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Assignment 2
Due date: Wednesday, February 6

1. H&F 1.9

2. H&F 1.14 The term “velocity-dependent potential” is a relic of a more old-fashioned
mechanics, where all the parts of the Lagrangian beyond the free particle kinetic
energy are by default “some kind of potential”’, The modern view is that it is really
the Lagrangian that is fundamental and there is no physics in designating certain of
its terms as “potentials”. As we will see in the next chapter, it is the time integral
of the Lagrangian, or action, that really matters. In this problem the time integral of
the ev - A term is just a line integral along the particle trajectory: there is nothing
velocity-dependent about it!

3. H&F 1.19 You may use the fact from Physics 1112/1116 that the kinetic energy of
a rigid body is equal to the sum mv?/2 + [w?/2, where m is the total mass, v the
speed of the center of mass,  the moment of inertia about the center of mass, and w
the angular velocity of rotation about the center of mass.

4. H&F 1.22 In this and the next problem you do not need to solve the equations of
motion.

5. H&F 1.23

6. The generalization of rigid-body transformations, called conformal transformations,
that is applied to the Cornell seal on the course website is given by the following

formula; ©
Z—a
2= blt) (1 - a*(t)z/rz)

Here z = z + iy is 2 complex number' representation of a point in the plane and the
formula applies only to points inside the disk of radius |z] = r. When the transfor-
mation’s two time-dependent complex parameters satisfy the conditions

la(t)f <r [b(8)] =1

the inside of the disk is mapped one-to-one to itself.

(a) Based on the last statement, how many degrees of freedom do these conformal
transformations have?

La*(t) is the complex conjugate of a(t)
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(b) Something singular happens whenever |a(t)| = r. What exactly does the
transformation do then? Try a special case, like a(t) = r or a(t) = ir.

Suppose we have a disk that is massless in its interior and has mass M uniformly
distributed around its rim. Further suppose that the disk can move not just by rigid-
body rotations but by conformal transformations (carrying the mass along the rim
with it). The Lagrangian of such a disk will be just the kinetic energy of the mass on
the rim; it has the formula

L= Mr? (62/2 + (tan?y)a* + "yz)

where the angles a, 3, y are related to the parameters of the conformal transformation
by
a(t) = re®®Psiny(t)  b(t) = PO,

(c) Obtain the equations of motion for o, 3, and . The conjugate momentum
for two of these is conserved; write down the corresponding first-order differential
equations.



PROBLEMS 29

make use of the result of the previous problem to show this. With this approach
we prove the equivalence of inertial frames from the form of the Lagrangian,
instead of postulating this equivalence at the start, which is the usual way of doing
things.
¢) Instead of proving it, adopt the equivalence of inertial frames as a postulate, in
addition to the Euler-Lagrange muations. Explain why this means that
dF(x,t)

L'(v+ Vp) = L(v) + PR (1.92)

L(v) is an unknown function for the free particle that we are trying to deter-
mine from these princiﬁles. (Work in one dimension to make things easier.)
Let V, be an infinitesimal quantity. Expand the left side of Equation (1.92)
in a Taylor series and keep only the first two terms. From this prove L(v) ~

v

Problem 8: (Potentials with scaling properties} Let V(. ..., F;u) be the potential
energy of a system of M massive particles which has the scaling property

—

ViaFy, . ., afy) = VL ... Th) (1.93)

(k is usually an integer, o an afbitrary constant.) Prove that, if the Lagrangian is to
remain invariant (except for multiplication by a constant}, and all distances are scaled
by a factor «, then the time must be scalqd by a factor 8 = al-%, Applications of this
include:

a) If k = 1, the force is constant, like gravity. Prove that distances scale like t2.

b) If k = 2, the force is like that of a harmonic oscillator or a system of harmonic
oscillators coupled to each other. Prove that the frequency or frequencies of such
a system are independent of the amplitude of oscillation.

¢) Ifk = —1, we have the Kepler problem (inverse square force law). Prove Kepler’s
third law from this scaling law above. (That is, prove d® = 12, where d could be
any distance in the problem. Normally it is the mean distance of a planet from the
sun.)

pncept/Energy

P 0 9+{Quadratic forms) Prove that, if the constraints are scleronomic (i.e.,
time-independent), T is a quadratic function {quadratic form) of the generalized ve-
locities. Then prove this implies

T
3 e =2T. - (1.94)
T aqk -

Assuming that the kinetic energy is a quadratic form in the generalized velocities so
that the formula above is correct, prove that the Hamiltonian H (Equation (1.65)) is
the total energy (H =T + V = E).
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Problem 10: (Bead on a wire of arbitrary shape) Abead slides without friction down
a wire that has the shape y = f(x) (¥ is vertical, X is horizontal).

a) Prove that the EOM is
A+ i+ f 2 +gf =0 (1.95)

(where f' = &, " = ﬁ—}).
b) Since the Hamiltonian is a constant in this problem, it always equals its value at
t = 0. Use this fact to solve for X(). _ ‘ '
¢) Let 7 be the time to slide down the wire between two heights y; = F(1) and
yo = f(0). Show that this leads to a solution of the form /g 7 = folh(x)dx,

where h(x) is the function you should find in terms of f(x) and its derivatives.

