
Homework 1: Special Relativity

Course: Physics 208, General Relativity (Winter 2017)
Instructor: Flip Tanedo (flip.tanedo@ucr.edu)
Due Date: Tuesday, January 17 in class

You are required to complete the Reading Assignment and Essential Problems below. Please let
me know if these are too time intensive1. You are invited to explore the ‘extra’ problems as they
apply to your goals for this course: Mathematical Problems develop geometric intuition, while
Phenomenological Problems are applications of relativity.

Reading Assignment
Read the following topics in Hartle. You may choose to read the analogous topics in an appropriate
textbook or reference of your preference.

• Review chapters 1–3 as necessary depending on your background.

• Read chapters 4–5 on special relativity.

Essential Problems

1 Pole-in-Barn (Hartle 4-3)

A 20 m pole is carried so fast in the direction of its length that it appears to be only 10 m long in
the lab frame. The funner carries the pole through the front door of a barn 10 m long. Just at the
instant the head of the pole reaches the closed rear door, the front door can be closed, enclosing
the pole within the 10 m barn for an instant. The rear door opens and the runner goes through.
From the runner’s point of view, however, the pole is 20 m long and the barn is only 5 m! Thus
the pole can never be enclosed in the barn. Explain, quantitatively and by means of spacetime
diagrams, the apparent paradox.

2 Black Hole Entropy and Dimensional Analysis

When we were children, we used ‘unnatural units’ with standard measures L (e.g. L = meter),
M (e.g. M = kilogram), and T (e.g. T = second). For example, we say that the dimension of a
velocity, v, is

[v] = L/T . (2.1)

As adults, we use natural units where c = ~ = 1. What this really means is that we are free to use
these quantities to convert between units—hence the term ‘lightyear’ as a measure of distance. A

1The ‘essential problems’ are meant to be a bare minimum of independent work to follow the course.
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‘lightyear’ is the distance that a photon travels in one year:

light year = c(1 year) . (2.2)

2.a The Planck Mass

(i) Use the Newton force law, F = Gm1m2/r
2, to determine the ‘unnatural’ dimensions of the

Newton constant, G.

(ii) In natural units, we say that G has mass dimension [G] = −2, so that we can define a mass
scale

MP =
1√
G
. (2.3)

This is called the Planck mass. Restore the factors of ~ and c to make this definition correct
in ‘unnatural’ units.

2.b Hawking Radiation

Black holes can evaporate by Hawking radiation2. This means that black holes have a temperature.
Use dimensional analysis to determine how this Hawking temperature scales with the mass of
the black hole.

Hint: there’s one subtlety. There are two mass scales in the problem: the black hole mass, M ,
and the Planck mass, MP = 1/

√
G. (In natural units, of course). In order to be able to use

dimensional analysis, the additional piece of information is that G is a gravitational coupling, so
that gravitational effects should go like GM .

How does TH scale with the combination GM? Observe that the black hole gets hotter as it loses
energy.

2.c The Holographic Principle

Recall from thermodynamics that entropy, S, is related to energy E and temperature T by

dS

dE
=

1

T
. (2.4)

(i) Identify the temperature with the Hawking temperature T = TH and set the energy to be the
mass of the black hole so that dE = dM . Integrate with respect to the black hole mass to
find how entropy scales with mass, S ∼M ?.

(ii) The radius of the black hole’s event horizon scales like R = GM . How does the black hole’s
entropy scale with its characteristic length scale?

2A cartoon picture of this process is as follows: quantum mechanics + special relativity tells us that the vacuum
(‘empty’ space) is composed of virtual particle–anti-particle pairs. Near the event horizon of a black hole, one of
these particles can fall into the black hole while the other radiates away as a physical particle.



(iii) Contrast the above result to the expected scaling of entropy in ordinary thermodynamics.
Recall that entropy is an extensive measure of the number of microstates in a system.

The solution to this problem is spelled out in the introduction to Zee’s Einstein’s Gravity in a
Nutshell. The ‘holographic principle’ is the proposal that the properties of the black hole are
encoded on its surface rather than its volume. This is analogous to how a hologram is a 3D
image encoded onto a 2D surface. A manifestation of the holographic principle is the AdS/CFT
correspondence, which posits that certain theories of strongly interacting systems in d-dimensions
are mathematically identical to a weakly-coupled (d+ 1)-dimensional gravitational theory.

