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Physics 3318, Spring 2013 1

Assignment 9

1. H&F 7.5
2. H&F 7.6
3. H&F 7.13
4. H&F7.14

5. H&F 8.3 For the physical tensor, just find the principal moments, not the axes.

6. H&F 8.10
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Problem 2: (& as pseudovector) How does the matrix A (o, equivalently, the vector
@) transform if all coordinates are reversed as under a space reflection? Prove that &
transforms like a pseudovector rather than a true vector. (A vector reverses sign under
a spatizl reflection; a pseudovector does not.)

Problem 3: -(Rolling cone) A cone rolls on a flat surface. The instantaneous axis of
rotation lies parallel to the point where the cone touches the surface and the angular
velocity is @. The motion consists of a motion of the center of mass ( \7“,.) plus a
rotation @, about the ceater of mass. Describe this motion by finding Vi, and & in
the laboratory (space) system,

Problem 4: (Rolling sphere) A sphere of radivs R rolls without slipping on a flat
surface with angular velocity @. Since rolling without slipping means that the velocity
of the pomt of tangency between the sphere and the surface is zero, this gives a relation
between V,,, and &. Find this relation, which is a constraint on the motion. How many
degrees of freedom does the sphere have?

Problem S: (Chargedelectron) Insome respects anelectron is like a charged spinning
top. The electron has internal angular momentum and a magnetic moment, so it behaves
like 2 magnetic dipole oriented along the spin axis. Ina magnetic field the equation of
motion for the spin angular momentum & in a magnetic field B is

= g'(& x B), (7.65)

where g' = 32-g, ¢ is the electronic charge, # Planck’s constant divided by 27, m the
electron’s mass, and c the velocity oflight. The constant g is called the “gyromagnetic
ratio.”” For electrons, g =~ 2,

a) Show thatin a frame rotating at a certain angular velocity, the effect of the magnetic
field can be made to vanish. Fiad this angular velocity é.

b) Suppose the magneuc field has two components: B = Bk -+ Bh where By is
a constant, k =k is a unit vector in the z.Zz dxrecuon and B, is a rotating
magnetic field of constant magnitude: B, = B,(cos i + sin et J'). Regarding
w a8 a variable parameter, find the equation of motion in a frame rotating with
apgular velocity w and solve it. Describe qualitatively what happens to the spin
if a) @ = wq, b) @ # wy. (This is the basic equation of NMR - nuclear magnetic
resonance — except that the spin is that of an atomic nucleus, not of an electron.)

Orthogonal Matrices

Problem 6: (The most general form)

a) Find the most general form of an orthogonal 2 x 2 matrix, What is the geometric
interpretation of such a matrix? What are the complex eigenvalues of such a
matrix? What special property do they have? What is the determinant of the
general 2-D orthogonal matrix?
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b} Write out the 3 x 3 separate matrices for 90° clockwise rotations about the X, ¥,
and Z axes. Find the products of these rotation matrices about Z fist, ¥ next,
and X last. Then find the product for rotating in the reverse order. Interpret the
result in terms of the experiment with the book in Section 7.3. (The corresponding
questions from part ay for 3 x 3 orthogonal matrices are more difficult to answer.
We will develop an expiicit form for the 3-D orthogonal matrix U i terms of the
three Euler angles in the next chapter.)

Problem 7°: {(General properties of orthogoral matrices) This problem involves
proving some general properties of orthogonal matrices in a space of arbitrary di-
mensions. It will be necessary to know some facts about determinants that hold for
any arbitrary n x n matrix M:

detM = detM,  det(—M) = (~1)'detM., (1.66)
det(AB) = det(BA) = det A det B, (1.67)

You may wish to review the derivations of (7.66, 7.67) in a book on binear algebra.t
Use the above identities to prove the following:

a) IfUis a real orthogonal n x 1 matrix, prove
detU = &1, (7.68)

Qf detU = 1, U is a proper rotation; if detU = ~1, Uis an iraproper rotation,
i.e., a reflection plus a proper rotation.)

b) Fora proper rotation of any odd-dimensionality r, prove that the orthogonal matrix
U has at least one eigenvalue equal to 1; hence there is an “axis™ of rotation — a
direction that is invariant under the transformation U. (Hint: First prove that if
there is an eigenvalue equal to 1, det (U — 1) == 0, where 1 is the identity matrix.)

¢} The trace of a matrix is the sum of its diagonal elements. Prove that the trace of any
matrix M is invariant under an orthogonal transformation: M’ = UMU. (Hine:
Trace(AB) = Trace(BA). Prove this first; then prove that Trace(M’) = Trace M.)

Problem 8*: (Trace of U) If U is a real orthogonal 3 x 3 matrix, show that the trace
of U equals

TraceU = | + 2cos &, (7.69)
where & is the angle of rotation. (Hint: We proved in Problem 7c that the trace is invari-

ant when the basis vectors are changed to a new set by an orthogonal transformation.
Try moving the axis of rotation to the Z axis by such a transformation.)