Problem 11: (Comparing H and E) Invent a concrete example of each type of the
situation described below:

a) H is conseryed, but H # E.
b) H =E,but4¥ # 0,50 Hisnot conserved.  —

Lagrangian/EOM

Problem 12: (L for free particle in plane polar coordinates) Express the
Lagrangian for a free particle moving in a plane in plane polar coordinates. From
this prove that, in terms of radial and tangential components, the acceleration in polar
coordinates is

d=(F—rfHe +d+270)8 (1.96)

(where &, and &, are unit vectors in the positive radial and tangential directions).

Problem 13: (Bead on a wire) Discuss the motion of the bead according to the equa-
tion of motion (1.38) as completely as you can. Find explicit solutions. What will
happen if the bead is slightly displaced from the point where it has no acceleration?

problem 14*: L for charged particle in a magnetic field) The Lagrange method

dogs-werk Tor some velocity-dependent potentials. A very important case is a charged
particle moving in a magnetic field. The magnetic field B can be represented as the
curl of a “vector potential” A : B =V x A. A uniform magnetic field By corresponds

-

to a vector potential A = 3Bg X 7.

a) Check that Eo =V x A.
b) From the Lagrangian

= %mvz 4et-A (MKSI units) (1.97)

(where e is the charge and m is the mass) show that the EOM derived from the
Euler-Lagrange eguations is identical with the result from Newtonian mechanics
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that pivot at the top and bottom sO that the angle 6 is a function of the angular speed
w of the shaft. Find the function B(w) using Lagrangian methods. The ring mass M at
the bottom can slide up and down on the shaft.

nclined crick on a table) A stick is ipitially held at a vertical angle 6
stown in part B of Figure 1.9. First consider a table where the bottom of the stick is
fixed (with a frictionless bearing) to the table top. Is this problem holonomic? Solve
for the motion of the stick after it is released. Next assume that the bottom end is on
a frictionless table instead. How many degrees of freedom are: there? Is the problem

holonomic? Again solve for the motion of the stick after it is released.

Problem 20: (Pendulum in an accelerated reference frame) A pendulum with a
weightless string of length D and mass m is attached to a moving car, as shown
in Figure 1.10. The car is continuously accelerated along a horizontal track with con-
stant acceleration a, starting from an ipitial horizontal velocity vp. Gravity acts in the
vertical direction with acceleration g. ‘

Assume that the (x, y) coordinate system shown is at rest with fespect to the ground
(not located in the car). The car is not an inertial frame of reference. There is one
degree of freedom. Use 8 (see Figure 1.10, which shows € < 0) as the generalized
coordinate/dynamical variable. The goal is to find out how the acceleration of the
pendulum support affects the motion of the pendulum as seen by a person in the

car.
a) Find the components of the velocity of the pendulum bob in the laboratory frame
(i.e., the frame at rest with respect to the moving car). Find the kinetic energy as
a function of 8, 4, and the other variables, all of which are known functions.
) Find the Lagrangian L(8, 4, 1). Does L depend explicitly on the time?
€) Prove that the equation of motion for the pendulum is

b+ %sine +%cos€=0. (1.101)

Notice that the velocity of the car is not detectable by observing the pendulum from
inside the car, but the car acceleration is detectable by the “tilt” of the pendulutr{
when it is at rest with respect to its support point. This s in accordance with the
Galilean principle of relativity. Explain why this is true.

i

o SN
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d) What is the angle of the pendulum when it remains at rest in stable equilibrium?
Give an expression for the tangent of this angle (call it fcq).

e) Set 6(t) = 84 + n(t), that is, measure the motion with respect to the equilibrium
point. Use a Taylor series to find the equation of motion for 1 for small oscillations
around 6,y. If 7 is sufficiently small, show that the equation for 7 is

ii + w'n = 0, (1.102)

The solutions to this equation are sin wt and cos wf, which means that the pendulum
makes simple harmonic oscillations about the equilibrium angle with frequency
w. Prove that the angular frequency of these small oscillations is

_ [Vaw
_ YLt

Problem 21: (Simple pendulum with driven support) A simple pendutum with a point
mass m suspended from a weightless rod of length / has its support point driven rapidly
up and down with an amplitude of vertical motion

Acoswt, (1.103)

where A and w are independently adjustable constants, Find the Lagrangian for this
system using 0, the angle the pendulum makes with the vertical, as the generalized
coordinate. Is H constant? Is H the total energy? -

(Box sliding horizontally) A box of mass M slides horizontally on a
Hctionless surface. The distance of the box’s center of mass from the origin is denoted
by X. Suspended from inside the center of the box is a pendulum of length / at the

bottom of which is a mass m. All the motion takes place in the XY plane. What is the
Lagrangian for this system? What are the EOMs?

Bead on a rotating circular hoop) Imagine a vertical circular hoop of
tadius R rotating about a vertical axis with constant angular velocity £2 as shown in
Figure 1.11. A bead of mass m is threaded on the hoop, so that it can move without
friction, but is confined to move on the hoop. (Define the angle § to be the angle from
the vertical line throngh the center of the hoop to the bead.) Find the Lagrangian and

the equations of motion. Find the Hamiltonian H explicitly. Is H a constant of the
motion? Is energy (7T + V) constant?

Conjugate Momentum/Routhian

Problem 24: (Physical pendulum) For the physical pendulum (see Figure 1.8, using
@ as the generalized coordinate, what is the canonically conjugate momentum to a,
i.e., ps? What is another name for py in this case?
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