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A bootstrap approach for generalized Autocontour testing
Implications for VIX forecast densities

Jo~ao Henrique G. Mazzeua, Gloria Gonz�alez-Riverab, Esther Ruiza, and Helena Veigaa,c

aDepartment of Statistics, Universidad Carlos III de Madrid, Getafe, Madrid, Spain; bDepartments of California,
Riverside, California, USA; cBRU-IUL, Instituto Universit�ario de Lisboa, Lisboa, Portugal

ABSTRACT
We propose an extension of the Generalized Autocontour tests for
dynamic specification (evaluation) of in-sample (out-of-sample) conditional
densities. The new tests are based on probability integral transforms com-
puted from bootstrap conditional densities that incorporate parameter
uncertainty without relying on parametric assumptions of the error distri-
bution. Their finite sample distributions are well approximated using stand-
ard asymptotic distributions while they are easy to implement and provide
information about potential sources of misspecification. We apply the new
tests to the Heterogeneous Autoregressive and the Multiplicative Error
models of the VIX index and find strong evidence against the parametric
assumptions of the conditional densities.
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1. Introduction

Density forecasting is a very important area of research in the analysis of economic and financial
time series. A problem often faced by forecasters is testing the correct specification of a condi-
tional forecast density. Corradi and Swanson (2006a), Bierens and Wang (2017) and Rossi and
Sekhposyan (2019) contain excellent reviews of the literature on testing for the specification of
univariate conditional densities. Many popular tests for conditional forecast densities are based
on testing a joint hypothesis of uniformity and independence of the probability integral trans-
forms (PITs). These tests, introduced by Diebold et al. (1998) in the econometric literature, have
the advantage of being preferred regardless of the forecaster’s loss function. Among these tests, in
the context of diffusion processes, Hong and Li (2005) compare the joint nonparametric density
of PITs at different lags with the product of two independent U(0,1) random variables. The main
disadvantages of this test are that one needs to choose the bandwidth parameter and the test con-
verges at a nonparametric rate. Alternatively, Corradi and Swanson (2006b) construct
Kolmogorov-type conditional distribution tests in the presence of both dynamic misspecification
and parameter estimation uncertainty; see Corradi and Swanson (2006a) for a generalization to
an out-of-sample framework. However, the limiting distribution of these tests is not nuisance
parameters free and, consequently, they propose bootstrap techniques in order to obtain valid
critical values. Furthermore, they assume that the conditional distribution depends on a finite
number of observable values of the variable of interest, excluding moving average or GARCH
models; see Perera and Silvapulle (2018). Note that while the tests proposed by Corradi and
Swanson (2006a, 2006b) allow for dynamic miss-specification of the conditional moments, in this
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paper, we propose tests that are robust to the distributional miss-specification of the conditional
distribution of the errors. Very recently, Rossi and Sekhposyan (2019) propose a test based on
PITs with the density evaluated at the estimated parameter values.

Gonz�alez-Rivera and Sun (2015) propose the generalized autocontour (G-ACR) tests for
independence and uniformity of PITs, which have standard convergence rates and limiting
distributions that deliver superior power. Furthermore, G-ACR tests are computationally easy
to implement as they are based on a counting process and do not require either a transform-
ation of the original data or an assessment of the Kolmogorov goodness of fit. However, as
most tests based on PIT’s, G-ACR tests are based on assuming a particular specification of
the conditional density (often normality) while, in practice, there are applications in which
the density does not have a known closed-form expression. Therefore, when a given
predictive density model is rejected, it is difficult to disentangle whether the rejection can be
attributed to the assumed functional form of the error distribution or to the specification of
the conditional moments.

In this paper, we propose an extension of the G-ACR tests for (in-sample) the dynamic spe-
cification of a density model and for (out-of-sample) the evaluation of forecast densities. Our
contribution lies on computing the PITs from a bootstrapped conditional density so that no
assumption on the functional form of the forecast error density is needed. Alternative tests to
those proposed in this article for the case of unknown conditional density functions have been
suggested in Ait-Sahalia et al. (2009) and Altissimo and Mele (2009) who propose tests based
on kernel estimates of the densities with nonparametric rates. Bhardwaj et al. (2008) construct
a conditional Kolmogorov test with a parametric rate by simulating at each moment of time
paths that have a common starting value. The only restrictions required on the error density
are those needed to guarantee that the estimator of the parameters of the conditional moments
is consistent and asymptotically normal. Our proposed residual bootstrap procedure is different
from that proposed by Manzan and Zerom (2008) who suggest using PITs based on non-
parametric bootstrap replicates obtained from kernel densities instead of the residual bootstrap.
The non-parametric bootstrap depends crucially on several smoothing parameters. Furthermore,
they test separately for uniformity, using a Kolmogorov-Smirnov test, and for independence,
using a Lagrange Multiplier test for linear dependence, while we propose a unique test for the
adecuacy of the forecast densities. It is also important to point out that, the bootstrap proced-
ure proposed in this paper allows for the incorporation of parameter uncertainty and can be
extended to multivariate systems. We show that the finite sample distributions of the boot-
strapped G-ACR (BG-ACR) tests are well approximated using standard asymptotic distributions.
The proposed approach is very easy to implement and particularly useful to evaluate forecast
densities when the error distribution is unknown. Furthermore, it is possible to use graphical
devices that are visual aids to the formal results of the tests. When the PITs are uniform and
independent, the pairs of PITs are expected to be evenly spread over the unit cube. When this
is not the case, the visual aid should confirm the formal results of the test about rejection of
the null. In general, it is not possible to identify the source of misspecification when the null
hypothesis is rejected because the alternative is just written as the negation of the null. The
graphical tool may offer some clues. We present some experiments that confirm that when the
rejection of the null is due to mis-specified linear dependence, we observe the pairs of PITs
lined up across the diagonals of the unit cube. When the rejection of the null is due to
mis-specified conditional heteroscedasticity, the pair of PITs tend to concentrate around the
vertexes of the unit cube.

Our second contribution is the implementation of the proposed BG-ACR tests to evaluate the
specification of the Heterogeneous Autoregressive (HAR) model and of the Multiplicative Error
Model (MEM), proposed to represent the dynamic evolution of the daily forward-looking market
volatility index (VIX) from the Chicago Board Options Exchange (CBOE). After implementing
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the BG-ACR tests, we show that the HAR and MEM specifications are both rejected if they do
not incorporate conditional heteroscedasticity of the VIX itself. Furthermore, we also show that
normality of the errors of the HAR model and the semiparametric Gamma distribution (GSNP)
of the errors of the MEM model are also rejected.

The rest of the paper is organized as follows. Section 2 briefly describes the G-ACR tests.
Section 3 contains the main contribution with the description of the new proposed BG-ACR tests
and the analysis of their in-sample performance. In section 4, we analyze their out-of-sample per-
formance. In section 5, we offer an empirical application to illustrate the advantages of the BG-
ACR tests by testing for the adequacy of the HAR and MEM models to obtain forecast densities
of the VIX index. Finally, we conclude in section 6.

2. The Generalized-AutoContouR (G-ACR) test

We briefly describe the G-ACR test proposed by Gonz�alez-Rivera and Sun (2015) to facilitate the
reading of the forthcoming sections and to make the exposition self-contained.

