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Diagnostic errors are common and can result in serious patient harm. Making the right diagnosis

often requires significant diagnostic effort. Yet most physician payment schemes are procedure-based

and do not account for diagnostic effort or accuracy due to observability issues. In this paper, we

develop a parsimonious model to examine the impact of a physician payment scheme on a physician’s

decisions to (1) exert diagnostic effort and (2) perform a confirmatory test. High effort provides an

informative (though imperfect) signal of the patient’s true state; the test is confirmatory in that

it is a prerequisite for diagnosing a severe condition. Our model uses a two-step diagnostic process

to capture the interaction between the physician’s diagnostic effort and testing decisions. We show

that under a fee-for-service payment scheme, the physician may view the diagnostic effort and the

confirmatory test as either complementary or substitutive, depending on the additional revenue from

testing. We also reveal non-monotonic properties such that a more patient-centered physician may

not exert more effort or provide a more accurate diagnosis. In addition, either a flat or differentiated

payment scheme may be optimal. We also show that an alternative payment scheme, under which

the revenue from the confirmatory test is contingent on its result, can induce the social optimum

under certain conditions. With the advent of artificial intelligence (AI) as part of the standard of

care and its increasing use as a confirmatory test, our research has implications for the design of

physician payment systems in light of concerns about the potential erosion of individual attention.
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1. Introduction

Most U.S. patients experience at least one diagnostic error in their lifetime (National Academies

2015). Misdiagnoses, which include erroneous, missing, or unduly delayed diagnoses, affect about 1

in 20 adults each year in the U.S. (Singh et al. 2014) and contribute to the death of approximately

160,000 patients per year (Newman-Toker et al. 2013). Physicians’ diagnostic processes are an

important contributor to misdiagnoses (Singh et al. 2019). Correct diagnoses are more likely when

physicians exert substantial diagnostic effort, which may require them to conduct “an extensive
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clinical record review, listen comprehensively and gather history from patients and families, ...

use diagnostic decision support and other online knowledge resources, and explore the published

literature in depth” (Berenson and Singh 2018, p. 1830). Such effort, often hard to observe and

thus rarely used as the basis for compensating physicians (Bester and Dahm 2017; Jelovac 2001),

comes at a cost to a physician, who needs to focus more attention on the patient and spend more

time researching the patient’s needs (Topol 2019; Trzeciak and Mazzarelli 2019). As a result, even

physicians who are dedicated to providing quality care face an effort-quality tradeoff and may not

be able to afford to devote substantial diagnostic effort to every patient.

Determining whether a diagnosis is correct, either immediately or retrospectively, is challenging

(Jelovac 2001). For this reason, payers rarely account for diagnostic accuracy in their reimburse-

ments to providers. Conventional payment schemes specify reimbursements largely based on what

procedures have been performed. Even in emerging payment schemes, “indicators of provider per-

formance related to making accurate and timely diagnoses, especially where diagnostic error is

common, are virtually absent from current performance measure sets” (Berenson and Singh 2018, p.

1829). Mirroring the practice, the literature has paid scant attention to the impact of the physician

payment scheme on diagnostic decision-making processes and corresponding diagnostic accuracy.

The use of confirmatory testing, which is frequently required before a physician can diagnose a

severe condition, further complicates the picture. For example, a positive result from a computerized

tomography (CT) scan is usually required before a cardiologist can diagnose a pulmonary embolism

(sudden blockage in a lung artery). Due to their cost and radiation risk, CT scans should only be

performed for individuals whose ex-ante risk of pulmonary embolism is high. However, considerable

evidence shows CT scans are performed on low-risk patients (Abaluck et al. 2016; Alhassan et al.

2016; Kline et al. 2020). Another example of confirmatory testing is a biopsy that is often required

to confirm a melanoma diagnosis. Recent evidence has emerged that dermatologists use “a lower

threshold to biopsy” than necessary, leading a substantial proportion of patients to “receive no

benefit but nonetheless face the harms of scarring, wound infection, out-of-pocket costs, and the

prospect of frequent surveillance” (Welch et al. 2021). Because physicians usually receive additional

revenue when using such tests—and these tests simplify the diagnostic process—their incentives

can be misaligned with the payer’s, who often bears a large portion of the test cost. The design

of current payment systems does not incorporate how to influence the physician’s decision to (1)

exert diagnostic effort and (2) order a confirmatory test.

In this work, we study how a physician payment scheme influences diagnostic effort and testing

decisions, which jointly determine the diagnostic accuracy. We develop a parsimonious model of

diagnostic decision-making to understand the impact of the physician payment system on effort

and testing decisions and, hence, on diagnostic accuracy. Our model of medical decision-making
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highlights two forces intensifying the incentive misalignment present in the diagnostic process: on

the one hand, a physician may choose not to exert costly diagnostic effort, even though the effort

can help the physician reach a correct diagnosis. On the other hand, financial incentives can induce

the physician to use the confirmatory test even when it is not clinically indicated, incurring a high

cost to the patient and to the payer.

