
Homework 2: Adding Velocities & Equivalence Principle

Course: Physics 208, General Relativity (Winter 2017)
Instructor: Flip Tanedo (flip.tanedo@ucr.edu)
Due Date: Tuesday, January 31 in class... or, you know, like... whenever.

You are required to complete the Reading Assignment and Essential Problems below. Please let
me know if these are too time intensive. You are invited to explore the ‘extra’ problems as they
apply to your goals for this course: Mathematical Problems develop geometric intuition, while
Phenomenological Problems are applications of relativity.

This week’s sound track: “Free Falling” by Tom Petty1. As you now understand, gravity is simply
a consequence of the free fall of an intertial frame in a curved spacetime.

Reading Assignment
Read the following topics. You may choose to read the analogous topics in an appropriate textbook
or reference of your preference. Most of this reading is meant to be complementary to the approach
in the lectures. For those who would like a solid reference for the material in the lectures, a good
place is Weinberg (Gravitation and Cosmology, not the newer Cosmology book), chapter 3 and the
beginning of 4.

• Read chapters 6, 7.1–7.5 of Hartle (at the level of detail that interests yoy). This connects
much of what we’ve been discussing to actual observations.

• Read chapter 8 of Hartle on geodesics, we take a complementary approach in class.

Essential Problems

1 Velocity Addition and Causality

Despite the paradoxes of special relativity, one fundamental tenet of physics is causality: if event
A can affect event B, then there is no reference frame in which B occurs before A. One way to see
that special relativity does not violate causality is to check the famous velocity addition formula to
confirm that velocities can never add to be greater than the speed of light, c = 1.

By “famous” we mean that this addition formula is famously a pain to derive. By “addition” we
mean the scenario where we are standing at a train platform watching a a red train pass by with
constant velocity. On this train, someone throws a blue racquetball forward so that it, too, has
a constant velocity along the train’s motion. We seek to relate the measured racquetball velocity in
the frame of the red train to that measured from the platform.

While the crux of gravitation is differential geometry, we will solve this problem using high school
plane geometry. We follow the derivation from Sander Bais’ excellent popular science book, Very
Special Relativity: An Illustrated Guide.

1https://youtu.be/T3phscjgc_A
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The spacetime diagram is as follows:

In this picture, the red train is moving at half the speed of light.

(a) What is the velocity of the red train in the frame of the platform? Use the grid, assume that it
demarcates some unit of distance like meters so that the t-axis in units of “light-meters.”

(b) What is the velocity of the blue racquetball in the frame of the red train? Use the fact that
the lines BD and DE have equal length. (Why is this observation useful?)

(c) Argue that the lengths |AB| and |AO| are such that |AB|/|AO| = v, the dimensionless velocity
of the train in the frame of the platform.

(d) Argue that the ratio of the lengths |OB| and |BD| are such that |BD|/|OB| = u′, the velocity
of the racquetball in the frame of the red train.

(e) Argue that |OB| = |BD|+ |DE| and that in the frame of the red train: this is the distance
that (yellow) light travels the time that the blue racquetball traverses distance |BD|.

(f) Argue that triangles ABO and CBD are similar (identical up to a rescaling and rotation).

(g) Use the above facts to argue that |CD|/|AO| = |BC|/|BA| = u′. For simplicity, write these as:

a = |OA| b = |BC| s = |AB| r = |CD| . (1.1)

You thus want to show that

b = u′s r = u′a . (1.2)

(h) Using the triangle OFD, argue that the velocity of the blue racquetball in the frame of the
platform is (s+ r)/(a+ b).

(i) Combine with the earlier results to prove the “famous” result

u =
u′ + v

1 + u′v
. (1.3)

(j) Check that the diagram confirms this result for v = 1/2 and u′ = 1/2, u = 4/5.



(k) What happens as u′ → 1? Argue that superluminal velocities cannot be generated by velocity
addition. This means that physical processes can never cross ‘light-cone,’ in any frame, and
hence that causality is preserved.

2 Invariant Hyperbolae

Recall in our first lecture that there was an apparent paradox: if space and time are being treated
the same, why was it that time is dilated while length is contracted in a boost? We posted the
problem geometrically as follows (from the lecture 1 notes):

Based on simple geometry, it seems like ticks on a light clock are longer in the boosted (primed)
frame versus the stationary frame (unprimed). In other words, it looks like time should be contracted.
We argued that actually, the Lorentz transformation stretches these ticks. There’s an easier way
to see this using invariant hyperbolae. In R2, constant radial length corresponds to an invariant
circle: x2 + y2 = r2 No matter how one rotates the axes, the radius of the circle is preserved. By
comparison, in 2D Minkowski space, the invariant interval is given by a hyperbola, t2 − x2 = s2.