Let fytgTt¼1 be a strictly stationary univariate random process with finite marginal variance and
conditional density function ftðytjYt�1Þ, where Yt�1 ¼ ðy1, :::, yt�1Þ is the information set available
at time t – 1. A conditional density model is constructed by specifying the conditional mean, con-
ditional variance or other conditional moments of interest, and making distributional assump-
tions on the functional form of ftðytjYt�1Þ: Based on the conditional model, the researcher might

construct a density forecast denoted by gtðytjYt�1Þ and obtain a sequence of PITs of fytgTt¼1 w.r.t.
gtðytjYt�1Þ as given by ut ¼

Ð yt
�1 gtðvtjYt�1Þ dvt: If gtðytjYt�1Þ coincides with the true conditional

density, ftðytjYt�1Þ, then the sequence of PITs, futgTt¼1, must be i.i.d. U(0, 1); see
Rosenblatt (1952).

Following Gonz�alez-Rivera and Sun (2015), for lag k ¼ 1, 2, :::, we define

G� ACRk, ai ¼ fðut , ut�kÞ � R2j0 � ut � ffiffiffiffi
ai

p
and 0 � ut�k � ffiffiffiffi

ai
p

, s:t: : ut � ut�k � aig, (1)

and the indicator series Ik, ait that takes value one if ðut , ut�kÞ 2 G� ACRk, ai and zero otherwise,
where ai is the population probability level. Consider the following statistic

tk, ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
T � k

p ðâk, i � aiÞ
rai

, (2)

where âk, i ¼
PT

t¼kþ1
I
k, ai
t

T�k is the sample proportion of PIT pairs within the G� ACRk, ai cube and

r2ai ¼ aið1� aiÞ þ 2a3=2i ð1� a1=2i Þ: This variance can be derived taking into account that the indi-

cator variable, Ik, ait , is a Bernoulli random variable. The variable ðut , ut�kÞ falls inside G-ACRk, ai

with probability ai. Furthermore, Ik, ait follows an Moving Average process whose order depends
on k. Finally, Gonz�alez-Rivera and Sun (2015) show that, under the null hypothesis of ut being
i.i.d. U(0,1), tk, ai is asymptotically standard normal distributed.

The t-statistic in (2) is constructed for a single fixed autocontour, ai, and a single fixed lag, k.
However, it can be generalized to a set of lags with a fixed autocontour or to several autocontours
with a fixed lag. In the first case, for a fixed autocontour ai, define Lai ¼ ð‘1, ai , :::, ‘K, aiÞ0 which is

a K � 1 stacked vector with element ‘k, ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
T � k

p ðâk, i � aiÞ: For economic and financial data,
conventional wisdom suggest using a small K as serial correlation among PITs is often the
strongest at small lags; see Hong and Li (2005) for a similar argument. Under the null, Gonz�alez-
Rivera and Sun (2015) show that L0aiK

�1
ai Lai is asymptotically v2K distributed, where a typical

element of the asymptotic covariance matrix, Kai , is given by:
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kj, k ¼
aið1� aiÞ þ 2a3=2i ð1� a1=2i Þ, j ¼ k,

4a3=2i ð1� a1=2i Þ, j 6¼ k:

8<
:

Alternatively, for a fixed lag k, define the vector Ck ¼ ðck, 1, :::, ck,CÞ0 with ck, i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
T � k

p ðâk, i � aiÞ:
Once more, under the null, C0

kX
�1
k Ck has asymptotically a v2C distribution, where a typical element of

the asymptotic covariance matrix, Xk, is given by:

xi, j ¼
aið1� aiÞ þ 2a3=2i ð1� a1=2i Þ, i ¼ j,

aið1� ajÞ þ 2aia
1=2
j ð1� a1=2j Þ, i < j,

ajð1� aiÞ þ 2aja
1=2
i ð1� a1=2i Þ, i > j:

8>>><
>>>:

The expression of the covariances in kj, k and xi, j can be derived using the same arguments about
the distribution of the indicator variables explained above; see Gonz�alez-Rivera and Sun (2015)
for more details.

If the researcher is interested in partial aspects of the densities, such as, a particular collection
of quantiles, it is more informative to examine the Lai statistic, which incorporates information
for all desired k lags. On the other hand, if he is interested in the whole distribution, Ck collects
information on all desired C autocontours for a given fixed lag k.

The tests described above are based on an assumed predictive density gtðytjYt�1Þ: However, in
practice, the parameters associated with the moments of this density need to be estimated.
Gonz�alez-Rivera and Sun (2015) analyze the effects of parameter estimation on the asymptotic
distribution of tk, ai , and consequently on Lai and Ck, and conclude that the corresponding adjust-
ments to the asymptotic variance are model dependent and thus, difficult to calculate analytically.
To overcome this drawback, they propose a fully parametric bootstrap procedure to approximate
the asymptotic variance based on obtaining random extractions from the known error predictive
density assumed under the null hypothesis.

The G-ACR tests can be implemented both in-sample and out-of-sample. Gonz�alez-Rivera and
Sun (2015) show that, when testing the out-of-sample specification, the importance of parameter
uncertainty will depend on both the forecasting scheme and the size of the estimation sample (T)
relative to the forecast sample (H). When implementing the tests to check the correct specifica-
tion of the out-of-sample forecast densities, parameter uncertainty will distort the test size as long
as the proportion of the out-of-sample and in-sample sizes, H and T, respectively, is large.

However, under the assumption of
ffiffiffiffi
T

p
-consistent estimators, if T ! 1,H ! 1 and H=T ! 0,

parameter uncertainty is asymptotically negligible and no adjustment to the test is needed.
Finally, note that, if any of the G-ACR tests rejects the null hypothesis, there is no indication

about whether the rejection can be attributed to an inadequate assumption about the error distri-
bution or to misspecification of the conditional moments. Gonz�alez-Rivera and Sun (2015) point
out that the G-ACR tests are more powerful for detecting departures from the distributional
assumption than for detecting misspecified dynamics.

3. In-sample bootstrap G-ACR (BG-ACR) tests

We propose a generalization of the G-ACR tests that allows testing for the specification of the
conditional moments without making any particular assumption on the conditional distribution.
We justify heuristically the asymptotic validity of the proposed procedure and carry out Monte
Carlo experiments to establish its finite sample performance.
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3.1. Description of the BG-ACR tests

Consider the following parametric location-scale model for a univariate strictly stationary finite
variance series of interest, yt, t ¼ 1, :::,T,

yt ¼ lt þ rtet , (3)

where lt and r2t are the conditional mean and variance of yt, which are parametric functions of
the information set, Yt�1, and et is an independent white noise process with distribution Fe, such
that EðetÞ ¼ 0 and Eðe2t Þ ¼ 1: The parameters governing lt, r2t and Fe guarantee stationarity and
satisfy the conditions required for their estimators to be consistent and asymptotically normal.
For example, Francq and Zakoian (2004) give conditions for the strong consistency and
asymptotic normality of the Gaussian-Quasi-Maximum-Likelihood (G-QML) estimator of the
ARMA-GARCH model and Mika and Saikkonen (2011) when both the conditional mean and
the conditional variance are nonlinear. From now on, we consider the G-QML estimator of the
parameters of the conditional mean and variance.