Y For example: Linear Algebra with Applications, 24 ed., by Steven J. Leoa,
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FIGURE7.15
Compton generator.

the effect of gravity. How does this change the result? Use wpy = 7.3 x 105
radians/sec,

Problem 12: (Deflection of object thrown up into the air) A heavy object is thrown
up into the air. Calculate the deflection of the object when it hits the ground due to
the Coriolis force, Compare the results to those of an object dropped at rest from its
maximum height. '

Problem 13: (Compron generator) When he was an undergraduate, the famous physi-
cist A. H. Compton invented a simple way to measure the rotation of the Barth with a
table-top experiment. The “Cornpton generator,” as it was called, is a circular holow
glass tube shaped like a doughnut as shown in Figure 7.15, The inside of the mbe is
filled with water, Imagine that the “doeghnut” lies flat on a table and is then tuned over
by rotating it 180° around a diameter, such that it again lies flat on the table surface,
which is horizontal. The result of the experiment is that the water moves with a certain
constant drift velocity around the tube after the doughnut has been rotated, If there
were o friction with the walls, the water would continue to circulate indefinitely.

a) Prove that the axis about which the doughnut is flipped should be oriented east-
west to maximize the drift velocity of the water, What will happen if it is oriented
north-south instead?

b) Let @ be defined as the angle between 2 small volume of the water and the “flip”
axis. Calculate the component of the Coriolis force parallel to the wall of the
circular tube, Fj, while the circular tube is being flipped 180°. For simplicity,
assume it has been flipped through 90° already and is still moving. Draw lintle
arrows for different positions in the tube (different 8 values) to show the relative
magnitude of the tangential component of the Coriolis force at that point at time,
Why don’t we have to consider the radial component of this force?

c) Let the angle of rotation about the diameter be ¢. Then ¢ starts at zero, and when
the tube has been flipped over, ¢ = 180°, From the time integral of the tangentiaf
force, calculate the change in the total tangential momentum of the water in the
tube. This means integrating over & around the rir of the tube, Show that the total
tangential momentura does not depend on the ¢(f) but only on the fotal change in
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@- Eveluate this total momentum for a change of 180° in ¢. You can assume the
water is equidistant frora the center of the circle at some constant radius R, Does
the water circulate clockwise or counterclockwise?

d) Since water is incompressible, the water molecules in the tube must all drift with
the same velocity after the tube is flipped. With this assumption, you can calculate
this drift velocity as a function of the Barth’s angular velocity and the latitude.
Prove that

Vgrin = 20 R 5in A, (7.71)

Compton used small droplets of coal oil mixed in the water to measure the drift
velocity under a microscope, The experiment consists of laying the tube flat on
a table until the water in it came to equilibrinm, then slowly (in about 3 seconds)
rotating it about an east-west axis until it had turned 180° and was again lying flat
on the table.

€) Compton used this measured drift velocity to determine his latitude. His sin A was
measured to within 3% accuracy, which is pretty good for such a simple device.
Assuming A = § and R = | meter, what is vg.p in mm/s?

Problem 14: (Force-free motion as seen from a turntable) Plot the trajectory of the
force-free motion of a particle as seen from a frame rotating with a constant an-
gular velocity w. Assume the particle starts with an initial outward radial veloc-
ity vo, 2t an initial position halfway towards the rim. If R is the turntable radius,
fet

vp = foR. 2.72)

Plot this motion for f = 0,0.5,0.7. and 3. Notice that all trajectories are straight
lines in an inertial frame.

Problem 15: (Hurricanes) Prove that the steady-state motion of the wind near a low
pressure area in the atmosphete is a circle along the lines of constant pressure if air
resistance is neglected: Also: Why are there no hurricanes near the equator?

Problem 16: (Foucault pendulum) Here isa different method for solving the Foucault
pendulum. Assume the motion of the pendulums is given by

x(t) = A (f)cos {wpt + & (1)), (1.73)

¥(t) = Ay (t)ycos (wet + ®,(1), '
where wp = ﬁ is the pendufum frequency. In the absence of Coriolis and centrifugal
“forces” A, y, ®,; would be arbitrary constants. If these “forces” are present, they
become slowly changing functions of the time. Insert the expressions (7.73) into the
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Problem 2: (Orthogonal transformation represented as rotation) Prove that any or-
thogonal transformation U can be represented as a rotation though an angle about an
axis that is left unchanged by U,

Moment of Inertia Tensor

Problem 3: (Moment of inertia tensor) Which of the symmetric 3 x 3 matrices below
could represent a physical moment of inertia tensor?

2 1 1.94791 .0347273 394508
Iy == 0 2], L= 242924 -~ 823746 (8.131)
1 . 1.62285

Explain. Find the principal axes and principal moments of the ones that are physical.

Problem 4: (I for acircular hoop) What is the moment of inertia tensor for a circular
hoop of radius R and mass M? What are the principal axes and moments? {Neglect
the thickness of the hoop.)

Problem 5; (I for a thin rod) Find the inertia tensor, principal axes, and principal
moments for a thin rod of length /.

Problem 6: (I for a circular cylinder) Find the inertia tensor, principal axes, and
principal moments for a circular cylinder of radivs R and height 5.

Problem 7: (I for an ellipsoid) Find the inertia tensor, principal axes, and principal
moments for an ellipsoid of semiaxes a, b, ¢.

Problem 8: (I for a spherical shell, solid sphere} Calculate the moment of inertia
tensor for a spherical shell of radius R and mass M. Simplify your calculation by
using the symmetry to maximum advantage. From this result calculate I for 2 solid
sphere of radius R.

Problem 9*: (I for three mass points) Three equal mass points are located at¢(a, 0, 0),
(0, a, 2a), and (0, 24, a). Find the inertia tensor, the principal axes, and the principal
moments, _

Problem 10°: (1 for a book) A book of mass M has the dimensions a = 10¢m by
b = 20cm by ¢ = 3cm. Find the principal axes using a symmetry argument. Find
the inertia tensor in the principal axis system. Indicate on a diagram the direction of
the principal axes and which ones have the least moment of inertia and the greatest
moment of inertia.
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