To put our model setup in a concrete context, consider a dermatologist who examines a patient

for a potential diagnosis of cutaneous melanoma. Over the last few decades, cutaneous melanoma

has become the third most frequently diagnosed cancer in the U.S., but with little improvement

in survival. A key factor contributing to the dramatic increase in diagnosed cutaneous melanomas

is the lower clinical threshold for biopsy (Welch et al. 2021). The dermatologist typically begins

with a schematic consultation, which includes a basic physical examination and a brief review of

the patient’s medical history to determine the patient’s risk level. The dermatologist may then

conduct a more in-depth consultation, which corresponds to a high effort level in our model.1 An

in-depth consultation entails acquiring “the history of the lesion, the individual’s risk factors, a

more extensive assessment of the whole skin of the patient” and helps the physician assess the need

to perform a biopsy (Topol 2019, p. 134). Next, the dermatologist can perform a biopsy to confirm

the melanoma diagnosis; not performing a biopsy means a diagnosis of absence of melanoma. If a

biopsy is performed, the patient shares the cost of the procedure with the payer and is exposed

to a risk of complication from wound infection and bleeding (Wahie and Lawrence 2007; Welch

et al. 2021). The dermatologist receives a technical fee for ordering and interpreting the result of

a biopsy (Skaggs and Coldiron 2021) and thus has a financial incentive to order it. Carr (2021)

quotes Welch et al. (2021) as stating, “Every biopsy [dermatologists] take, they get extra money,

and, historically, skin biopsies have paid very well.”

We make the following contributions. First, we introduce a novel model of physician decision-

making that includes both diagnostic effort and testing decisions for a heterogeneous patient pop-

ulation. We compare the physician’s optimal policy under a fee-for-service payment system with

that at the social optimum. We also compare a variety of performance metrics, including diagnostic

accuracy, effort level, and social welfare. These analyses enable us to shed new light on whether

diagnostic effort and testing substitute for or complement each other, which has eluded the medical

community thus far: whereas some argue physicians can use diagnostic tests to substitute for their

1 The high effort level can mean more time spent interacting with patients (Trzeciak and Mazzarelli 2019). It can also
entail more attention and presence during a patient visit, as Topol (2019, p. 294) argues, “[P]atients want doctors to
be present, with intentional listening and undivided attention. That rarely occurs now. Rather than listening, doctors
interrupt. Indeed, it only takes an average of eighteen seconds from the start of an encounter before doctors interrupt
their patients... This desire to cut to the chase instead of giving the patient a chance to tell her narrative certainly
matches up with the extreme time pressure that doctors and clinicians are facing.”
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diagnostic effort (e.g., Sirovich 2011; Bertakis and Azari 2011), others (e.g., Trzeciak and Mazzarelli

2019) argue diagnostic effort and testing can be complementary, because diagnostic tests could be

omitted if the physician paid more attention to certain indicators. We find the physician may view

diagnostic effort and confirmatory testing as either complementary or substitutive, depending on

the additional revenue received from testing.

Second, we show the physician’s decision-making exhibits non-monotonicity. Intuitively, a flat

payment (which pays the physician the same with or without testing) should eliminate non-clinical

influences to focus solely on the patient’s well-being. Yet, a flat payment scheme may not provide

sufficient incentives to perform the test for some patients, due to the patient’s test cost share,

leading to more misdiagnoses and lower social welfare than a differentiated payment scheme. Like-

wise, one may anticipate that a more patient-centered physician exerts a high diagnostic effort for

more patients and achieves higher diagnostic accuracy. By contrast, we show that in the pursuit of

diagnostic accuracy, a more patient-centered physician may be more likely to over-utilize the test.

Because more intensive testing reduces the informative value of a high level of diagnostic effort, a

more patient-centered physician can thus exert a lower level of diagnostic effort for certain patients.

We also show that in some cases, out of concern for the patient cost share, a more patient-centered

physician may be less likely to test certain patients, resulting in lower diagnostic accuracy.

Finally, we demonstrate that an alternative physician payment scheme in which the physician’s

payment is contingent on the outcome of the confirmatory test can result in the social optimum

when the physician’s level of patient-centeredness is not very high. By compensating physicians for

confirmatory testing only when the test result is positive, this incentive scheme essentially rewards

the physician for using the test when necessary (which is facilitated by higher effort), and thus

alleviates the tension between diagnostic effort and confirmatory testing.

