
Homework 9: The Last Homework

Course: Physics 231, Methods of Theoretical Physics (2016)
Instructor: Flip Tanedo (flip.tanedo@ucr.edu)

Due by: Friday, December 2

Important: All homework for grading must be submitted by December 2 in class. No homework
will be accepted after this date.

1 Clebsch-Gordon Coefficients

Here is the table of Clebsch-Gordan coefficients for the tensor product of the 4⊗ 3 representation
of [the Lie algebra of] SU(2). Recall that in this notation, we’re labeling the representation by
the dimension of the vector space upon which it acts. That is: the spin-3/2 representation is four-
dimensional because the in that space can four different Jz eigenvalues, m = 3/2, 1/2,−1/2,−3/2.

(a) The direct product 4 ⊗ 3 of SU(2) decomposes into a direct sum of ordinary (non-tensor)
representations1. To what direct sum of ordinary representations does this decompose into?

(b) What is the J3 eigenvalue of the highest weight state in this tensor product?

(c) One basis to describe the states is |m1,m2〉 where m1 and m2 are the J3 quantum numbers
of the spin-3/2 and spin-1 representations respectively. The more useful basis is |j,m〉 which
states the irreducible representation j and the J3 eigenstate within that representation. Write
the decomposition of the |j = 3/2 , m = −1/2〉 state in terms of |m1,m2〉 states.

2 Evidence for SU(3) color

Long before we had our current understanding of elementary particle physics, nuclear physicists
were puzzled by the jumble of particles that they kept discovering. Many of these looked like
cousins of the proton and neutron. One in particular is the ∆++ baryon. The ++ means that it
has twice the charge of a proton.

1These are usually called ‘irreducible representations.’
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The ∆++ is spin-3/2 with respect to angular momentum. It also is “spin-3/2” with respect to a
separate SU(2) called isospin2.

The fact that ∆++ is spin-3/2 means that there are four states with different angular momenta in
the z-direction s3 = 3/2, 1/2,−1/2,−3/2. Let’s focus on the highest angular momentum state.

Even for the highest angular momentum state, there are a bunch of other states related by isospin.
These have silly names, like the ∆−, ∆0, and ∆+. Roughly speaking, ∆+ = I−∆++, ∆0 = I−∆+

and so forth, where I− is the lowering operator of isospin3. Just like we focus on only the s3 = 3/2
angular momentum state, let’s focus on only the state with highest I3 which is the ∆++ with
I3 = 3/2.

At around the time of the discovery of the ∆ baryons, people were already thinking about treating
these objects as if they were made up of more elementary objects—though few people actually
thought that these ‘quarks’ were more than just mathematical tricks—and so they thought that the
∆++ should be thought of as a bound state of three up quarks4. These up quarks are spin-1/2 and
isospin-1/2. The s3 = 3/2 piece of the ∆++ is the highest state coming from a tensor product of
three up quarks. That is, it is the highest angular momentum state and the highest isospin state:∣∣∣∣s =

3

2
, s3 =

3

2
; I =

3

2
, I3 =

3

2

〉
= |s3 =↑, I3 =↑〉 |s3 =↑, I3 =↑〉 |s3 =↑, I3 =↑〉 . (2.1)

Here’s the puzzle. The right-hand side of (2.1) is symmetric with respect to the exchange of any
two of the up quark states. However, we also know that the up quarks have half-integer spin so that
the product wavefunction must be antisymmetric with respect to the exchange of its constituents.
How can this be possible?

Argue that one solution to this problem is the existence of an additional quantum number that
distinguishes the up quark states. In particular, the up quarks may be in the fundamental
representation (3) of an additional symmetry, SU(3)color.

The decomposition of the 3⊗ 3⊗ 3 tensor product of SU(3) is

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1 . (2.2)

Which irreducible color representation (on the right-hand side) should correspond to the ∆++?
(Hint: we don’t observe a multiplicity of ∆++ states.) Should this representation be symmetric or
antisymmetric with respect to the exchange of elements?

Note that the 10 is symmetric, since it came from applying lowering operators which are all
symmetric. The 1 turns out to be antisymmetric.

3 The Adjoint Representation of SU(3)

The 8 is the adjoint representation of SU(3). Show that the eight generators of SU(3) equipped with
their commutation relations are, themselves, a manifestation of the adjoint representation. Recall

2Treat this as an additional quantum number that commutes (i.e. has nothing to do with) ordinary spin.
3Notice that apparently isospin is related to electric charge.
4If you’re not familiar with the Standard Model of particle physics, you might ask, “what’s up quark?” To which

I respond, “not much, what’s up with you?”



that this means that the generators are both the vectors in the vector space and the operators
that act on the vector space. If the Ti are the generators of SU(3), then the operators d(Ti) act on
vectors |Tj〉 via

d(Ti)|Tj〉 = |[Ti, Tj]〉 = c k
ij |Tk〉 . (3.1)

Use the commutation relations of the SU(3) algebra to show that this furnishes an eight-dimensional
representation of SU(3). It’s useful to work in the basis where there are two diagonal generators
H1 and H2 and three pairs of raising and lowering operators. Label the states by their H1 and H2

eigenvalues. Plot the states on the (H1, H2) plane.

Hint: write out all the commutation relations. (We jotted them down in class, the ones not written
are zero.) Then start with the highest weight state, E3

+, and use the lowering operators to generate
the rest of the states. Recall that there should be two states with vanishing H1 and H2 eigenvalues.
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