
Homework 6: Form Follows Function

Course: Physics 231, Methods of Theoretical Physics (2016)
Instructor: Flip Tanedo (flip.tanedo@ucr.edu)

Due by: Friday, November 4

The title doesn’t refer to modernist architecture1, but rather differential forms which have followed
our study of Green’s functions. By the way, Stone and Goldbart is pretty good for differential
geometry; it may be a good reference as we go through our lightning tour of this subject.

Update: 11/01. Please disregard Problem 1.1; this problem turned out to be much more subtle
than I originally intended. Problem 1.4 has also been fixed for confusing typos and added clarity.
Thanks to Adam G. and Cliff C. Problem 1.6 now has a new hint. Further: everything after
problem 2.1 is now extra credit.

1 Green’s Functions on Spacetime

In this problem, we solve for the Green’s function of wave equation for electromagnetism:[
1

c2
∂2

∂t2
− ∂2

∂r2

]
ϕ(r, t) = ρ(r, t)

[
1

c2
∂2

∂t2
− ∂2

∂r2

]
A(r, t) = j(r, t) . (1.1)

We make the speed of light, c, explicit and have chosen Lorentz gauge and are working in vacuum,
ε0 = µ0 = 1. You should recognize all the physical quantities here. The following steps probably be
painfully familiar. The key difference is that now we’re talking about propagation in both space
and time.

1.1 A quick digression

[Update: 11/01). Please disregard this problem!]

Write (1.1) in a fancy-math-y way with respect to the one-form potential A(x) = Aµ(r, t)dxµ on
spacetime.

Remarks: (Updated 11/01 You want to ‘apply two derivatives’ to A, but recall that d2 = 0 so
d2A ≡ 0. You’ll also want to promote ρ and j into a spacetime current j. Usually we talk about the
current as a one-index object. This problem may convince you that it’s ‘naturally’ a three-index
object. Up to a possible sign, the answer is (dδ + δd)A = j, where δ ∼ ∗d∗ is the co-derivative.
The d’Alembertian/4-Laplacian is � = ±dδ ± δd where the sign depends on the signs in the metric
and whether the k-form on which it acts has odd or even k.2

1https://en.wikipedia.org/wiki/Form_follows_function
2See, e.g., http://www.people.vcu.edu/~rgowdy/phys591/pdf/difforms.pdf or section 3.8 of one of my

favorite books, Differential geometry, gauge theories, and gravity by Göckeler & Schücker.

mailto:flip.tanedo@ucr.edu
https://en.wikipedia.org/wiki/Form_follows_function
http://www.people.vcu.edu/~rgowdy/phys591/pdf/difforms.pdf


1.2 Setting up the problem

Use spacetime coordinates such that x = (ct, r). Define the one-form Aµ(x) = (ϕ(x),A(x)), where
x is a point in Minkowski space. Let G(x, x′) be the Green’s function for each component of Aµ.
Ignoring the curiosity in the previous sub-problem, let’s assume that the current is also a one-form,
jµ(x′).

Convince yourself that the potential is given by

Aµ(x) =

∫
d4xG(x, x′) jµ(x′) . (1.2)

This isn’t anything deep, but make sure you’re comfortable with why the indices are where hey are.
Why doesn’t G(x, x′) have indices? Why shouldn’t it be a 4-component object or a matrix?

1.3 Fourier Transform

The Green’s function equation for each component is[
1

c2
∂2

∂t2
− ∂2

∂r2

]
G(x, x′) = δ(4)(x− x′) ≡ δ(x− x′)δ(y − y′)δ(z − z′)δ(t− t′) , (1.3)

where I hope there’s no ambiguity between δ(4)(x − x′) and δ(x − x′). The covariant Fourier
transform in Minkowski space is3

G̃(k, x′) =

∫
d4x eik·xG(x, x′) G(x, x′) =

∫
d̄ 4k e−ik·xG̃(k, x′) , (1.4)

where we’ve used the notation d̄ = d/2π. Further, k = (E/c,k) and we recall that k · x ≡ kµx
µ =

Et− kxx− kyy − kzz. Observe that momenta ‘naturally’ come with lower indices; we haven’t used
the metric. Step back for a moment: why is k0 written as E?

Solve for G̃(k, x′). It should look very similar, perhaps with factors of c as required by dimensional
analysis.

Hint: It may be useful to note that δ(4)(x) has the following Fourier transform:

δ(4)(x− x′) =

∫
d̄ 4ke−ik·(x−x

′) . (1.5)

Observe that there is an eikx
′

in G̃(k, x′).

