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Assignment 6
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Due date: Wednesday, March 13

1. H&F 5.4
2. H&F 5.5
3. H&F 5.6
4. H&F 5.7

5. Repeat the derivation of the conserved quantity I when the Lagrangian has a contin-

uous symmetry (Noether’s theorem) to allow for a slight generalization. The text and
our lecture considered the case where the Lagrangian itself is unchanged when the
continuous symmetry parameter s is varied:

%L(Ql(s)a AR Ql(s)a e ')Is=0 =0.

A more comprehensive definition of “symmetry” in the context of mechanics is the
property that the symmetry-transformed motion (a continuous transformation applied
to the trajectory) is also a valid solution to the equations of motion. But the equa-
tions of motion — the Euler-Lagrange equations — follow from Hamilton’s princi-
ple, which actually applies to the time integral of the Lagrangian (the action). The
symmetry transformation may therefore add a time derivative to the Lagrangian with-
out having any effect on the action and consequently no effect on the equations of
motion. Summarizing, we can generalize the condition on the Lagrangian to be the

following:

d . dF

—L e oo )|s=0 = —

dS (Ql(s)a an(S)a )IS—O dt 3

where F is an arbitrary function of the generalized coordinates and velocities. Now
it’s your turn: determine how the formula for the conserved quantity [ is modified by

the term involving F.
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b) The parameter ¢(6) is now to be regarded as a second dynamical variable. Prove
that the momentum conjugate to ¢ is

=L+t o =, (5.97)
where H is the ordinary Hamiltonian. The time has as its conjugate momentum
the negative of the Hamiltonian. Phase space has been enlarged to four dimensions
by adding time and energy. .

c) Show that the momentum conjugate to ¢ is unchanged by the transformation of
the independent variable.

d) Find the Hamiltonian and Hamilton’s equations of motion assuming that 8 is the
independent variable.

Prgblem T:darticle in a 2-D central force) Find the Lagrangian for a point particle
i a 2-D central force. Work in only two dimensions, using plane polar coordinates.
Are there any ignorable coordinates? Find the conjugate momenta. Then find the

Hamiltonian and Hamilton’s equations of motion. Prove that you obtain equations )
that are equivalent to (4.38, 4.41).

Problem 8: (Particle on a cylinder) Imagine a particle confined to an open cylinder
of radius R and bound to the origin by a spring with spring constant k, as shown in
Figure 5.11. ’

a) Prove that the Lagrangian is
1 2 a2y Loomo o
L= Em((RG) +2°) — Ek(R +2°). (5.98)
b) Next find the conjugate momenta, the Hamiltonian, and Hamilton’s equations of
motion. Based on these equations, what type of motion do you expect for the

particle? Will there be oscillatory motion? How about linear motion?
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Problem 3: (Routhians are “reduced” Lagrangians) The coordinate g is ignorable
if the Lagrangian contains only the time derivative of the N'th coordinate.
L=Lg.q,... (5.94)

3 QN—l, qu an evey qN—h q.N: t)'

By using a Legendre transformation, we create a new function, the Routhian R 1.71).

R(qh---sqN—]’ qu'--’q'N—l)EL_qu.N' (5'95)
Since gy is ignorable in the original Lagrangian, py = T is a constant. Prove that
the problem is reduced to N — 1 degrees of freedom by using the Routhian as a new
Lagrangian and showing that the Routhian obeys the Euler-Lagrange equations in the

N — 1 dynamical variables g1, -, gN_1.

iltonian Dynamics

Problem 4*' otion along a spiral) A particle of mass m moves in a gravitational
. Mig the spiral z = k6, r = = constant, where k is a constant, and 7 is the
vertical direction. Find the Hamiltonian H(z, p) for the particle motion. Find and
solve Hamilton’s equations of motion. Show in the limit r — 0, Z=—g.

Problem 5*: (Ywo particles connected by a spring) Two particles of different masses
d*nt; are connected by a massless spring of spring constant k and equilibrium
length d. The system rests on a frictionless table and may both oscillate and rotate.
Find Lagrange’s equations of motion. Are there any ignorable coordinates? What are
the conjugate momenta? Find the Hamiltonian and Hamilton’s equations of motion.

Problem 6: (Changing the independent variable; time as a dependent variable) In
: g\m ’ special relativity, time is treated on the same basis as ithe space coordi-
nates x, y, z. We no longer regard time as the independent variable, but instead we
choose for that role another parameter, which we will call & here. Then, in a par-
ticular reference frame, the trajectory of a particle would be given parametrically as
x(0), y(6), z(8), t(#). This can also be done in prerelativity mechamf;s although there
is no compelling reason to do it. Nevertheless it provides some intetesting insights.

a) Let the time be an arbitrary function #(9). If L(g, g, t) is the Lagrangian of a
system with one degree of freedom, show that the Lagrangian corresponding to
using 6 as the independent variable is

ql
Ly=¢'L (q, o t)

t = do , ¢ = ). Show using Hamilton’s Principle that this Lagrangian leads
to the (two) Euler—Lagrange equations with 6 as the independent variable.

(5.96)
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