Using the following figure (adapted again from Bais) and this notion of invariance, argue that time
is indeed dilated rather than contracted.



3 Christoffel Symbols of the Sphere (Hartle 8-2)

The metric on the sphere of radius a in spherical coordinates is

ds2 = a2
(
dθ2 + sin2 θ dφ2

)
. (3.1)

(a) Calculate the Christoffel symbols for this space.

(b) Show that the great circle (the equator) is a solution to the geodesic equation. Hint: Use the
freedom to orient the coordinates so that the equation of a great circle is simple.

4 Equivalence Principle Thought Experiments

This is from Ta-Pei Cheng’s Relativity, Gravitation, and Cosmology: A Basic Introduction, problem
4.2 (including the image below). Here are two ‘brain teasers’ for the equivalence principle.80 The principle of equivalence

Fig. 4.7 Illustrations for the two EP brain-teasers in Problem 4.2.

surefire way, as suggested by EP, to pop the ball back
into the bowl each time?

4.3 The Global Position System The signals from the 24
GPS satellites (in six evenly distributed orbit planes)
enable us to fix our location on earth to a high degree
of accuracy. Each satellite is at such an elevation so as
to revolve around the earth every 12 hours. In order to
be accurate to within a few meters the satellite clocks
must be highly accurate, as 10 nanoseconds translate
into a light distance of 3 meters. The atomic clocks
on the satellites indeed have the capability of keep-
ing time highly accurately, e.g. to parts in 1013 over
many days. (To be accurate over a long period, their
times are remotely adjusted several times a day.) But
in order to synchronize with the clocks on the ground
for rapid determination of distances, we must take into
account relativistic corrections. This calculation should
make it clear that the proper functioning of the GPS
requires our knowledge of relativity, especially general
relativity. To investigate such relativistic effects we must
first calculate the basic parameters of rs, the satellite’s
radial distance (from the center of the earth), and vs , its
speed.

(a) Given the satellite orbit period being 12 h, calculate
the speed vs and distance rs . For this part, Newtonian
formulas will be adequate.

(b) Given the fact that the satellite is moving with high
speed, there is a SR time dilation effect t = γsτ. Cal-
culate the fractional change [(t/τ ) − 1] due to this
SR time dilation effect.

(c) Calculate the fractional change due to the gravita-
tional time dilation effect as the satellites are at a dif-
ferent gravitational potential compared to the surface
of the earth. Is this GR effect more significant than
the SR dilation?

(d) Calculate the error that could be accumulated in one
minute if these relativistic corrections were not taken
into account. Do these two effects change the satellite
time in the same direction, or do they tend to can-
cel each other? Express your result for the accumu-
lated relativistic effect, during a 1-minute duration,
in terms of the distance a light signal would have
traversed.

4.4 Gravitational redshift directly from the Doppler effect
Instead of considering a spaceship in free fall, one can
use the equivalence of the spaceship at rest in a gravi-
tational field −g⃗ to a spaceship moving upward with an
acceleration a⃗ = g⃗. Use the Lorentz frequency transfor-
mation of special relativity as given in (3.47) to derive the
gravitational frequency shift (4.24) via (4.22) by noting
that the receiver, by the time the signal arrives, will be an
observer in motion.

(a) Forward leaning balloon. Use the equivalence principle to explain the observation that a
helium balloon leans forward in a forward-moving car.

(b) Old Man’s Toy2. On Einstein’s last birthday, Eric Rogers gave him a toy composed of bowl
with a spring connecting it to a ball. The entire contraption is on a stick. It is actually rather
tricky to try to put the ball into the bowl by holding only the bottom of the stick due to the
Hooke force from the spring. Use the equivalence principle to suggest an efficient strategy to
put the ball into the bowl without directly handling the ball or the bowl.

Phenomenological Problems

5 Particle Accelerator (Hartle 5-12)

The Stanford linear accelerator (part of what is now called the SLAC National Accelerator
Laboratory) is an electron–positron collider that is an older cousin of the Large Hadron Collider.
In its heyday as a particle physics center, it accelerated electrons from rest to 40 GeV over 2 miles.
Idealize the acceleration mechanism as a constant electric field, E, along the accelerator line and
assume an equation of motion

dp

dt
= eE , (5.1)

2This is also a title of a popular book on physics by Tony Zee.



for three-momentum p and electric charge e.