Phenomenological Problems
This is a review of the ‘physical’ derivation of the key results of special relativity from the single
assumption that the speed of light is constant. As with all homework problems, you should do this
if you haven’t done it before or if the solution is not obvious to you.

2.d Time Dilation

Imagine a light clock which marks off time by counting the number of times a photon bounces
between two mirrored surfaces separated by a distance L (Hartle Fig. 4.6). When the clock is in
the same frame as you are, you observe that the time between ‘ticks’ (a round trip between the
mirrors) is ∆t = 2L/c. What is the observed time between ticks if you measure the clock at it
passes by you while relative to you with velocity v perpendicular to the mirror axis? Confirm that
it is ∆t′ = γ∆t. Hint: observe that now the photon travels with the same velocity but over a
longer, diagonal path.

2.e Length Contraction

Here is a sketch of a Michelson–Morley experiment3 from Fig. 15-2 of The Feynman Lectures on
Physics, Volume I.

Imagine a Michelson–Morley experiment set up on an imaginary, ideal train that is passing by you
with constant velocity v as you sit at an imaginary train station. The two arms of the experiment

3If this is unfamiliar, try http://lmgtfy.com/?q=michelson-morley+experiment.
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have length L; one is aligned along the direction of the train and the other is perpendicular. There
is no interference between the paths, so you conclude that the light waves must remain in phase.

(i) Consider the arm BE oriented along the direction of motion. What is the time, t1 for a pulse
of light to go from B to E, accounting for the motion of the train with respect to you. Note
that the mirror E is moving away from the pulse.

(ii) Do the same for the return trip, t2, where now the mirror B is moving towards the pulse.

(iii) Do the same for the time t3 for a pulse to traverse the diagonal path BC. Note that by
symmetry, the return path takes the same time.

(iv) Observe that t1 + t2 6= 2t3. However, if the length L in parts (i) and (ii) is relabelled L′, then
the results can be made equal if L′ is contracted with respect to L. Show that this contraction
is indeed 1/γ.

Mathematical Problems

3 Electrodynamics

3.a Maxwell Made Relativistic

Classical electrodynamics obeys Lorentz invariance—Maxwell’s equations know about special
relativity. Indeed, Maxwell’s equations can be formulated in a way that is manifestly relativistically
invariant, writing everything in terms of the four-potential Aµ, its field strength, Fµν = ∂µAν−∂νAµ,
and the electromagnetic current jµ. Write this out explicitly, either using indices or differential
forms4.

Observe that you can write this as two equations. One equation follows directly from the Bianchi
identity, while the other comes from an action principle.

3.b Gauge redundancy

The four-potential encodes the electromagnetic field. Indeed, quanta of Aµ are photons. Note
that Aµ contains four degrees of freedom, whereas we know that the electromagnetic field only
has two physical degrees of freedom: left- and right-polarizations (or linear combinations thereof).
One degree of freedom is eliminated from the fact that the photon travels at the speed of light so
that it can have no longitudinal polarization5. The remaining degree of freedom is a degeneracy
between our Lorentz-invariant mathematical description and the physical degrees of freedom. This
degeneracy is called a gauge redundancy. Show that the physical electromagntic fields encoded in
Fµν are unchanged under Aµ(x)→ Aµ(x) + ∂µα(x) for some gauge fixing function α(x).

4If you use differential forms, what type of p-form is the current?
5A cartoon of this is to imagine a photon as a small ball. The photon cannot spin in the forward direction or else

the top of the ball moves faster than c.



Observe that α(x) is an “entire function’s worth” of arbitrariness—that is, at each point in spacetime,
you can choose a different α (subject to smoothness).

Though we will not explore it in our course, the role of gauge theory is central in theoretical physics.
In general relativity, you learn that the gravitational force can be understood as a curvature of
spacetime, a differentiable manifold. In particle physics, one learns that the other fundamental
forces of nature can be understood as gauge theories. The connection between these pictures
appears to run rather deep and continues to be an active research frontier under the banner of
“gravity is the square of gauge theory.”
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