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Assignment 3
Due date: Wednesday, February 13

1. H&F 2.6
H&F 2.9
H&F 2.10
‘H&F 2.16

A

The action functional for a 1D harmonic oscillator is

S[z(t)] = /OT (%m & — Imwg x2) dt,

and the trajectory endpoints are fixed as
z(0) =z, z(T) = x.
In this problem you will study arbitrary trajectories when expressed in the form
z(t) = Z(t) + 0z(t),

where Z(t) is an extremal trajectory given by Hamilton’s principle (and therefore
satisfies the Euler-Lagrange equation) and éx(¢) is whatever is left over and is not
assumed to be small.

(a) Show that S[z(t)] = S[Z(t)] + 0.5, where
T
6S = /0 (%m 6 — Imwj 51‘2) dt.

Since 62(0) = dz(T') = 0, consider perturbations having the form
dz(t) = Asin (N7wt/T),

where A is the amplitude of the perturbation and the integer N counts the number of
wiggles between the endpoints.

(b) Using the above form for éz(t), show that 6S = cyA?, and determine the
constant cy. Further, show that for the case wyT > 7 (trajectories that span more
than one half-period), cy can have either sign, depending on N. The action functional
thus will not always be a simple minimum or maximum at the extremum, but more
generally, a “saddle” having both signs of curvature, depending on direction.
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that rolling up the paper does not change the geodesic property of the curves on the
surface. Why not? Hint: Set up a suitable coordinate system, and find an integral
expression for the length of an arbitrary curve on the surface of this cylinder.

Problem4: (Geodesic ona cone) Assume you are on the surface of a cone with a half
angle « which is a surface of revolution about the Z axis. Find an equation in plane
polar coordinates for the geodesic curves on this surface. Notice, as in the previous
problem, that you can roll up a piece of paper into a cone and visualize these curves
geometrically. Why can’t you use the “paper roll” to also answer the question about
geodesics on a sphere? What is the essential difference between a cone and cylinder
on the one hand and a spherical surface on the other?

Problem 5: (Variational Principle for quantum mechanics) The quantum mechanics
of a one-dimensional system is described by the Schrodinger equation for the complex
wave function ¥ (x, t): ‘
n 3y lﬁ

e + V) = o7 (2.63)
where & is Planck’s constant —2";, m the mass, and V(x) the potential energy. Find a
variational principle for quantum mechanics using the two dependent variables 7, ¢
(complex conjugate of ¢/) and the two independent variables x, ¢. You can treat ¢, ¥*
as two independent generalized coordinates, since the real and imaginary parts are
independent variables. Hint: You will try to make the variation of a double integral of
the form below vanish:

_ Lo oy oy v _
O_gffﬁ(w’w’ax’at’ r at,x)dxdt—O. (2.64)

Furthermore, you can assume that £ is real. It might have pieces of the form V(x)y*y
or a—";— & for example. See if you can guess the correct form for £ such that the Euler—
Lagrange equations lead to the Schrodinger equation and its complex conjugate. The

potential energy V (x) is a real function.

Problem 6*: (One dependent and three independent variables: an electrostatics prob-
lem)

a) Derive the form of the Euler-Lagrange equation for one dependent variable and
three independent variables. You want to use x, y, Z as independent variables and
a function ®(x, y, z) as the single dependent variable. Suppose there is a “known
Lagrangian”

L(®, VD, x, y, 2). (2.65)

You want to minimize the triple integral

I= f/dexdydz, (2.66)
v
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///ﬁ-ﬁdxdydzzf/ﬁ-d& (2.68)
14 N

where S is the surface of the volume V. This mathematical result holds for any
vector function of x, ¥, z. Use the divergence theorem to derive the final form of
the Euler-Lagrange equations for three independent variables in vector calculus
notation.

b) In electrostatics, the energy stored in the electric field s proportional to (ff E2 gV,

and the stored energy is minimized, while ¢ (the electrostatic potential) is held
Constant on the boundaries, ¢ must obey Laplace’s equation (V29 = 0)). Do thjs
in Cartesian coordinates (x,y,2).

Fermat’s Principle

and gets ahead of the lower part. Since the light 1ay is defined by the normal to the
Wwave front, the light bends downward.,

FIGURE 2.7




light beam downwards is observed, and it emerges with y(30) = —1 cm. Find the
numerical value of « and the approximate shape of the trajectory of the ray in the
tank.