(a) Assuming the electron starts from rest, find its position along the accelerator as a function of
time in terms of its rest mass m and F = e|E|.

(b) What value of |E| is necessary to accelerate the particle to its final energy of E = 40 GeV.

Use the three-velocity, v = p/E and the relativistic version of the famous Einstein relation,

E2 = m2 + p2 . (5.2)

In funny units, the answer is |E| = 1.2× 107 volts per meter. Use:

e = 1.6× 10−19 C GeV = 1.6× 10−10 J meter = 1610 mile . (5.3)

6 The Equivalence Principle (Hartle 6-7)

Consider the following change of coordinates from ‘usual’ Cartesian coordinates (unprimed) to
funny coordinates (primed),

t =
(
g−1 + x′

)
sinh (gt′) x =

(
g−1 + x′

)
cosh (gt′)− g−1 y = y′ z = z′ , (6.1)

where g has dimensions of acceleration.

(a) Transform the line element, ds2 of ordinary special relativity into the line element of the primed
coordinates. Answer:

ds2 = (1 + gx′)
2
dt′2 − dx′2 − dy′2 − dz′2 . (6.2)

(b) Assume gt′ � 1. By Taylor expanding t(t′, x′) and x(t′, x′), show that the funny variables are
simply a uniformly accelerated frame in Newtonian mechanics. Observe how this ‘looks like’
gravity.

(c) Show that a clock at rest in the primed frame at position x′ = h runs faster than a clock at
rest at x′ = 0 by a factor of (1 + gh). Observe that this result in an accelerated frame (but
no ‘gravity’) is precisely the same thing we observed in class when we considered a clocks in a
gravitational field.

7 Rotating Frames (Hartle 8-4)

The line element of a flat spacetime in a frame that is rotating with angular velocity Ω about the
z-axis of an inertial frame is

ds2 =
[
1− Ω2(x2 + y2)

]
dt2 − 2Ω(y dx− x dy)dt− dx2 − dy2 − dz2 . (7.1)

(a) Verify that this matches the ordinary Minkowski metric in spherical coordinates,

ds2 = dt2 − dr2 − r2dφ2 − r2 sin2 θ dφ2 , (7.2)

with the substitution φ→ φ− Ωt.



(b) Find the geodesic equations for x, y, and z in the rotating frame.

(c) Show that in the non-relativistic limit, these reduce tho the usual equations of Newtonian
mechanics for a free particle in a rotating frame exhibiting the centrifugal and Coriolis force.
Recall that, for example, the x-component of the centrifugal force (with Ω = Ωez) is Ω×(Ω×x),
and that the x-component of the Coriolis force is 2Ω× (dx/dt).

Remark: If I have sign errors, please fix them. (Do what I mean, not what I say.) I somewhat
regret asking this question since it’s computationally tedious.

Mathematical Problems

8 Poincaré Half Plane

This question is shamelessly borrowed3 from a discussion Zee’s Einstein Gravity in a Nutshell,
chapter I.5. The Poincaré half plane is a funny manifold. It is composed of points (x, y) restricted
to y > 0 and has the funny metric:

ds2 =
dx2 + dy2

y2
. (8.1)

(a) Draw the Poincaré half plane as the Cartesian plane with no negative y axis. Now draw an
apple somewhere on the plane. Draw the same apple at a different y value, taking rough
account for the rescaling of the apparent size coming from the funny metric.

(b) Does the Poincaré half plane have a boundary? For our purposes, a metric space ‘has a
boundary’ if the “boundary” is a finite distance away from any given point.

(c) What is the length of the ‘straight line’ path from (0, y∗) to (x∗, y∗), for x∗, y∗ 6= 0? This
straight line path is the one given by integrating ds only in the dx direction.

(d) A geodesic is a path of minimal length. Write ds2 = L2dy2, where

L =

√√√√1 +
(

dx
dy

)2
y2

. (8.2)

Then the length of a path x(y) is given by
∫
ds =

∫
Ldy. You can solve this as a variational

problem, treating y as a ‘time’ variable and L as a ‘Lagrangian’:

d

dy

δL

δ(dx/dy)
=
δL

δx
. (8.3)

Since δL/δx = 0, δL/δ(dx/dy) is an integral of motion. Solve δL/δ(dx/dy) = 1/b for x(y) to
find that

x− x0 = ±
√
b2 − y2 , (8.4)

so that the geodesics are actually a very simple shape. Draw a geodesic on the Poincaré half
plane, label x0 and b.

3It turns out to also be Hartle, problem 8-12.
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