Without loss of generality and to illustrate the procedure, we consider the following popular
AR(1)-GARCH(1,1) model

yt ¼ /0 þ /1yt�1 þ at ,

at ¼ etrt ,

r2t ¼ x0 þ x1a
2
t�1 þ x2r

2
t�1,

(4)

where j/1j < 1,x1 þ x2 < 1,x0 > 0 and x1,x2 � 0 to guarantee the stationarity of yt and the
positiveness of the conditional variance. Note that the proposed procedure to obtain in-sample
bootstrap conditional densities, and the consequent BG-ACR statistics to evaluate them, can be
applied to any other parametric specifications of the conditional mean and conditional variance
(and any other higher moments) as far as a consistent and asymptotically normal estimator of
the parameters is available.

Next, we describe the proposed bootstrap algorithm to obtain in-sample one-step-ahead
bootstrap conditional densities of yt in the context of the AR(1)-GARCH(1,1) model in (4).
The algorithm is based on the residual bootstrap algorithms of Pascual et al. (2004, 2006) for the
construction of forecast densities in linear ARMA and GARCH models, respectively.

Step 1. Obtain the residuals. Obtain the G-QML estimates of the parameters: /̂0, /̂1, x̂0, x̂1

and x̂2: Obtain the standardized residuals êt ¼ ât
r̂ t
, t ¼ 2, :::,T, where ât ¼ yt � /̂0 �

/̂1yt�1, r̂
2
2 ¼ x̂0=ð1� x̂1 � x̂2Þ and r̂2

t ¼ x̂0 þ x̂1â
2
t�1 þ x̂2r̂

2
t�1, for t ¼ 3, :::,T: Denote by F̂ ê

the empirical distribution of the centered and scaled residuals.
Step 2. Obtain bootstrap replicates of parameter estimates. For t ¼ 3, :::,T, obtain recursively
a bootstrap replicate of yt that mimics the dynamic dependence of the original series as follows

r�2ðbÞt ¼ x̂0 þ x̂1a
�2ðbÞ
t�1 þ x̂2r

�2ðbÞ
t�1 , (5)

a�ðbÞt ¼ e�ðbÞt r�ðbÞt ,

y�ðbÞt ¼ /̂0 þ /̂1y
�ðbÞ
t�1 þ a�ðbÞt ,

(6)

where a�ðbÞ2 ¼ â2, r
�2ðbÞ
2 ¼ r̂2

2, y
�ðbÞ
2 ¼ y2 and e�ðbÞt are random extractions with replacement from

F̂ ê : Estimate the parameters by G-QML using y�ðbÞt

n oT

t¼3
, obtaining /̂

�ðbÞ
0 , /̂

�ðbÞ
1 , x̂�ðbÞ

0 , x̂�ðbÞ
1

and x̂�ðbÞ
2 :
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Step 3 Obtain in-sample bootstrap one-step-ahead predictive densities. For t ¼ 3, :::,T, obtain
in-sample one-step-ahead estimates of volatilities and observations:

r��2ðbÞt ¼ x̂�ðbÞ
0 þ x̂�ðbÞ

1 ðyt�1 � /̂
�ðbÞ
0 � /̂

�ðbÞ
1 yt�2Þ2 þ x̂�ðbÞ

2 r��2ðbÞt�1 , (7)

y��ðbÞt ¼ /̂
�ðbÞ
0 þ /̂

�ðbÞ
1 yt�1 þ r��ðbÞt e�ðbÞt , (8)

where r��2ðbÞ2 ¼ x̂�ðbÞ
0 =ð1� x̂�ðbÞ

1 � x̂�ðbÞ
2 Þ:

Step 4. Repeat steps 2 and 3 for b ¼ 1, :::,Bð1Þ:

The residual-bootstrap procedure described above is based on separating the two constituents of
the forecast errors, i.e. the estimation error and the innovation error. First, in step 2, we obtain
replicates of y�t that are not conditional on Yt�1: In (5), r�2t depends on a�2t�1 and in (6), y�t
depends on y�t�1: Therefore, independent replicates of yt are generated to estimate the parameter
estimator sample distribution. There is a large literature on implementing the residual-bootstrap
for estimating the parameter sample distribution; see, for example, Politis (2003). Second, in step
3, the bootstrap replicates, r��2t and y��t , in (7) and (8) respectively, are obtained incorporating
the parameter uncertainty through the bootstrap estimates of the parameters but always condi-
tional on the original data fy1, :::, yt�1g: In this sense, the simulation scheme resembles that pro-
posed by Bhardwaj et al. (2008) in the context of diffusion processes in which they simulate
future paths that have a common starting value at time t. However, Bhardwaj et al. (2008) simu-
late the innovations from a normal variable. In our algorithm, at each moment of time, t ¼
3, :::,T, we generate Bð1Þ bootstrap replicates of yt conditional on Yt�1 incorporating parameter
uncertainty and avoiding any specific assumption about the distribution of et: In order to decide
the number of bootstrap replicates that guarantees an appropriate estimate of the predictive dens-
ity, one can implement the procedure proposed by Andrews and Buchinsky (2000).

In-sample PITs can be easily computed as follows

ut ¼ 1
Bð1Þ

XBð1Þ

b¼1

1ðy��ðbÞt < ytÞ, (9)

where 1ð:Þ is the indicator function which takes value 1 when the argument is true and zero

otherwise. After computing the corresponding indicators, Ik, ait , and sample proportions, âk, i, the
t�k, ai , L

�
ai and C�

k statistics are calculated and the asymptotics of Section 2 are applied.1

In order to illustrate how the proposed procedure works, we have generated a time series of
size T¼ 5000 from the following homoscedastic AR(1) model:

yt ¼ /1yt�1 þ et , (10)

with /1 ¼ ð0:5, 0:95Þ and i.i.d. et either N(0,1), or centered and standardized Student-5, or v2ð5Þ:
In each case, an AR(1) model is fitted to the artificial series with the parameters estimated by G-
QML. Then, in-sample PITs are computed (i) assuming normal errors as in Gonz�alez-Rivera and
Sun (2015) and (ii) implementing the bootstrap algorithm described above based on Bð1Þ ¼ 999