Write G(x, x′) as a 4D integral over G̃(k, x′). Answer: You should get

G(x, x′) =

∫
d̄ 4k

c2

c2k2 − E2
e−ik·(x−x

′) . (1.6)

Observe that G(x, x′) = G(x− x′), as we noted in Homework 5 parts 1.2 and 1.6.

3I believe choice of signs in the exponentials or (2π)’s are at all consistent with what we eventually settled on in
class. Compare to (1.5) of Homework 5.



1.4 Angular integrals in hyper-cylindrical coordinates

Update, 11/1: this sub-problem has been updated with corrections (typos) and a few explanatory
sentences. Sorry for the confusion!

For convenience, write y ≡ x− x′ = (cu, s). (11/1) This means that u is a [shifted] time coordinate
and s is a [shifted] space 3-vector. First note that d4x = d4y. In order to integrate (1.6), use 4D
‘hyper-cylindrical coordinates’ over k where time/energy is treated linearly and the space/momentum
directions are treated in 3D spherical coordinates, |k|, cos θ, and ϕ. Recall that θ is the azimuthal
angle with respect to the kz-axis. The volume element in these coordinates is

d4k = dE d3k = |k|2 dE d|k| d cos θ dϕ . (1.7)

Since we are integrating over all values of kµ, we are free to align our axes however we want. A
particularly convenient choice is to align kz to be aligned with s. In this case, k · s = ks sin θ, where
it should be understood that k and s are magnitudes of the spatial 3-vectors4. Then it is convenient
to note that

−ik · y = iks cos θ − iEu . (1.8)

Perform the angular integrals in (1.6). Show that you are left with

G(y) =
c2

4π3s

∫ ∞
0

sin ks

(∫ ∞
−∞

k

c2k2 − E2
e−iEudE

)
dk . (1.9)

1.5 Practical Pole Pushing for Poor Physics People

Observe the familiar-looking dE integral in parenthesis in (1.9). As we usually do, we’d like to
evaluate this using a contour integral. Identify the location of the two poles in the complex E
plane.

You’re now an expert on these integrals, so the following steps shoudl be routine. Refer back to
Homework 5 if they are not.

Following the notation of Homework 5, you have a choice of contours: C+ and C̄−. Comment on
which contour one should choose as a depending on the sign of u ≡ t− t′.

Now we have to pick a prescription for how to navigate the poles. There are two physically-motivated
choices: one can push the poles into the upper half plane and into the area enclosed by C+, or
one can push the poles into the lower half plane and into the area enclosed by C̄−. Which one
corresponds to the causal solution? This is the retarded Green’s function, G(r)(y). The a-causal
solution is the advanced Green’s function, G(a)(y). Perform the dE integral for both.

4That is, from now on I write k = |k|. There should not be any ambiguity with the 4-vector, k2 = E2/c2 − k2,
which no longer shows up in our expressions.



1.6 The Green’s Function

You now have G(r)(y) and G(a)(y) as expressions with a single integral over dk. Go ahead and
perform this integral. You did a similar integral in Homework 5, the most straightforward calculation
involved breaking the sine into exponentials.

Hint: Use, once again, the fact that
∫
eikxdk = 2πδ(x).

Update 11/1, Hint: A useful intermediate step is to show that∫ ∞
−∞

e−iEu

(E − c2k2 − iε)(E + c2k2 − iε)
dE =

−iπ
ck

(
eicku − e−icku

)
. (1.10)

Another useful tip is to use∫ ∞
0

(
eikX + e−ikX

)
dk =

∫ ∞
−∞

eikXdk = 2πδ(X) . (1.11)

Intermediate step: The penultimate step is (writing s = |s|):

G(r)(y) =
c

4πr

{
δ(s− cu)− δ(s+ cu) if u = t− t′ ≥ 0
0 if u = t− t′ < 0

(1.12)

G(a)(y) =
c

4πr

{
0 if u = t− t′ ≥ 0
δ(s− cu)− δ(s+ cu) if u = t− t′ < 0

. (1.13)

Then observe that the radial coordinate s ≥ 0 so that one of the δ functions in each expression will
always be zero. The fancy way of saying this is that one of the δ functions has no support.

Taking x′ = 0, show the final expression as:

G(r)(x) =
c

4πr
δ(r − ct) . (1.14)

What’s the corresponding advanced Green’s function?