Our paper is an initial attempt to understand the effect of the physician payment system on

the diagnostic decision-making process. By modeling decisions pertaining to both diagnostic effort

and confirmatory testing, our paper offers novel insights into how physician payment systems can

induce a delicate balance between diagnostic effort and testing. In the era of artificial intelligence

(AI), there is growing concern that the use of AI tools may lead to a reduction in the amount of

personalized care provided to patients (Dai and Tayur 2022). Our research has implications for the

design of AI-based physician payment systems, especially as AI increasingly becomes part of the

standard of care and serves as a confirmatory test (Price et al. 2019). Our alternative physician

payment system is broadly consistent with the New Technology Add-On Payment (NTAP) system,

which provides additional payment to a hospital for the use of new technologies when significant

clinical improvement, such as early diagnosis, is demonstrated (Parikh and Helmchen 2022). NTAP

is now the predominant method of reimbursing hospitals for the use of AI in clinical practice.
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2. Literature

Our work contributes to three strands of literature: (1) the operations-economics interface literature

on diagnosis and treatment, (2) the healthcare operations literature on financial incentives, and

(3) the health economics literature on diagnostic processes.

First, our paper is connected to a stream of operations-economics interfaces literature that

examines medical diagnosis and treatment (e.g., Debo et al. 2008; Durbin and Iyer 2009; Paç and

Veeraraghavan 2015), which builds on the credence goods literature. As reviewed by Dulleck and

Kerschbamer (2006), the credence goods literature typically assumes (1) an expert can always

accurately and costlessly ascertain a client’s true condition and (2) the expert has an informational

advantage over the client and thus may be tempted to provide unnecessary services. Several papers

(Alizamir et al. 2012; Dai et al. 2017; Dai and Singh 2020) relax these assumptions by allowing

the expert to be imperfect, such that the diagnostic accuracy is influenced by the intensity of

testing. Our paper departs from this literature in two ways. First, in our setting, even after exerting

costly, unobservable diagnostic effort, the physician can reach a misdiagnosis. Second, the expert’s

diagnostic process is not fully observable in our model, so moral hazard arises.

Second, a growing body of healthcare operations literature examines how to design new payment

schemes for medical services to better align incentives and improve outcomes (see, e.g., Betcheva

et al. 2021; Dai and Tayur 2020; Keskinocak and Savva 2020, for recent reviews). The literature has

explored the impact of payment contracts between payers and providers in a variety of contexts,

including dialysis for end-stage renal disease patients (Fuloria and Zenios 2001; Lee and Zenios

2012), global health (Natarajan and Swaminathan 2018), outpatient scheduling (Jiang et al. 2012),

chronic care (Zorc et al. 2017), hospital readmissions (Zhang et al. 2016; Andritsos and Tang

2018), hospital-acquired conditions and quality of care for acute inpatient services (Bastani et al.

2017), provider-to-provider referral contracts (Adida and Bravo 2019), and the role of competition

(Jiang et al. 2020). The literature has also investigated the impact of alternative physician payment

schemes, such as reference pricing (Nassiri et al. 2022) and bundled payments (Adida et al. 2017;

Andritsos and Tang 2018; Vlachy et al. 2023; Guo et al. 2019).To our knowledge, our paper is the

first in the healthcare operations literature to investigate the impact of the payment scheme on

physician decision-making leading to diagnosis. Our findings broaden the scope of this literature.

An emerging theme in the healthcare operations management literature revolves around the use

of AI in day-to-day healthcare workflows (Dai and Tayur 2022). Although our model is agnostic

about whether the confirmatory test is based on conventional technology or AI, it has important

implications for the design of payment schemes in which physicians are required to use AI before

making a final diagnosis. In this regard, our paper joins several recent papers (see, e.g., Dai and

Singh 2022; de Veŕıcourt and Gurkan 2023; Mullainathan and Obermeyer 2021; Orfanoudaki et al.
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2022) in deepening the field’s understanding of the implications of AI in healthcare delivery and

health policy design.

Third, the health economics literature has studied—both empirically (e.g., Afendulis and Kessler

2007; Epstein and Johnson 2012; Clemens and Gottlieb 2014) and analytically (e.g., Jelovac 2001;

Marinoso and Jelovac 2003; Allard et al. 2014; Bester and Dahm 2017)—how financial incentives

can influence physicians’ diagnostic decisions. Here, we briefly review several analytical modeling

papers that consider the cost and unobservability of diagnostic effort, the possibility of incorrect

diagnosis, and the presence of moral hazard. Focusing on primary care physicians and their role

as gatekeepers, both Marinoso and Jelovac (2003) and Allard et al. (2014) consider the impact of

physician compensation on diagnostic effort and referral decisions. Their models do not account

for the possibility of performing a confirmatory test as we do in this paper. Jelovac (2001) obtains

optimal payment contracts when physician effort and patient health status are not contractible, and

the physician may have repeated interactions with the patient. Her model captures double moral

hazard due to both hidden action and hidden information. She discovers that when repeated patient

visits are possible, the optimal contract includes supply-side cost sharing to incentivize physician

effort and adequate treatment. Bester and Dahm (2017) also capture moral hazard and repeated

visits, without the presence of an insurer, and when the patient subjectively evaluates the treatment

outcome, which determines payment. Their analysis supports a prospective reimbursement system

with equal markups (based on expected costs). The findings of the latter two papers hinge on

the possibility of a repeated visit in the case of an erroneous initial diagnosis and would not hold

without repeated visits. Moreover, different from these two papers, our paper considers the case in

which the physician must decide whether to use a costly confirmatory test, a distinguishing feature

that allows us to shed new light on the interaction between effort and testing decisions.