1Following the suggestion of Gonz�alez-Rivera and Sun (2015), the variance of âk, i is approximated using a bootstrap
procedure that takes into account parameter uncertainty. Bð2Þ bootstrap replicates, fy�ðbÞt gTt¼1 are generated as in (6) and â�ðbÞk, i
is obtained using the bootstrap series as if they were the original series.
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Figure 1. Pairs ðut , ut�1Þ and autocontours for the estimated AR(1) model with T¼ 5000. ACR0:2, 1 corresponds to the black (con-
tinuous) box and the ACR0:8, 1 to the red (discontinuous) box. The DGPs are the AR(1) model with: /1 ¼ 0:5 and et � Nð0, 1Þ (first
row); /1 ¼ 0:5 and et � Student� 5 (second row); /1 ¼ 0:5 and et � v2ð5Þ (third row); and /1 ¼ 0:95 and et � v2ð5Þ (fourth
row). The PITs are computed using the bootstrap algorithm with Bð1Þ ¼ 999 (first column), or assuming Gaussian errors
(second column).
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replicates. In Fig. 1, we plot the autocontours for ai ¼ 0:2 and 0.8 together with the pairs
ðut , ut�1Þ for the AR(1) model with /1 ¼ 0:5 and et � Nð0, 1Þ (first row); /1 ¼ 0:5 and et �
Student-5 (second row); /1 ¼ 0:5 and et � v2ð5Þ (third row); and /1 ¼ 0:95 and et � v2ð5Þ (fourth

row). Note that, when the PITs are computed using the bootstrap densities (first column), they
are uniformly distributed on the surface regardless of the true error distribution of the underlying
DGP. Therefore, they suggest that the fitted AR(1) model is adequate. However, when the PITs
are computed as in the G-ACR procedure (second column), assuming normality, they are not
uniformly distributed unless the errors are Gaussian. In this case, when the model is rejected,
there is no indication about whether the rejection is coming from the misspecification of the con-
ditional mean or from a misspecified functional form of the error distribution.

Consider now the following three DGPs, from which we generate three time series

yt ¼ 0:3yt�1 þ 0:6yt�2 þ et , (11)

yt ¼ 0:5yt�1 þ et , for t < T=2,
1þ 0:5yt�1 þ et , for t � T=2,

�
(12)

yt ¼ 0:5yt�1 þ etrt ,

r2t ¼ 0:05þ 0:5e2t�1r
2
t�1 þ 0:45r2t�1,

(13)

with et defined as above. We fit an AR(1) model to each of the simulated series and estimate its
parameters by G-QML. As above, we compute the PITs both assuming normal errors and using
the proposed bootstrap procedure. In Fig. 2, we plot the autocontours for ai ¼ 0:2 and 0.8
together with the pairs (ut , ut�1) when the DGP is the AR(2) model in (11) with v2ð5Þ errors (first

row); the AR(1) model with structural break in the mean in (12) with et � v2ð5Þ (second row); the

GARCH model in (13) with normal errors (third row); and the GARCH model in (13) with v2ð5Þ
errors (fourth row). We observe that, when the PITs are based on bootstrap densities (first col-
umn), they suggest the source of the misspecification. In the first row, when the AR(1) model is
fitted to the AR(2) series, we observe a linear relation between the PITs, which tend to group
around one of the diagonals of the unit-square. In the second row, when the DGP is the AR(1)
model with a break in the mean, the PITs do not show any particular linear or non-linear rela-
tionship but they are concentrated on the top-right corner of the unit-square. Finally, when the
DGP is the AR(1)-GARCH(1,1) model, we observe a non-linear relation between the PITs, which
are more concentrated toward the four corners of the unit-square. In this last case, the autocon-
tour plots are very similar regardless of the error distribution. Comparing the bootstrap-based
PITs with those obtained using G-ACR assuming a normal density (second column), the rejection
of the fitted AR(1) model is also evident. However, there is not an obvious indication of the
source of the misspecification.

3.2. Asymptotic validity: some heuristic arguments

The asymptotic distributions of t�k, ai , L
�
ai and C�

k depend on the asymptotic validity of the residual
bootstrap algorithm. Next, we discuss the validity of such procedure.

First, for the bootstrap procedure to be asymptotically valid, it has to be valid for the distribu-
tion of the estimator of the conditional mean and variance parameters. In the context of station-
ary linear ARMA models, the validity of the residual-bootstrap advocated in this paper for the
QML estimator was established early in the literature; see, for example, the survey by Kreiss and
Lahiri (2012) and the references therein. In the context of nonlinear ARCH-GARCH models,
Hall and Yao (2003) show that asymptotic normality of the parameter estimator is a requirement
for the bootstrap to be asymptotically valid for the estimation of its sample distribution. As
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Figure 2. Pairs ðut , ut�1Þ and autocontours for estimated AR(1) model with T¼ 5000. ACR0:2, 1 corresponds to the black (continu-
ous) box and the ACR0:8, 1 to the red (discontinuous) box. The DGPs are: AR(2) with et � v2ð5Þ (first row); AR(1) model with break
in the mean with et � v2ð5Þ (second row); AR(1)-GARCH(1,1) model with et � N(0,1) (third row); and AR(1)-GARCH(1,1) model
with et � v2ð5Þ (fourth row). The PITs are computed using the bootstrap algorithm with Bð1Þ ¼ 999 (first column), or assuming
Gaussian errors (second column).
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mentioned above, in this paper, we are implementing the G-QML estimator assuming that the
conditions for its consistency and asymptotic validity are satisfied. Perera and Silvapulle (2018)
proves the validity of the residual bootstrap for the G-QML estimator of the parameters of
ARMA-GARCH models; see also Hidalgo and Zaffaroni (2007) who prove the first order validity
of the residual bootstrap for the parameters of an ARCH(1) process characterized by a particular
decay in the ARCH parameters and Jeong (2017) who proves the asymptotic validity of the boot-
strap procedure for the parameters of GARCH models.

Second, once the asymptotic validity of the bootstrap parameter estimator (step 2) is estab-
lished, one needs to look at the validity of the boostrap procedure to construct predictive den-
sities in step 3. In the case of stationary linear ARMA models, Pascual et al. (2004) shows that
the bootstrap is asymptotically valid to obtain predictive densities. However, as far as we know,
there is not a formal proof of the validity of the residual-bootstrap procedure to construct pre-
dictive densities of nonlinear GARCH models. Having said that, several related results can be
called to support heuristically the validity of the residual-bootstrap proposed in this paper. First,
in the context of the closely related MEM models, Perera and Silvapulle (2019), propose a similar
boostrap procedure in which the bootstrap residuals are drawn with replacement from the
assumed conditional distribution with the parameters substituted by the corresponding estimates.
They formaly prove the asymptotic validity of this closely bootstrap procedure. Alternatively, in
the context of ARCH models, Kless (2019) formaly proves the asymptotic validity of the bootstrap
procedure proposed in this paper in the context of ARCH models when the bootstrap innovations
are drawn from a kernel smoothed density instead of drawing them from the empirical distribu-
tion. The Monte Carlo experiments carried out in Kless (2019) show that the results are the same
regardless of whether the bootstrap innovations are drawn from the smoothed kernel or from the
empirical distribution. In any case, if the bootstrap procedure is asymptotically valid for the esti-
mation of the parameters, using the arguments in Pascual et al. (2004) and Reeves (2005), one
can establish its validity for the predictive densities.