1.7 Understanding

What is the physical interpretation of G(r)(x− x′) for, say, x′ = 0?

Answer: The Green’s function solves the electromagnetic wave equation for a ‘blip’ impulse at
t = 0 and r = 0.

Draw the support5 of the retarded and advanced Green’s function on a spacetime diagram6.

Now make the diagram fancy by indicating not only the support of the Green’s function on the
spacetime diagram, but also giving some indication of its magnitude. Possibilities include: use
colors or line thickness to indicate |G(r)(x)|. (Include a legend.) This doesn’t have to be done
precisely, but you should end up with a figure which conveys the propagation of an electromagnetic
wave through spacetime.

5Support: the region of a function’s domain where the function is non-zero.
6The horizontal axis is the radial distance from the origin and the vertical axis is time.



1.8 Covariance

One thing you might be concerned about is the covariance of the δ-function with respect to Lorentz
transformations. Specifically: the argument of δ(ct± r) is not Lorentz invariant. Recall, however,
the rule for δ-functions:

δ (g(x)) =
∑
xi

δ(x− xi)
|g′(xi)|

g(xi) = 0 . (1.15)

Writing x = (ct, r), show that

δ(x2) =
1

2r
[δ(r − ct)− δ(r + ct)] . (1.16)

Compare this to (1.13). Thus, for example,

G(r)(x) =
c

2π
δ(x2)Θ(t) (1.17)

where Θ(t) is the Heaviside step function. What’s the expression for G(a)(x)? Are these expressions
Lorentz invariant?

1.9 Another quick digression

It turns out that when calculating matrix elements (amplitudes) for quantum mechanical scattering
a relativistic particle of mass m with four-momentum p = (E,p), you often end up with expressions
in momentum space where an integrand f(p) needs to be integrated in a way where the on-shell
conditions are fixed:

p2 = E2 − p2 = m2 E > 0 . (1.18)

In other words: you have an integral over the four directions in momentum space, but ‘physicality’
imposes a constraint. You should be dreaming of Lagrange multipliers7.

What one ends up doing is writing down integrals of the form∫
d4p δ(p2 −m2)Θ(E)f(p) . (1.19)

Writing E(p) =
√

p2 +m2, show that∫
d4p δ(p2 −m2)Θ(E)f(p) . =

∫
d3p

2E(p)
f(E(p),p) . (1.20)

This funny-looking differential element d3p/2E(p) doesn’t look Lorentz invariant, but we have
derived that it is. Note that in the function, f , we fix E to be the required value by ‘on-shell-ed-ness.’

7We won’t use Lagrange multipliers, but a generalization of this method where the δ-function is promoted to a
Lagrange multiplier shows up in gauge theory and is called the Fadeev-Popov procedure.



1.10 Radiation

Looking at the solutions for G(r) and G(a) and the form of the spacetime diagrams in sub-problem
1.7, you should now have some intuition for the meaning of the potential A from each of these cases.
Suppose that the current jµ(x) is localized in space and time. This means you have something
electromagnetic that appears then disappears, and is never ‘infinitely’ large. The potential from
this electromagnetic wibbly-wobbly8 can be written in two ways

Aµ(x) = A(in)
µ (x) +

∫
G(r)(x− x′) jµ(x′)d4x′ (1.21)

Aµ(x) = A(out)
µ (x) +

∫
G(a)(x− x′) jµ(x′)d4x′ . (1.22)

Here A(in) and A(out) are solutions to the free wave equation. In A(r) we note that taking t→ −∞
causes the integral to vanish—this leaves only A(in) which we thus interpret as any incoming field
coming in from the asymptotic past t = −∞. Similarly, A(out) is any outgoing field which exists in
the asymptotic future.

We can interpret A(in) as some electromagnetic field that existed before the wibbly-wobbly of the
source jµ(x), which the source later disturbs. This disturbed field then propagates into the future
as A(out).

The difference between A(in) and A(out) is the radiated field, A(rad), from the source j(x). This is

A(rad)
µ (x) = A(out)

µ − A(in)
µ . (1.23)

Write A
(rad)
µ (x) in terms of the retarded and advanced Green’s functions (trivial!) and reflect upon

the fact that the advanced Green’s function seems to be important for physics, after all.

2 Fun with Tensors

[Update: 11/1] Due to the exams and various mid-quarter hectic activities, everything except
problem 2.1 is now extra credit. Go Lakers.

2.1 Symmetrization and Antisymmetrization

Please do this problem.