3. Model

We describe our model setup in Section 3.1. We then discuss modeling assumptions in Section 3.2.

3.1. Model Description

A patient (hereafter “he”) visits a physician (hereafter “she”) to seek a diagnosis with regard to

a medical condition. The patient’s true state, denoted by s ∈ {
¯
s, s̄}, can be either mild (s=

¯
s), or

severe (s= s̄). After a schematic consultation (e.g., a basic physical exam), the physician estimates

the prior likelihood that the patient suffers from the severe condition. This prior is denoted by p∈

(0,1) (i.e., Pr(s= s̄) = p). We model the prior as being drawn from a probability distribution with

support [0,1], mean µ, probability density function f(·), and cumulative distribution function F (·).

The prior p is the source of patient heterogeneity, and for a given patient encounter, the physician
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relies on her estimation of p to determine her diagnostic decisions, as described next. Although, in

reality, patient heterogeneity may derive from other sources (e.g., cost share of the test), we focus

on clinical characteristics as the source of patient heterogeneity, because the physician is most

likely to focus on her clinical observations of patients to differentiate her diagnostic decisions.

The physician’s first decision in her encounter with the patient is the effort level.2 Namely, after

estimating the prior via a basic exam, the physician may choose to either exert a high effort level

via a more thorough exam or not. We denote by e ∈ {L,H} the effort level, where a low effort

level (e=L) means the physician only performs a basic exam, whereas a high effort level (e=H)

means the physician spends more time to more thoroughly assess the patient’s condition. The

physician incurs cost ce when exerting high effort; without loss of generality, we normalize the cost

of exerting low effort to zero. In line with the literature (e.g., Lien et al. 2004; Eggleston 2005;

Allard et al. 2014; Bester and Dahm 2017; Andritsos and Tang 2018; Adida and Bravo 2019), we

consider the effort to be unobservable to the payer and non-reimbursable. The cost of effort can

reflect the physician’s opportunity cost due to the need to spend additional time with the patient

or on the patient’s case (Trzeciak and Mazzarelli 2019); it can also include the mental load due to

more attention and focus (Topol 2019).

If the physician exerts low effort, the patient’s probability of having a severe condition is the

prior p, as learned from the basic exam. Stated differently, the basic exam provides an unbiased

prior of the patient’s condition. This assumption is consistent with the health economics literature

that models how the level of diagnostic effort affects diagnostic accuracy (see, e.g., Bester and

Dahm 2017; Jelovac 2001). If the physician exerts high effort, the extra time spent with the patient

generates a private signal σ ∈ {
¯
σ, σ̄}. A signal

¯
σ is not indicative of a severe condition, whereas

a signal σ̄ is indicative of a severe condition. The signal precision, denoted by θ, represents the

probability that the signal matches the true patient condition; specifically,

Pr(σ=
¯
σ|s=

¯
s) = Pr(σ= σ̄|s= s̄) = θ.

We assume 1/2< θ < 1 such that this signal is informative but imperfect.

The physician’s second decision is whether to perform a confirmatory test, a decision we denote

by t ∈ {0,1}. The diagnostic test is confirmatory in the sense that the physician cannot diagnose

2 Modeling non-reimbursable effort as a provider’s decision is common in the literature. In the health economics
literature, Lien et al. (2004) and Eggleston (2005) model the provider as deciding the effort level, which is costly
and has an impact on the quality of the service provided to the patient but has no direct impact on the revenue.
In the healthcare operations literature, Andritsos and Tang (2018) assume the provider selects an effort level that
affects the patient’s chance of readmission but does not trigger a reimbursement; Adida and Bravo (2019) model both
preventive and treatment efforts that have an effect on health outcomes in the interaction between two providers,
without generating any reimbursement.
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a severe condition without performing the test. Examples of confirmatory tests include the com-

puterized tomography (CT) scan, which is a standard tool for diagnosing pulmonary embolism,

and a skin biopsy, which is a definitive test to confirm melanoma. In addition, as AI-enabled diag-

nostic tests become more accurate, they are increasingly being incorporated into the standard of

care and used as confirmatory tests alongside conventional tests (Price et al. 2019). If t = 1, a

test is performed and its result is either positive (consistent with a severe condition) or negative

(consistent with a mild condition). If t= 0, no test is performed and the diagnosis must be that

the patient’s condition is mild. For simplicity of analysis, we assume the test is perfect and thus

always reveals the patient’s true condition. Hence, when a test is performed, the result is positive

whenever s= s̄ and negative whenever s=
¯
s. Therefore, with testing, the physician’s diagnosis is

always correct because it matches the test result. However, in the absence of testing, the diagnosis

(which is necessarily that of a mild condition) could be erroneous.