3.3. Finite sample performance of in-sample tests

We perform Monte Carlo simulations to assess the finite sample properties of the proposed
statistics. For the size assessment, the DPG is a linear AR(1). We consider a model far from the
non-stationary region and another one near the non-stationary region with different error distri-
butions. For the power assessment, we consider linear and non-linear alternatives. The number of
Monte Carlo replicates is R¼ 1000 and the sample size T ¼ 50, 100, 300, 1000 and 5000:
The number of bootstrap replicates is Bð1Þ ¼ 1000, except for T¼ 5000, when we use Bð1Þ ¼
2000: Finally, the number of bootstrap replicates used to compute the variance of âk, i, L�ai and C�

k

is Bð2Þ ¼ 500:
To investigate the size of the tests, we consider as DGP the AR(1) in (10). For each Monte

Carlo replicate, we compute the proportions âk, i, for k ¼ 1, :::, 5, and their bootstrap variances.
Then, we compute the Monte Carlo averages and standard deviations of âk, i, together with the
averages of the bootstrap standard deviations and the percentage of rejections of the null hypoth-
esis when the nominal size of the test is 5%. Table 1 reports the Monte Carlo results for k¼ 1
when /1 ¼ 0:95 and the errors are v2ð5Þ: We observe that, even for T¼ 50, the Monte Carlo aver-

ages of âk, i are rather close to ai and that, for moderate sample sizes, the average of the bootstrap
standard deviations is a good approximation to the Monte Carlo standard deviation of âk, i: For
relatively small sample sizes, the bootstrap standard deviations tend to overestimate the empirical
standard deviations of âk, i, mainly for the largest quantiles. Consequently, the size of the t�1, ai
statistic is smaller than the nominal. As the sample size increases, the percentage of rejections
becomes rather close to the 5% nominal level. Therefore, asymptotic normality is a good
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approximation to the finite sample distribution of the proposed BG-ACR test under the null of
correct specification as far as we do not consider extreme autocontours. This conclusion is valid
regardless of the particular error distribution and the persistence properties of the condi-
tional mean.2

To study the finite sample power of the tests, we generate replicates using the models in Eqs.
(12) and (13). In both cases, we fit an AR(1) model. Under the null hypothesis, we test the cor-
rect specification of the AR(1) model without drift. For the DGP in (12), we analyze their power
against breaks in the conditional mean while for the DGP in (13), we study their power against
misspecification in the conditional variance. In Table 2, we report the power results correspond-
ing to the portmanteau tests. Both L5�ai and C�

1 are very powerful for detecting breaks in the con-
ditional mean when the sample size is 300 and above. Detecting misspecification in the
conditional variance is more difficult in small samples and we need sample sizes beyond 1000
observations to obtain high power.3 As with the t�1, ai , the power of L5�ai is higher in the extreme
autocontours.4

4. Out-of-sample h-step-ahead BG-ACR tests

We extend the procedures and tests described in the previous section to obtain out-of-sample h-
step-ahead densities. In order to compute the proportion âk, i, it is necessary to obtain

Table 1. For each sample size, T, the table reports the Monte Carlo average and standard deviation of âk, i (first two rows)
together with the Monte Carlo average of the bootstrap estimated standard deviation, �r�

ai (third row), and the size of the t�1, ai
test (fourth row).

T ai 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

50
âk, i 0.015 0.058 0.109 0.209 0.307 0.407 0.504 0.603 0.705 0.804 0.901 0.950 0.984
Std (0.022) (0.048) (0.067) (0.089) (0.098) (0.102) (0.097) (0.094) (0.081) (0.064) (0.043) (0.034) (0.023)
�r�
ai 0.022 0.049 0.068 0.090 0.100 0.103 0.101 0.095 0.086 0.072 0.054 0.045 0.032

Size 0.061 0.046 0.026 0.022 0.015 0.023 0.016 0.025 0.013 0.012 0.001 0.004 0.009

100
âk, i 0.012 0.055 0.106 0.205 0.305 0.406 0.503 0.602 0.702 0.803 0.900 0.949 0.989
Std (0.014) (0.032) (0.045) (0.060) (0.064) (0.067) (0.062) (0.057) (0.049) (0.038) (0.027) (0.020) (0.012)
�r�
ai 0.015 0.033 0.046 0.060 0.066 0.067 0.065 0.060 0.053 0.043 0.032 0.025 0.018

Size 0.060 0.037 0.029 0.025 0.021 0.025 0.014 0.012 0.014 0.014 0.008 0.005 0.000

300
âk, i 0.011 0.052 0.102 0.202 0.303 0.402 0.502 0.601 0.701 0.800 0.899 0.949 0.988
Std (0.007) (0.017) (0.024) (0.030) (0.033) (0.032) (0.032) (0.028) (0.024) (0.018) (0.013) (0.009) (0.006)
�r�
ai 0.008 0.017 0.024 0.031 0.034 0.034 0.032 0.030 0.026 0.020 0.014 0.011 0.007

Size 0.044 0.036 0.033 0.039 0.034 0.022 0.032 0.024 0.031 0.017 0.026 0.018 0.011

1000
âk, i 0.011 0.051 0.101 0.201 0.301 0.401 0.501 0.600 0.700 0.800 0.899 0.949 0.988
Std (0.004) (0.009) (0.012) (0.016) (0.017) (0.017) (0.016) (0.015) (0.012) (0.009) (0.006) (0.004) (0.003)
�r�
ai 0.004 0.009 0.012 0.016 0.017 0.017 0.016 0.015 0.012 0.010 0.007 0.005 0.003

Size 0.054 0.048 0.046 0.051 0.039 0.040 0.042 0.048 0.045 0.034 0.037 0.043 0.101

5000
âk, i 0.010 0.050 0.101 0.200 0.300 0.400 0.500 0.600 0.700 0.799 0.900 0.950 0.989
Std (0.002) (0.004) (0.005) (0.007) (0.008) (0.007) (0.007) (0.006) (0.005) (0.004) (0.002) (0.002) (0.001)
�r�
ai 0.002 0.004 0.005 0.007 0.007 0.007 0.007 0.006 0.005 0.004 0.002 0.002 0.001

Size 0.049 0.063 0.055 0.046 0.054 0.039 0.049 0.046 0.051 0.044 0.051 0.056 0.162

The DGP is yt ¼ 0:95yt�1 þ et , with et � v2ð5Þ and the nominal size is 5%.

2Results for the AR(1) model with /1 ¼ 0:5 and Gaussian errors are reported in Tables A and B of the supplementary material.
3Note that this result is expected as inference in nonlinear GARCH models requires large samples.
4Results on the power when the DGP is the AR(2) model in (11) are reported in Tables C and D of the supplementary
material. The proposed tests are very powerful even for small sample sizes.
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(H � hþ 1) h-step-ahead bootstrap forecast densities. In this section, we are using a fixed
scheme, i.e. the parameters are estimated only once.5 If the parameters are not re-estimated each
time a new observation is available, then the in-sample algorithm can be implemented as
described in Section 3 with step 3 modified as follows:

Step 30. Obtain out-of-sample h-step-ahead bootstrap forecast densities. For h ¼ 1, 2, ::: and
j ¼ 0, :::,H � h obtain out-of-sample h-step-ahead conditional estimates of volatilities and obser-
vations as follows:

r��2ðbÞTþhþjjTþj ¼ x̂�ðbÞ
0 þ x̂�ðbÞ

1 ðy��ðbÞTþh�1þjjTþj � /̂
�ðbÞ
0 � /̂

�ðbÞ
1 yTþh�2þjjTþjÞ2 þ x̂�ðbÞ

2 r��2ðbÞTþh�1þjjTþj,

y��ðbÞTþhþjjTþj ¼ /̂
�ðbÞ
0 þ /̂

�ðbÞ
1 y��ðbÞTþh�1þjjTþj þ r��ðbÞTþhþjjTþje

�ðbÞ
Tþh,

(14)

where y��ðbÞTþijT ¼ yTþi when i � 0 and

r��2ðbÞiji ¼ x̂�ðbÞ
0

1� x̂�ðbÞ
1 � x̂�ðbÞ

2

þ x̂�ðbÞ
1

Xi�3

j¼0

x̂�ðbÞj
2 ðyi�j�1 � /̂

�ðbÞ
0 � /̂

�ðbÞ
1 yi�j�2Þ2 � x̂�ðbÞ

0

1� x̂�ðbÞ
1 � x̂�ðbÞ

2

" #

for i ¼ T,T þ 1, :::,T þ H � 1:
At each moment Tþ j, j ¼ h, :::,H, the out-of-sample multi-period PITs are

uTþjjTþj�h ¼ 1
Bð1Þ

XBð1Þ

b¼1

1ðy��ðbÞTþjjTþj�h < yTþjÞ:

Note that, when h> 1, under the null that the predictive density coincides with the true density,
the PITs are still uniformly distributed but they are expected to be dependent. As a result, it is
common in the literature to test the null of a well behaved density forecast by choosing PITs sep-
arated by h periods to ensure an independent sequence of PITs. This procedure may significantly
reduce the evaluation sample when h is relatively large. In this case, the procedure can be imple-
mented in several uncorrelated sub-samples of forecasts that are h periods apart and then use
Bonferroni methods to obtain a joint test without discarding observations; see, for example,
Diebold et al. (1998), Clements and Smith (2000), Manzan and Zerom (2008) and Rossi and
Sekhposyan (2014), among others. Alternatively, Rossi and Sekhposyan (2019) propose bootstrap-
ping the h-step-ahead PITs.

Table 2. Monte Carlo power results for L5�ai and C�1 statistics.

L5�0:01 L5�0:05 L5�0:1 L5�0:2 L5�0:3 L5�0:4 L5�0:5 L5�0:6 L5�0:7 L5�0:8 L5�0:9 L5�0:95 L5�0:99 C13�1

Panel A

50 0.000 0.006 0.019 0.063 0.121 0.155 0.205 0.257 0.269 0.280 0.257 0.300 0.240 0.054
100 0.002 0.014 0.047 0.131 0.256 0.292 0.326 0.362 0.379 0.375 0.391 0.404 0.186 0.166
300 0.004 0.339 0.586 0.789 0.869 0.891 0.900 0.891 0.879 0.839 0.726 0.591 0.276 0.855
1000 0.743 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.984 0.676 1.000
5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Panel B

50 0.177 0.093 0.064 0.054 0.041 0.040 0.045 0.031 0.055 0.085 0.122 0.180 0.052 0.059
100 0.301 0.104 0.076 0.065 0.051 0.050 0.055 0.057 0.056 0.095 0.207 0.279 0.061 0.107
300 0.589 0.175 0.071 0.064 0.061 0.063 0.074 0.084 0.088 0.143 0.282 0.473 0.314 0.381
1000 0.935 0.366 0.144 0.090 0.088 0.091 0.106 0.161 0.238 0.331 0.520 0.653 0.886 0.907
5000 0.999 0.875 0.345 0.166 0.154 0.187 0.332 0.557 0.770 0.890 0.940 0.941 0.972 1.000

The DGPs are: AR(1) model with break in the mean (Panel A) and AR(1)-GARCH(1,1) (Panel B). The nominal size is 5%.

5The effect of the forecasting scheme is an interesting question to be developed in further research. In the fully parametric
autocontour context, Gonz�alez-Rivera and Sun (2017) provide an analysis of the effects of the forecasting schemes (fixed,
rolling, and recursive) on the size and power of autocontour-based tests.
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Using the independent PITs fuTþhtjTþhðt�1Þg½H=h	
t¼1

, we compute the corresponding indicators,

Ik, aiTþht: The t-statistic is given by

tk, ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H=h� k

p ðâk, i � aiÞ
rai

,

where âk, i ¼
P½H=h	

t¼kþ1
I
k, ai
Tþht

H=h�k and r2ai is defined as in (2). Note that r2ai can be estimated either as in

expression (2) or by bootstrapping. When testing the out-of-sample specification, the importance
of parameter uncertainty decreases as far H=T ! 0 when T ! 1 and H ! 1: Therefore, if H is
small relative to T, one can compute the variance r2ai by using the asymptotic expression.

As an illustration of the out-of-sample one-step-ahead performance of the tests, we generate
R¼ 1000 replicates from the AR(1) model in expression (10) with /1 ¼ 0:95 and et � Nð0, 1Þ:
The model is estimated once by OLS using T¼ 50, 100, 300, 1000 and 5000 observations and
H¼ 50 and 500 out-of-sample one-step-ahead densities obtained using a fixed scheme. Their cor-
responding PITs are obtained using the bootstrap procedure. The variance of âk, i and the cova-
riances in Kai and Xk are computed by bootstrapping.6 In Table 3, we report the size of the
corresponding L5ai and C13

1 test statistics for H¼ 50 and H¼ 500. Increasing H improves the size
properties of the tests as far as the ratio H/T is still small. For small estimation samples, the tests
tend to be oversized but the size is corrected when the estimation and evaluation samples
are larger.7

Finally, we study the finite sample power of the out-of-sample one-step-ahead tests. With this
purpose, we generate R¼ 1000 replicates from the AR(1)-GARCH(1,1) model in (13). Under the
null hypothesis, we estimate an AR(1) process without drift. We report the power results of the
t1, ai tests in Table 4 with H¼ 500. We observe a similar behavior as in the in-sample tests. The
information on heteroscedasticity is contained in the lower 1% and 5% autocontours and large
estimation samples are required. In any case, it is important to note that in-sample tests are
expected to be more powerful than out-of-sample tests. Inoue and Kilian (2005) conclude that
results of in-sample tests will typically be more credible than results of out-of-sample tests.

Although in this section, we have analyzed the performance of the tests for out-of-sample one-
step-ahead densities, we expect the same behavior for out-of-sample h-step-ahead forecasts as far

Table 3. Monte Carlo size results for out-of-sample L5�ai and C�1 statistics.