Problem 9: (Brachistochrone 1} Solve the Brachistochrone problem: Find the func-
tion y(x) that connects two fixed points in the XY plane (as shown in Figure 2.1),
such that a frictionless mass sliding down the curve arrives at the destination in
the least possible time T'[y(x)]. (Hint: Make the +x direction downwards and the
+y direction to the right. This choice is to avoid having to solve for x(y), which you
could do instead of turning the axes.) An expression for T, given some trial function

y(x), is
T::/dt:/d—vs= dx ds 2.75)

v dx’
where the velocity v = % and ds = the arc length.

a) Using energy conservation in a constant gravitational field, prove that the form of
the functional integral we want is

* d dy\’
\/2_gT[y]=f 7’% 1+<£> . (2.76)

b) Prove that the curve y(x) that minimizes 7'[y] is

L2
¥(x) = —y/x(2r — x) + 2r arcsin <2x_r>’ (2{77)

where “r” is a constant of integration chosen so that the curve passes through the
end point. It is really just a scale factor.

¢) Plot the curve (using a computer would be helpful here). Forr = 1, the curve runs
between x = 0 and x = 2. Turn your head 90 degrees to see the Brachistochrone
curve!

Problem 10: (Brachistochrone 2)

a) Derive the differential equation for y(x) by minimizing the expression for the time
using Equation (2.75).

b) Now assume that there is a parameter 8 and that, in terms of 8, x(8) = a(1 —cos ).
(We are still using rotated coordinates, with +x vertically downward, so a is a
negative constant.) Using the equation you have obtained for minimizing the time,
prove that

y(0) = |al(® — sin6) (2.78)

is a solution, assuming that the particle starts from the origin § = 0.
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¢€) Graph this curve, which is a cycloid curve. Explain why it is the curve traced out
by a point on a wheel of radius |a| rolling down the +Y axis.

d) Calculate the time taken to slide down this curve, assuming that 6 varies from 0
to 7. Compare it to the time taken to slide down a straight line from the origin to
this end point.

Problem 11: (Ski race) Imagine you are standing on top of a mountain. The altitude
is given by the z coordinate. The shape of the surrounding hills is givenby z = f(x, y),
where f is a known function. You are an Olympic skier in a race to get to the finish
line located down in the valley at a point x;, y,.

a) What route should you choose to win the race? First find a set of differential
equations for x(z), y(z), then explain how you would find the solution you want.
b) Solve the equations if Sf(x, y) is the function

Z= f(x,y) = (sin? 27 x)(sin? 27y). (2.79)

Start at x = y = 0.25 and ski down to x — ¥ = 0. First make a 3-D plot of the
surrounding hills with a computer and guess which route you should take. (Hint:
Notice that this problem is symmetric under the exchange of x and y.)

Problem 12*: (Snell’s Law) An open question for physics up to the start of the nine-
teenth century was about the nature of light: Does light consist of particles or waves?
By observing the refraction of light at the interface between two media (say vacuum
and glass), and measuring the speed of light in both media, it would have been possible
to decide this question.

a) First assume that light consists of a stream of classical particles and that the light
is bent towards the perpendicular to the interface as it passes from the vacuum into
the glass. Vyeqm = vy, Uglass = V3 as in Figure 2.8. Could there be a transverse
force (along the interface plane) exerted on the particles? If not, how is the change
in direction related to the relative speed in the two different media? Derive an
equation of the form

in o’ ~
Y f(ﬂ). (2.80)
sind vy
medium | r medium I
velocity Vi velocity v,
B
\®
N
A
FIGURE 2.8




1 [t ay\?
V== dx{—=1]. 2.8
57 /0 x (ax ) (2.84)
Find the equation of motion for the string. Notice that it has traveling wave solutions

of the form y(x, 1) = f(x + ct), with S an arbitrary function. Find the wave velocity
c.

Lagrange Multipliers

Problem 14*: (Rolling hoop) A hoop of mass M and radius R rolls without slipping
down an inclined plane which makes an angle o with the horizontal. Gravity acts on
the hoop in the vertical direction. You can assume that the potential energy of the hoop
is the same as if all of its mass were concentrated at the center of the hoop. Using
Lagrangian mechanics, find the equation of motion of the hoop.