The test is costly for both the patient and the payer. We denote by Ct the total cost of the

test (including the patient’s and the payer’s shares). This total cost includes not only the financial

cost, but also any non-financial cost associated with undergoing the test. The patient’s cost share

is denoted by ct; the payer’s share is thus given by Ct − ct. The cost of testing to the patient

(ct) includes both a financial component (e.g., co-payment or co-insurance) and a non-financial

component (e.g., side effects or risks of the test for the patient, such as discomfort, risk of infection,

pain, scarring, and exposure to radiation). For example, a CT scan introduces “significant health

risks and financial costs” (Abaluck et al. 2016, p. 3734).

Under a fee-for-service payment system, the physician receives a compensation of rt for ordering

a test (e.g., due to the time, effort, and expertise involved in handling the specimen and interpreting

test results), and rn if no test is ordered. To keep our analytical results as general as possible and

for completeness of the analysis, we are agnostic regarding how rt compares with rn. In a practical

fee-for-service context, however, additional care usually triggers a higher reimbursement level. For

this reason, we focus some of our discussions on the more realistic case of rt ≥ rn.

The patient’s utility function Upatient comprises up to two parts (see Table 1). First, the patient

may incur a cost ct when a diagnostic test is used, corresponding to his cost share of the test.

Second, the patient receives a benefit or a penalty according to how the diagnosis matches his true

state. If the patient truly suffers from a severe condition and is (correctly) diagnosed accordingly,

he receives a utility b due to receiving a correct diagnosis. If the patient truly has a severe condition

and is (incorrectly) diagnosed with a mild condition (“type II error” due to the physician opting

out of the diagnostic test), the patient receives a negative payoff of (−h) that represents the harm

from the misdiagnosis. If the patient truly suffers from a mild condition, he is always (correctly)

diagnosed, because a test is required to diagnose a severe diagnosis and the test is perfect. In
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the case of a correct mild diagnosis, without loss of generality, we normalize the patient’s benefit

to zero (essentially, b and h represent the incremental benefit/penalty compared with a correct

diagnosis of a mild condition). We assume b− ct > −h so that the patient’s benefit from a true

positive diagnosis outweighs his share of the cost of testing.

Table 1 Patient utility as a function of the patient’s true state and the physician’s testing decision

The physician’s testing decision (t)

The patient’s true state (s) t= 0 (no testing) t= 1 (testing)

s=
¯
s (mild condition) 0 −ct

s= s̄ (severe condition) −h b− ct

To derive the patient’s expected utility, we determine the probability of the two possible true

patient states, which depends on the physician’s effort, e. When the physician exerts low effort

(e=L), the patient’s probability of suffering from a severe condition is p. When the physician exerts

high effort (e=H), she observes a private signal σ. Using Bayesian updating, this signal helps refine

the probability that the patient suffers from a severe condition from p to (1−θ)p/[(1−θ)p+θ(1−p)]

when the signal is not indicative of the severe condition (σ =
¯
σ), and to θp/[θp+ (1− θ)(1− p)]

when the signal is indicative of the severe condition (σ= σ̄).3 Thus, the expected patient utility is

as shown in Table 2 (the expectation is taken with respect to the possible true patient states).

Table 2 Patient expected utility E[Upatient] depending on the physician’s diagnostic effort decision, signal (if

applicable), and testing decision

Physician’s effort decision (e) Physician’s private signal (σ) Physician’s testing decision (t)

t= 0 (no testing) t= 1 (testing)

Low effort (e=L) No signal −ph pb− ct

High effort (e=H) σ=
¯
σ (non-indicative signal) (1−θ)p

(1−θ)p+θ(1−p)
· (−h) (1−θ)p

(1−θ)p+θ(1−p)
b− ct

High effort (e=H) σ= σ̄ (indicative signal) θp
θp+(1−θ)(1−p)

· (−h) θp
θp+(1−θ)(1−p)

b− ct

The physician’s objective function Uphysician comprises two parts. The first part is the physician’s

direct payoff. The physician is subject to financial incentives, which include the payment rt or rn,

depending on whether a diagnostic test was used, and possibly the cost of effort ce if the physician

chooses to exert a high diagnostic effort. We denote by Πphysician the resulting physician’s payoff,

capturing the direct financial impact of the physician’s decision and shown in Table 3.

The physician is driven not only by financial incentives, but also by a concern for the patient.

Hence, the physician’s utility includes a second part linked to the expected patient utility:

Uphysician =Πphysician + δ ·E[Upatient].