L5�0:01 L5�0:05 L5�0:1 L5�0:2 L5�0:3 L5�0:4 L5�0:5 L5�0:6 L5�0:7 L5�0:8 L5�0:9 L5�0:95 L5�0:99 C13�1

T Panel A

50 0.116 0.113 0.096 0.083 0.070 0.072 0.090 0.091 0.108 0.108 0.121 0.117 0.147 0.086
100 0.100 0.075 0.084 0.050 0.039 0.051 0.062 0.080 0.107 0.105 0.116 0.136 0.094 0.078
300 0.120 0.080 0.068 0.059 0.066 0.073 0.069 0.070 0.077 0.091 0.118 0.139 0.087 0.071
1000 0.124 0.081 0.075 0.072 0.067 0.063 0.079 0.075 0.090 0.103 0.126 0.151 0.074 0.079
5000 0.093 0.077 0.054 0.058 0.053 0.062 0.063 0.062 0.073 0.079 0.116 0.161 0.090 0.064

Panel B

50 0.119 0.092 0.088 0.087 0.082 0.087 0.085 0.070 0.076 0.084 0.093 0.107 0.107 0.057
100 0.100 0.076 0.079 0.066 0.078 0.067 0.065 0.060 0.073 0.074 0.102 0.111 0.115 0.047
300 0.094 0.069 0.070 0.057 0.056 0.052 0.066 0.059 0.066 0.059 0.081 0.102 0.197 0.062
1000 0.074 0.063 0.059 0.055 0.060 0.059 0.065 0.056 0.075 0.068 0.081 0.090 0.164 0.065
5000 0.056 0.054 0.049 0.058 0.047 0.058 0.057 0.053 0.053 0.051 0.077 0.113 0.127 0.050

The DGP is yt ¼ 0:95yt�1 þ et and et � Nð0, 1Þ: The nominal size is 5%, H¼ 50 (Panel A) and H¼ 500 (Panel B).

6Results based on the asymptotic expression of the variances and covariances are very similar when H¼ 50 and T¼ 1000
(H=T ¼ 0:05) or T¼ 5000 (H=T ¼ 0:01). When H¼ 500, the results are similar if T¼ 5000 (H=T ¼ 0:1). As mentioned above, in
these cases, the parameter uncertainty is irrelevant. These results are available upon request.
7Results for the t-tests are reported in Table E of the supplementary material. For small estimation sizes, the test tends to be
oversized for the middle autocontours. When T is relatively large and H/T is small, the empirical size is about 5%.
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the number of independent PITs is large enough as to have enough information. However, it is
important to note that, as the forecast horizon increases, this implies that we need to have a very
large number of out-of-sample forecasts and, in empirical applications, this is not always realistic.

5. Empirical application: Modeling VIX

The VIX is important because it is a barometer of the overall market sentiment; see Diebold and
Yilmaz (2015) who define it as a fear index. Furthermore, it reflects both the stock market uncer-
tainty and the expected premium from selling stock market variance in a swap contract. Finally,
there is an active market on VIX derivatives; see Mencia and Sentana (2018) for dynamic port-
folio allocation for Exchange Traded Notes (ETNs) tracking short and mid-term VIX futures
indices. The recent development of volatility-based derivative products generates an interest on
predictive densities of volatility. Intuitively, risk averse investors must take into account not only
the expected value of the payoffs, obtained from the conditional mean forecasts, but also the risk
involved, which necessarily depends on features of the conditional density.

It is commonly accepted that VIX display long-memory; see, for example, Fernandes et al.
(2014). Consequently, several authors propose variants of the simple and easy-to-estimate long-
memory Heterogeneous Autoregressive (HAR) model of Corsi (2008) to predict the VIX; see
Fernandes et al. (2014) and Psaradelli and Sermpinis (2016). Alternatively, Mencia and Sentana
(2018) propose modeling the persistence of the VIX using the Multiplicative Error Model (MEM)
of Engle and Gallo (2006).

In this section, we implement the BG-ACR tests to one-step-ahead in-sample conditional den-
sities obtained after fitting the HAR and MEM models to Vt, the daily VIX index, observed from
January 2, 1990 to January 15, 2013 with a total of 5807 observations. Fernandes et al. (2014),

Table 4. For each sample size, T, the table reports the Monte Carlo average and standard deviation of âk, i (first two rows)
together with the Monte Carlo average of the bootstrap estimated standard deviation, �r�

ai (third row), and the power of the
t�1, ai test (fourth row).

T ai 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

50
âk, i 0.030 0.070 0.115 0.213 0.323 0.432 0.537 0.630 0.718 0.800 0.875 0.912 0.943
Std (0.022) (0.036) (0.047) (0.063) (0.082) (0.098) (0.109) (0.114) (0.110) (0.100) (0.083) (0.069) (0.054)
�r�
ai 0.011 0.027 0.038 0.053 0.062 0.068 0.070 0.071 0.069 0.064 0.053 0.044 0.033

Power 0.388 0.183 0.119 0.090 0.118 0.148 0.198 0.219 0.243 0.248 0.193 0.228 0.289

100
âk, i 0.028 0.069 0.114 0.210 0.314 0.421 0.525 0.625 0.719 0.808 0.889 0.929 0.963
Std (0.019) (0.030) (0.039) (0.053) (0.064) (0.079) (0.087) (0.091) (0.090) (0.084) (0.068) (0.054) (0.037)
�r�
ai 0.009 0.021 0.032 0.045 0.052 0.057 0.058 0.057 0.054 0.049 0.040 0.031 0.020

Power 0.464 0.228 0.128 0.059 0.078 0.143 0.180 0.213 0.246 0.280 0.263 0.209 0.290

300
âk, i 0.026 0.067 0.113 0.207 0.308 0.413 0.519 0.619 0.718 0.811 0.899 0.943 0.977
Std (0.015) (0.025) (0.032) (0.040) (0.048) (0.058) (0.066) (0.069) (0.069) (0.065) (0.052) (0.040) (0.024)
�r�
ai 0.006 0.016 0.024 0.034 0.040 0.044 0.045 0.043 0.040 0.035 0.027 0.021 0.011

Power 0.551 0.281 0.135 0.066 0.065 0.120 0.169 0.214 0.265 0.305 0.314 0.300 0.271

1000
âk, i 0.025 0.067 0.112 0.205 0.305 0.410 0.515 0.617 0.716 0.813 0.905 0.950 0.985
Std (0.012) (0.019) (0.024) (0.030) (0.035) (0.041) (0.046) (0.049) (0.051) (0.049) (0.040) (0.031) (0.017)
�r�
ai 0.005 0.013 0.019 0.028 0.033 0.035 0.036 0.035 0.033 0.029 0.022 0.016 0.008

Power 0.587 0.317 0.151 0.059 0.073 0.097 0.127 0.198 0.238 0.286 0.298 0.304 0.206

5000
âk, i 0.024 0.066 0.110 0.202 0.303 0.408 0.513 0.617 0.716 0.814 0.908 0.954 0.989
Std (0.012) (0.018) (0.022) (0.026) (0.031) (0.036) (0.041) (0.045) (0.047) (0.045) (0.036) (0.027) (0.013)
�r�
ai 0.005 0.012 0.017 0.024 0.029 0.031 0.032 0.031 0.030 0.026 0.020 0.014 0.007

Power 0.632 0.330 0.148 0.065 0.066 0.087 0.133 0.189 0.244 0.302 0.320 0.316 0.124

The DGP is the AR(1)-GARCH(1,1) model with et � Nð0, 1Þ: The nominal size is 5% and H¼ 500.
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who analyze the same series, show that the null hypothesis of a unit-root is clearly rejected and
find strong evidence of long-memory. Consequently, the following HAR model is fitted to
yt ¼ logVt

8

yt ¼ /0 þ /1yt�1 þ /5�yt�1:5 þ /10�yt�1:10 þ /22�yt�1:22 þ /66�yt�1:66 þ et , (15)

where �yt:i ¼ i�1
Pi�1

j¼0 yt�j and et is an independent white noise sequence. Note that the HAR

model in Eq. (15) is an AR(66) model reparameterized in a parsimonious way by imposing eco-
nomically meaningful restrictions. As in Corsi (2008), the parameters in Eq. (15) are estimated by
OLS. Standard OLS regression estimators are consistent and normally distributed. In order to
account for the possible presence of serial correlation in the data, the Newey-West covariance
correction for serial correlation can be employed.9

We compute the in-sample bootstrap conditional densities as described in Section 3. In Fig. 3,
we plot kernel estimates of the bootstrap densities (solid lines) at different moments of time
together with the corresponding normal density (dashed lines). We observe that not only the
location but also the variance of the densities of the log-VIX change over time. When compared

Figure 3. In-sample one-step-ahead densities obtained after fitting the HAR model (first row), the HAR-GJR model (second row)
and the MEM model (third row) at three moments of time: April 6, 1990 (first column), November 25,1997 (second column) and
October 29,2009 (third column). The solid lines represent the bootstrap densities and the dashed lines represent the normal
density for the HAR and HAR-GJR models and the GSNP density for the MEM model.