This problem can be done in at least two different ways. Since there is only one
degree of freedom, you can choose the angle ¢ through which the hoop has rolled
and write the Lagrangian only in these terms. Or else you can use the distance along
the hypotenuse of the plane d as well as ¢ plus a Lagrange multiplier that expresses
the rolling constraint d = R¢. In this example, the rolling constraint is holonomic
because only one-dimensional motion is involved.

Problem 15: (Roliling penny on an inclined plane) Set up the Lagrangian for the
problem of the penny on the inclined table (2.57). First calculate the kinetic energy
(2.55) for rolling (¢ s 0) and spinning (8  0). (Hint: Work out the kinefic energy
as a function of ¢, 6 for a ring of radius r; then integrate to get the kinetic energy for
a uniform disk.) Then set up the Lagrangian and the constraint equations.

Problem 16*: (Maximizing the area under a string of fixed length) This problem
involves an elementary application of the method of Lagrange multipliers. A string of
fixed length ! is placed with its ends on the X axis at x = =+a as shown in Figure 2.10.
The problem is to find the curve y(x) that maximizes the area between the curve and

area to be maximized FIGURE 2.10
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the X axis:
A=/ ydx. (2.85)

The intuitive answer is fairly obvious. What is it? The length of the string is given
by

[ = / v1+y?2dx, (2.86)

where [ is fixed (i.e., constrained) and y' = %.

a) Since arbitrary variations 8 y(x) are not possible (why not?), you can’t use the
calculus of variations directly. But there is a way to do the problem using Lagrange
multipliers. Consider introducing an arbitrary constant ) and then maximizing the
functional

Klyl= A+l (2.87)

If, for arbitrary variations & ¥(x), you have §K = 0, then for the special variations
8y that leave the string’s length unchanged (81 = 0), it will be true that 4 = 0.
(Make sure you understand the logic of this Iast statement.) Find the differential
equation from the variational derivative:

%[y +2/T+52] =o. (2.88)

b) Integrate this equation once to find ¥'(x) explicitly. Choose the integration constant
so that y'(0) = 0. (Symmetry implies y(x) is an even function of x.)

¢) Integrate a second time to find the most general form of y(x).

d) Evaluate the up-to-now unknown constant X as a function of a and I. You may
Wwant to use the mathematical integral

“ du
= arcsina. 2.89
/0 V1 —u? ( )

Did this solution agree with your intuition?

Problem 17: (Particle in a constant magnetic field) Inside a solenoid it is a good
approximation to regard the magnetic field as constant and directed along the Z axis.
Particle motion in such a field is a helical orbit, with particles that start from the axis
eventually returning to the axis. Since in a magnetic field the kinetic energy must
be constant, this would lead erroneously to the conclusion that Maupertuis’ Principle
would mean that § [ds = 0. Explain why this is not true. Minimizing the arc
length gives orbits that are straight lines instead of helices. What is wrong with this
argument?
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Problem 2, H&F 2.9: Brachistochrone

Plot[

X
-Vx (2r-x) +2rAn$in[ —_ ]/.{r»l},
2r

{x, 0, 2},

PlotStyle » {Red, Thick},
PlotRange - {{0, 2}, {0, 2}},
FrameLabel -» {"x (depth)", "y[x] (horizontal position)"},
Frame - True,

PlotLabel - "Brachistochrone",

Filling - None]

Brachistochrone
20— ——————

y[x} (horizontal position)
5
T

0‘0 [ 1 I L " L L L L ! L L 4 1 1 ! 1 It "
0.0 0.5 1.0 1.5 20

X (depth)

Printed by Mathematica for Students
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Problem 3, H&F 2.10: Brachistocrone Il

x[t_] :=a (1-Cos[t])
y[t_] == Abs[a] (t-S8in[t])
ParametricPlot[{x[t], y[t]} /. {a—> 1}, {t, 0, 2Pi}]

Here’s a nice animation to see the motion of a point. (Try typing this into Mathematica)

Animate[

ListPlot[{{x[t], Y[t]} /. {a>1}3},
PlotRange - {{0, 2 n}, {0, 27m}},
PlotStyle - PointSize [Large]

1,

{t, 0, 2},

AnimationRunning - False

]

Printed by Mathematica for Students
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