Consider a tensor Tij. Decompose it into a symmetric and antisymmetric parts, (Tij ± Tji)/2.
Show that these parts transform separately (they don’t mix) under a ‘rotation’. Specifically: show
that the transformation of a symmetric tensor is symmetric and that the transformation of an
anti-symmetric tensor is anti-symmetric. Convince yourself that this decomposition into symmetric
and antisymmetric parts generalizes to multiple indices.

8https://www.youtube.com/watch?v=mDsN5lWLKU0

https://www.youtube.com/watch?v=mDsN5lWLKU0


2.2 Electromagnetic Field of a Moving Charge

This problem and all subsequent problems are extra credit.

Consider the electric field of a point charge at rest. Write the electromagnetic field strength tensor
Fµν(x) for this field. Perform a Lorentz transformation to a frame where the point charge has
velocity β in the positive x-direction. Determine Fµν(x) in this reference frame. What are the
electric and magnetic fields in this boosted frame?

2.3 Gauge transformations

In problem 1 we familiarized ourselves a bit with the electromagnetic potential, A. Recall that
the electromagnetic fields are derived from A as F = dA. Show that geometrically there is a
redundancy9 in the definition of A spanned by the space of functions (0-forms).

2.4 Half of Maxwell’s Equations

Write F = dA as field equations relating the electric and magnetic fields to the scalar and vector
potentials. Show that F = dA reproduces two of the four Maxwell’s equations.

2.5 Hodge duality is electromagnetic duality

Recall the Hodge star operator acting on a k-form living on an n-dimensional space:

?dxi1 ∧ · · · ∧ dxik =
1

(n− k)!

√
det g gi1j1 · · · gikjkεj1···jndxjk+1 ∧ · · · dxjn . (2.1)

Defining ?F = 1
2
F̃µνdx

µ ∧ dxν , show that F̃αβ = 1
2
εαβµνFµν . (There may be a factor of 2 difference.)

Show, further, that the components of F̃αβ are related to those of Fµν by a simple transformation
on the electric on the magnetic fields; what is this transformation?

3 More fun with tensors

3.1 Induced metric, volume in polar coordinates

Recall that if an n-dimensional manifold is a surface in a larger Euclidean space Rm>n, then the
Euclidean metric induces a metric on the surface. Let xi be the usual Cartesian coordinates on Rm

and ya parameterize the surface. Clearly i ∈ 1, · · ·m and a ∈ 1 · · ·n. The surface is parameterized
by a mapping xi(y). The induced metric is

gab =
m∑
i=1

∂xi

∂ya
∂xi

∂yb
. (3.1)

9Called a gauge symmetry.



The volume form of the surface is
√

det gabdy
1 ∧ · · · ∧ dyn.

Derive the induced metric of the unit two-sphere embedded in R3 parameterized by the spherical
angles θ and ϕ. Determine the differential area (‘2-volume’) element, confirm that it is d(cos θ)dϕ.

3.2 Arc length vs. integrating a 1-form

Suppose live in a manifold M. In lecture we talked about integrating a 1-form df over a curve, C.
Stokes’ theorem told us that ∫

C
df =

∫
∂C

f = f(p1)− f(p0) , (3.2)

where p0 and p1 are the beginning and endpoints of C. This gives the usual notion of a line integral.

We can write this with respect to a parameterization of C. Let x : [0, 1]→ C ∈ M parameterize
the path. Then we may write ∫

C
df =

∫ 1

0

dt

(
df(x(t))

dt

)
. (3.3)

You can think of t as some kind of internal clock of a traveller whose progress along C is given by
x(t). Observe that if C has some ‘switchback’ in M where the path folds back on itself, those two
legs cancel.

Compare this to the case where df = ds is simply the infinitesimal distance traveled. Recall that
ds2 = gijdx

idxj. Then consider the slightly different integral:∫ 1

0

dt

∣∣∣∣dsdt
∣∣∣∣ =

∫ 1

0

√
gij
dxi

dt

dxj

dt
. (3.4)

Observe that in this case the ‘switchbacks’ do not cancel. Indeed, this expression measures the
arc length of a path. It is not the integral of a differential form that can be solved using Stokes’
theorem.

Consider the case where gij is the Minkowski space metric. This introduces relative signs in in the
terms summed under the square root sign of the integrand, (3.4), so that terms may cancel. What
does it mean when the arc length in Minkowski space is zero? Comment on how this is relevant to
the statement that ‘photons will never live to see their first birthday, yet they live forever.’
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