8Fernandes et al. (2014) include explanatory variables in Eq. (15). However, we stick to a univariate model to simplify the
implementation of the proposed testing procedure.
9Estimated parameters and residual diagnostics are reported in the supplementary material.
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with the normal densities, we also observe large distortions. The boostrap densities are more
peaked than the normal densities and they are rightly skewed.

We formally test the null hypothesis of correct specification of the HAR model for the log-
VIX. Table 5 reports the sample proportions, âk, i, and the in-sample BG-ACR statistics t1, ai , L

5
ai

and C13
1 : We observe that the specification is strongly rejected from the 30% to the 99% autocon-

tours by the t1, ai and L5ai statistics. The C13
1 statistic, which is computed adding information of all

autocontours, rejects H0 at 1% significance level. Therefore, the basic HAR model is not adequate
to model the conditional densities of the daily log-VIX. Table 5 also reports the corresponding
tests assuming Gaussian errors. The null is strongly rejected for almost all autocontours, with the
statistics being much larger than those of the BG-ACR tests. Therefore, the overall conditional
density model provided by the HAR specification of the log-VIX is strongly rejected.

Based on the information provided by the BG-ACR test, we incorporate asymmetric condi-
tional heteroscedasticity, and fit the HAR-GJR model; see, for example, Corsi et al. (2008) for
HAR-GARCH specifications in the context of realized volatility.10 The HAR-GJR model is esti-
mated by a two-step QML estimation, in which the HAR equation is estimated by OLS and the
GJR equation by G-QML. In Fig. 3 (second row), we plot the one-step-ahead in-sample bootstrap
conditional densities for three different dates. We observe that the locations of these densities are
similar to those obtained with the homoscedastic HAR model. The shapes of the bootstrap den-
sities, although still mildly asymmetric and slightly more peaked than the normal, are closer to
normality. We also observe changes in the variance of the log-VIX. These differences may have
important implications for developing volatility-based derivative products. In Table 5, we report
the statistics corresponding to the HAR-GJR model based on conditional normality and on boot-
strapping. The HAR-GJR model with bootstrap conditional densities is not rejected while the
HAR-GJR with normal conditional densities is strongly rejected. This is a prime example of the
power of the proposed tests because they are able to use distributional properties of the error to
enhance the testing of the dynamics of the moments of interest, which in our case involves not
only the specification of the conditional mean but also the conditional variance of the log-VIX.

In addition to the HAR specification, we also consider the MEM model of Mencia and
Sentana (2018) that deals directly with the untransformed VIX, i.e. Vt. Mencia and Sentana
(2018) consider the following MEM model with a GSNP distribution for the innovations

Vt � D ¼ ltet ,

lt ¼ 1t þ st ,

1t ¼ u0 þ u11t�1 þ u2ðVt�1 � D� lt�1Þ,
st ¼ ðb1 þ b2Þst�1 þ b1ðVt�1 � D� lt�1Þ,

(16)

where u0 > 0, ju1j, ju2j, jb1j, jb2j < 1,b1 þ b2 < 1 and D is a constant shift introduced to improve
the fit by assigning zero probability to those events in which Vt < D: The parameters of the
MEM model are estimated by maximum likelihood.11 Fig. 3 (third row) plots the one-step-ahead
bootstrap conditional densities (solid lines) together with the corresponding assumed GSNP den-
sities (dashed lines) for three different dates. It is important to note that the densities from the
MEM model are not directly comparable with those from the HAR models as the former are den-
sities for VIX while the latter correspond to log-VIX. However, the locations implied by the
MEM model are similar to those implied by the HAR models. We observe large differences
among the densities. The bootstrap densities are more skewed to the right and more peaked than

10Note that these authors conclude that the error distribution is better represented by a normal inverse Gaussian (NIG) or a
normal-mixture distributions.
11We use the values of the parameters estimated in Mencia and Sentana (2018) as initial conditions for our estimation.
Estimation results are reported in the supplementary material.
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the GSNP densities. It seems that GSNP densities assign more probability mass to the observa-
tions in the left tail. The G-ACR and BG-ACR statistics reported in Table 5 confirm these conclu-
sions. The MEM-GSNP model is clearly rejected for almost all autocontours. In Table 5, the BG-
ACR statistics t1, ai indicate a mild rejection of the MEM model but the portmanteau test C13

1

does not reject. The portmanteau test L5ai tend to reject MEM only for the extreme autocontours.
In summary, we have found strong evidence against the standard parametric assumptions of

the conditional densities of the HAR and MEM models for the VIX index. In both cases, the true
conditional density seems to be more skewed to the right and more peaked than either normal or
GSNP densities, with location and variance changing over time. We have shown that bootstrap
densities deliver good results for the testing of the density model of the VIX index. The preferred
specification is the heteroscedastic HAR-GJR model with bootstrap conditional densities of the
log-VIX.

6. Conclusions

We propose an extension of the G-ACR tests of Gonz�alez-Rivera and Sun (2015) for dynamic
specification of a density model (in-sample) and for evaluation of forecast densities (out-of-sam-
ple). Our contribution lies on computing the PITs from a bootstrapped conditional density so
that no assumption on the functional form of the density is needed. Furthermore, the bootstrap
procedure directly incorporates parameter uncertainty. Our proposed tests are easy to compute
and have standard asymptotic distributions that approximate well the finite sample distribution
under the null. The tests, which are powerful for detecting departures from the assumed condi-
tional density, are accompanied by a graphical tool that provides information on the potential
sources of misspecification.

The proposed approach is particularly useful to evaluate forecast densities when the error dis-
tribution is unknown as, for example, in the context of multi-step forecasts in nonlinear and/or
non-Gaussian models. A very interesting application is the modeling of the VIX index where sev-
eral parametric conditional densities have been proposed. We evaluate the adequacy of condi-
tional densities of the daily VIX index derived from the HAR and MEM models and strongly
reject the standard parametric assumptions of normality in the case of HAR model and of GSNP
in the case of the MEM models. Our results suggest that conditional heteroscedasticity should be
taken into account for an adequate construction of the conditional density regardless of the speci-
fication used for the conditional mean.
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