3 Our model of the physician’s diagnostic decision-making process builds on the literature on information gathering
(e.g., Smith and Ulu 2017). Similar Bayesian updating models have been used to investigate incentive provision for
information-gathering agents (e.g., Gromb and Martimort 2007).
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Table 3 Physician payoff Πphysician as a function of effort and testing decisions

Physician’s testing decision (t)

Physician’s effort decision (e) t= 0 (no testing) t= 1 (testing)

e=L (low effort) rn rt

e=H (high effort) rn − ce rt − ce

Parameter δ, which we refer to as the physician’s degree of patient-centeredness, can be influenced

by a variety of factors, including the physician’s awareness of the financial cost borne by the patient,

the perceived likelihood of being held liable in the event of a misdiagnosis, the degree of altruism,

the effect of a possible reputational loss, and/or the degree of accountability (i.e., the chance of

hearing about a potential misdiagnosis). In our model, physicians are considered homogeneous

relative to the value of parameter δ. To maintain tractability and focus on the first-order effect of

the payment scheme, we evaluate the effect of the compensation on an “average physician.” The

effect of possible physician heterogeneity in the value of δ on the performance of the physician

payment scheme is beyond the scope of this paper and is thus left as a future research direction.

As a tie-breaking rule for the testing decision, in cases in which the physician is indifferent

between ordering and not ordering a test, she opts not to. Similarly, in the event of a tie in the

effort decision, the physician chooses to exert low effort.

The sequence of events is as follows: in the first stage, the physician uses a basic medical exam

to estimate the patient’s prior probability of suffering from the condition (p). Based on the prior,

the physician chooses whether to exert a high effort level or not (i.e., whether e = H or L). In

the second stage, given e, and if applicable (i.e., if e=H), after observing the signal σ ∈ {
¯
σ, σ̄},

the physician makes the testing decision t∈ {0,1}. If a confirmatory test is ordered, the diagnosis

matches the test result. If no test is ordered, the diagnosis is that of a mild condition.

We model social welfare as the sum of the patient’s, physician’s, and payer’s expected payoffs:

SW =Πpayer +Πphysician +E[Upatient],

where the payer’s payoff is Πpayer =−rn when t= 0 and Πpayer =−rt− (Ct− ct) when t= 1. Social

welfare thus encompasses all costs imposed on the system (cost of high effort and total cost of

testing), as well as the benefit/penalty imposed on the patient as a result of (in)correct diagnosis,

but excludes payment flows within the system (e.g., reimbursement from payer to physician).

3.2. Discussion of Modeling Assumptions

Our model makes several simplifying assumptions aimed at reflecting the key drivers of physician

decisions, while maintaining tractability. Some remarks about these assumptions are in order.

First, we model the physician’s objective as maximizing a weighted sum of her direct financial

payoff (compensation from the payer net of effort cost) and patient utility. The medical litera-

ture has established that physicians respond to financial incentives (e.g., Clemens and Gottlieb
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2014). Moreover, considering financial gain in physicians’ decision-making is common in both the

healthcare operations management (e.g., Adida et al. 2017; Guo et al. 2019) and health economics

(e.g., Jelovac 2001; Bester and Dahm 2017) literature. Yet, research suggests physicians are not

solely motivated by financial gains and that the patient’s well-being has an impact on their diag-

nostic decisions (e.g., Ellis and McGuire 1986; Newhouse 2004). Our model captures this effect by

including a term proportional to the patient’s utility in the physician’s objective. Through this

component, the physician is penalized when (1) a diagnostic error occurs or (2) when the patient’s

cost share is excessively high relative to the patient’s risk level, which, in turn, incentivizes the

physician to make correct diagnoses while avoiding unnecessary testing.

Second, we model the physician’s compensation as linked to the testing decision. This assumption

is in line with a fee-for-service payment system. Some tests may be done in the physician’s office,

and thus represent a new CPT code that the physician can get reimbursed for. Even if the test is

not performed in the office, it may require the physician to collect a specimen to be sent to a lab

(e.g., biopsy), and the physician can also bill for the specimen collection, handling, and shipping.

Furthermore, testing can be the basis for categorizing the visit as at a higher complexity level,

which can give rise to a higher reimbursement level (Hollmann et al. 2021).

Third, the payer’s goal is to maximize social welfare, which includes the utility of the patient, the

payer’s payoff, and the physician’s payoff. This approach is consistent with the literature, which

generally takes the perspective of a public payer, such as Medicare, that is concerned about the

patient population while also recognizing the importance of the physician’s welfare in maintaining

access to care (e.g., Guo et al. 2019; Nassiri et al. 2022). We use the physician’s financial payoff

rather than the physician’s utility to determine social welfare to avoid double counting the patient

utility (the physician’s utility incorporates the patient utility multiplied by factor δ). In Appendix

A3, we investigate an alternate definition of social welfare that includes the physician’s utility

rather than the physician’s payoff, and our results continue to hold qualitatively.

