
j¼1 ajfjðYtjYt�1

t�Q;Aj;RjÞPP
j¼1 aj;0fjðYtjYt�1

t�Q;Aj;0;Rj;0Þ
dYt

8<
:

9=
;dYt�1

t�Q;

where the inner integral is the negative Kullback–Leibler divergence between two mixture
densities:

PP
j¼1 ajfjðYtjYt�1

t�Q;Aj;RjÞ and
PP

j¼1 aj;0fjðYtjYt�1
t�Q;Aj;0;Rj;0Þ. Therefore, E½LðWÞ� �

E½LðW0Þ� � 0 and the equality holds if and only if

XP

j¼1

ajfjðYt jYt�1
t�Q;Aj;RjÞ ¼

XP

j¼1

aj;0fjðYtjYt�1
t�Q;Aj;0;Rj;0Þ:
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By the identification result from Lemma 1 and the parameter restrictions in Equation (A.9),
we have that aj ¼ aj;0, Rj ¼ Rj;0, and AjXt�1 ¼ Aj;0Xt�1 for all j, where AjXt�1 ¼ Aj;0Xt�1

implies either that Aj ¼ Aj;0 or that Xt�1 takes values only on a 2ðQ� 1Þ dimensional hy-
perplane. The latter is impossible as fXt�1g takes values on H  R

2Q, where H has positive
Lebesgue measure. Therefore, aj ¼ aj;0; Rj ¼ Rj;0, and Aj ¼ Aj;0 for all j.
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