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Due date: Wednesday, January 30
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- A massless wheel of radius r rolls without slipping around the circumference of a

circular hole of radius R as shown below:

The only mass in this system is a point mass m fixed on the rim of the wheel.

(a) Neglecting gravity (the wheel moves in a horizontal plane) express the kinetic
energy for this system in terms of the angle #(¢) that describes the position of the
wheel’s center about the center of the hole. Assume the mass is attached so that it
touches the hole when 4 == (.

(b) Using the fact you learned from elementary mechanics, that mechanical en-
ergy is conserved (in the absence of friction), determine how the angular velocity 6
depends on 4.
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FIGURE 1.6

reasoning at every step. It is a good habit fo get into. The object is not only to solve the
problem, but also to be able to explain it. The extra time invested is worth it!

Degrees of Freedom

Problem ¥: (Bicycle) Make a simplified model of a bicycle. How many degrees of
freedom are there? Restrict your model to the most important degrees of freedom.

lexible chain) A flexible chain of M massive point particles has rigid
weightless rods as M — 1 links as shown in Figure 1.6. Each joint is free to move in
any direction. How many degrees of freedom does the chain have? If you place the
chain on a flat table, how many degrees of fieedom does it then have? Finally, suppose
the chain is lifted off the table and is closed by one more link. How many degrees of
freedom are there then?

Dot Cancellation
m wherical polar coordinates) Prove that the relation % = % (Equa-
tion (T.43)) holds if you have a one particle system described by spherical polar coor-
dinates: Choose for g1, ¢», gs the parameters r, 8, ¢.

Kinetic Energy
oy o . . . .

d 5.3! herical pendulum) Consider the sphérical pendulum, which consists
of a mass m suspended by a string from the ceiling. The mass is free to swing in both
directions but maintains a constant distance from the point of suspension. Choose
spherical polar coordinates 8, ¢ as generalized coordinates for this problem. What is

T©,6,¢,)?

Virtual Work

Problem 5: (Spring pendulim) Imagine that you have a pendulum made of a mass
hanging from a spring. Unlike the previous problem, restrict all motion to take place
in a vertical plane here. Atrest the pendulum has a length /y. The spring constant is &.
‘There are two degrees of freedom, which you can take as 4, the angle from the vertical
of the pendulum, and x, the extension of the spring. (When the spring is extended, the
pendulum length is [y 4+ x.) Find the generalized forces Fy, and F, using the principle
of virtual work,
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CHAPTER 1 LAGRANGIAN MECHANICS

Invariance

voblem 6*: Y Physically equivalent Lagrangians)

a)

b)

Prove that adding a constant to the Lagrangian L or else multiplying the Lagrangian
by a constant produces a new Lagrangian L’ that is physically equivalent to L.
What we mean by physically equivalent is that the Euler-Lagrange equations for
the g(z) remain the same (i.e., are invariant) under this change of Lagrangian.
There is even more freedom to change the Lagrangian without changing the physics
it describes. A total time derivative of an arbitrary function of the dynamical
variables can be added to the Lagrangian to produce a completely equivalent
Lagrangian. Consider a new Lagrangian L’ which is produced as follows:

dF
L—->L =L+ —. 1.90
7 (1.90)
We assume that F is an arbitrary function of the gs and ¢ but is not a function of
the gs. Prove that the Euler-Lagrange equations for g(r) are invariant under this
change of Lagrangian. Since one can always make transformations of this sort,
the Lagrangian for a given physical system is not unique.

Problem 7*: (Guessing the Lagrangian for a free particle) Assume that you do not
know about kinetic energy or Newton’s Laws of motion. Suppose instead of deriving
the Euler-Lagrange equations, we postulated them. We define the basic law of me-
chanics to be these equations and ask ourselves the question: What is the Lagrangian
for a free particle? (This is a particle in empty space with no forces acting on it. Be
sure to set up an inertial reference system.)

a)

b)

Explain why, on very general grounds, L cannot be a function of x, y, or z. It also
cannot depend on the individual coordinates of velocity in any way except as a
function of the magnitude of the velocity: 17 = v2+v2 +v?. On what assumption
about the properties of space does this depend?

The simplest choice might be to guess it must be proportional to v?, where U is the
particle velocity in an inertial frame K. Take L = v®. A second inertial frame K’
moves at the constant velocity ~ Vo with respect to K, so that the transformation
law of velocities is

7 =70+ Vo (1.91)

Prove that L' = v is a possible choice for the Lagrangian in the frame K'.
Explain how this proves that all inertial frames are equivalent. You will have to

t The symbol “*” will be used to denote problems used in a weekly student seminar that was part of the
course taught at Cornell in 1994-1996. In the seminar, student groups had an hour to solve an assigned
problem, after which they presented the solution to the class.
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% make use of the result of the previous problem to show this. With this approach
£ we prove the equivalence of inertial frames from the form of the Lagrangian,
an g instead of postulating this equivalence at the start, which is the usyal way of doing
L. E things.
or - ¢} Instead of proving it, adopt the equivalence of inertial frames as a postulate, in
. addition to the Euler-Lagrange equations. Explain why this means that
cs =
al | L'(v+ Vy) = Ly 4 &0 (1.92)
g dt
nt
L(v) is an unknown function for the frec particle that we are trying to deter-
g mine from these principles. (Work in one dimension to make things easier.)
Let V, be an infinitesimal quantity. Expand the left side of Equation (1.92)
) é in a Taylor series and keep only the first two terms. From this prove L(v) ~
. vl
of
is tentials with scaling properties) Let V(F,, ..., F ) be the potential
B energy of a system of M massive particles which has the scaling property
V(ary, ..., afy) = & V(.. By (1.93)
8
(k is usually an integer, o an arbitrary constant.) Prove that, if the Lagrangian is to
" remain invariant (except for multiplication by a constant), and all distances are scaled
n by a factor , then the time must be scaled by a factor § = o!-3, Applications of this
e include:
a) Hk =1, the force is constant, like gravity. Prove that distances scale like 7.
5 b) If & = 2, the force is like that of a harmonic oscillator or a system of harmonic

oscillators coupled to each other. Prove that the frequency or frequencies of such
a system are independent of the amplitude of oscillation,

¢) Ifk = —1, wehave the Kepler problem (inverse square force law). Prove Kepler’s
third law from this scaling law above. (That is, prove d* = 12, where d could be
any distance in the problem. Normally it is the mean distance of a planet from the
sun.)

Hamiltonian Concept/Energy

Problem 9: (Quadraric Jorms) Prove that, if the constraints are scleronomic (i.e.,
time-independent), T is a quadratic function (quadratic form) of the generalized ve-
locities. Then prove this implies

G
Yo =2, (1.99
k BQk

Assuming that the kinetic energy is a quadratic forin in the generalized velocities so
that the formula above is correct, prove that the Hamiltonian H (Equation (1.65)) is
the total energy (H =T + V = E).
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