Fourth, consistent with the related literature, we assume the confirmatory test is perfectly accu-

rate. For example, Maillart et al. (2008) assume that when a screening mammogram yields an

abnormal result, a perfect confirmatory test determines the patient’s condition. Ayer et al. (2012)

assume an abnormal mammogram screening result triggers a perfect followup test. In Hajjar and

Alagoz (2022), a perfect confirmatory test is required before the condition can be diagnosed. Other

examples include a diagnostic test for patients with dizziness/vertigo in an emergency department

that can “identify more than 99% of strokes” (Newman-Toker et al. 2013), and genetic testing

technologies that identify the genetic material (DNA or RNA) of disease-causing pathogens (e.g.,

SARS-CoV-2, the coronavirus underlying COVID-19) with nearly perfect accuracy (Bish et al.

2022). Finally, in the case of a CT scan, “a positive test is almost always followed up with imme-

diate treatment” (Abaluck et al. 2016).
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4. Physician Decisions

We analyze the physician’s diagnostic effort and testing decisions in a fee-for-service environment

in Section 4.1. We then characterize the physician’s decisions at the social optimum in Section 4.2.

4.1. Optimal Policy under a Fee-for-Service Payment System

We characterize the physician’s optimal diagnostic policy under a fee-for-service payment system.

To do so, we use backwards induction to derive the physician’s optimal decision regarding testing

in Section 4.1.1 and regarding diagnostic effort in Section 4.1.2.

4.1.1. Second-Stage Decision: Confirmatory Testing. We analyze the physician’s test-

ing decision, occurring after the diagnostic effort decision. The next lemma characterizes the physi-

cian’s optimal testing decision in the case of low effort. We denote ∆r≜ rt − rn.

Lemma 1. Under a low diagnostic effort level (i.e., e=L),

(i) if ∆r≤ δ(ct − b−h), the physician does not order a test for any patient;

(ii) if δ(ct − b−h)<∆r < δct, the physician orders a test if and only if p > δct−∆r
δ(b+h)

;

(iii) if ∆r≥ δct, the physician orders a test for all patients.

Lemma 1 states that when the financial incentives are sufficiently strong, their effect dominates the

physician’s decision-making. Indeed, when the revenue from testing is sufficiently low, the physician

abstains from ordering it. However, when the revenue from testing is sufficiently high, the physician

tests all patients, regardless of the patient’s prior. When the revenue from testing is intermediate,

the physician tests some but not all patients (i.e., those with a high-enough prior; all else being

the same, the more financially lucrative the test is, the lower the threshold for testing).

Next, we examine the case in which the physician has exerted a high effort level.

Lemma 2. Under a high diagnostic effort level (i.e., e=H),

(i) if ∆r≤ δ(ct − b−h), the physician does not order a test for any patient;

(ii) if δ(ct − b−h)<∆r < δct, the physician’s testing decision depends on the private signal:

(a) If the private signal is indicative (i.e., σ = σ̄), the physician orders a test if and only if

p > (1−θ)(δct−∆r)

(1−θ)(δct−∆r)+θ[δ(b+h−ct)+∆r]
;

(b) If the private signal is non-indicative (i.e., σ=
¯
σ), the physician orders a test if and only

if p > θ(δct−∆r)

θ(δct−∆r)+(1−θ)[δ(b+h−ct)+∆r]
;

(iii) if ∆r≥ δct, the physician orders a test for all patients.

Moreover, if δ(ct − b−h)<∆r < δct, we have

(1− θ)(δct −∆r)

(1− θ)(δct −∆r)+ θ[δ(b+h− ct)+∆r]
<

δct −∆r

δ(b+h)
<

θ(δct −∆r)

θ(δct −∆r)+ (1− θ)[δ(b+h− ct)+∆r]
.
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The intuition behind Lemma 2 is similar to that of Lemma 1, with the distinction that, with a

signal available due to the high effort exerted in the first stage, the physician makes use of the signal

when the test compensation is intermediate. In this region, an indicative signal lowers the prior

threshold for ordering a test (compared with the threshold when no signal is available), whereas

a non-indicative signal raises this threshold. Under a strong financial incentive, the signal is not

being used because the physician’s decision does not take into account the patient’s prior.

4.1.2. First-Stage Decision: Diagnostic Effort. At this stage, we determine the physi-

cian’s optimal effort decision, anticipating how the exerted effort will influence the availability of

a signal and the testing decision in the next stage. For ease of exposition, we define

c̄F ≜ (2θ− 1)(δct −∆r)

[
1− δct −∆r

δ(b+h)

]
pF1 ≜

(1− θ)(δct −∆r)+ ce

(1− θ)(δct −∆r)+ θ[δ(b+h− ct)+∆r]

pF2 ≜
θ(δct −∆r)− ce

θ(δct −∆r)+ (1− θ)[δ(b+h− ct)+∆r]
.

Lemma 3. In the first stage, given the patient’s prior p, the physician’s optimal effort decision

is as follows:

(i) If ∆r ≤ δ(ct − b− h) or ∆r ≥ δct or ce > c̄F , the physician exerts a low effort level for all

patients.

(ii) If δ(ct − b−h)<∆r < δct and ce ≤ c̄F , the physician exerts a high effort level if and only if

pF1 < p< pF2 .

Lemma 3 states that under extreme financial incentives, the physician exerts low diagnostic effort,

because the testing decision will be the same for all patients regardless of the physician’s effort. In

addition, when the cost of effort is very high, it acts as a deterrent and the physician will refrain from

exerting high effort regardless of patient characteristics. When the revenue from testing is moderate

and the effort cost is not excessive, the physician chooses to exert high effort for patients with

a borderline prior. In essence, for low-risk patients, the physician knows no testing is needed,

whereas for high-risk patients, testing is clearly necessary, so exerting high effort (and incurring

the associated cost) is unnecessary in either case. However, for borderline patients, the physician

exerts high effort to elicit a signal that will assist in determining whether a test is necessary.

Combining Lemmas 1 to 3, we next characterize the physician’s optimal effort level.

Proposition 1. The physician’s optimal policy is as follows:

(i) If ∆r≤ δ(ct−b−h), the physician exerts low effort and does not order a test for any patient.

(ii) If δ(ct − b− h)<∆r < δct and ce > c̄F , the physician exerts low effort for all patients, and

orders a test if and only if p≥ δct−∆r
δ(b+h)

.
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(iii) If δ(ct − b−h)<∆r < δct and ce ≤ c̄F 4, the optimal policy depends on the patient’s prior:

(a) if p≤ pF1 , the physician exerts low effort and does not order a test;

(b) if pF1 < p≤ pF2 , the physician exerts high effort and tests according to the signal obtained

(i.e., if the signal is indicative, the physician orders a test; if the signal is non-indicative, the

physician does not order a test);

(c) if p > pF2 , the physician exerts low effort and orders a test.

(iv) If ∆r≥ δct, the physician exerts low effort and orders a test for all patients.

Figure 1 Illustration of the physician’s optimal effort and testing policy.
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Proposition 1 can be interpreted as follows. When the revenue from testing is excessively low

(case (i)), the test is so financially detrimental that the physician does not test any patients. She

also does not exert high effort, because the signal would not influence the testing decision. When

the revenue from testing is moderate and the cost of effort is high (case (ii)), the physician exerts

low effort for all patients, due to the high cost of effort, but orders a test for patients with a high

prior. When the revenue from testing is intermediate and the cost of effort is low (case (iii)), three

categories of patients arise. For low-risk patients, the physician makes low effort and refrains from

testing, because of the low likelihood of a severe condition. For high-risk patients, conversely, the

physician exerts low effort and orders a test, because of the high likelihood of a severe condition.

For borderline patients, the physician exerts high effort to better assess whether a test is warranted,

and the testing decision is then consistent with the signal. Finally, when the revenue from testing

is high (case (iv)), this financial incentive induces the physician to test all patients. High effort is

thus unnecessary, because the signal would not influence the testing decision.

4 We show in Corollary 1 that the condition ce ≤ c̄F is equivalent to ∆r between two bounds, as indicated in Figure 1.
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4.2. Benchmark: Social Optimum

In this section, we characterize the social optimum as a benchmark. At the social optimum, the

goal is to maximize social welfare, which, as defined in Section 3.1, is the sum of the expected

patient utility E[Upatient], payer’s payoff Πpayer, and physician’s payoff Πphysician. Because payments

within the system cancel each other out, social welfare may include the total test cost, the cost

of effort, and the benefit/penalty experienced by the patient from diagnosis (mis)accuracy. As a

result, social welfare coincides with the physician’s utility after replacing δ with 1 and replacing

∆r with the payer’s cost share of the test, −(Ct − ct). We thus obtain the socially optimal policy

by adapting the results of Proposition 1. Let

c̄S ≜ (2θ− 1)Ct

(
1− Ct

b+h

)
pS1 ≜

(1− θ)Ct + ce

(1− θ)Ct + θ(b+h−Ct)

pS2 ≜
θCt − ce

θCt +(1− θ)(b+h−Ct)
.

Proposition 2. The socially optimal policy is as follows:

(i) If b+h≤Ct, the physician exerts low effort and does not order a test for any patient.

(ii) If b+h>Ct and ce > c̄S, the physician exerts low effort for all patients and orders a test if

and only if p≥Ct/(b+h).

(iii) If b+h>Ct and ce ≤ c̄S, the socially optimal policy depends on the patient’s prior:

(a) if p≤ pS1 , the physician exerts low effort and does not order a test;

(b) if pS1 < p≤ pS2 , the physician exerts high effort and follows the signal (i.e., if the signal is

positive, the physician orders a test; if the signal is negative, the physician does not);

(c) if p > pS2 , the physician exerts low effort and orders a test.

The socially optimal diagnostic strategy is determined by how the total cost of testing (Ct)

compares with the combined benefit and harm of diagnosis (mis)accuracy (b+h). Cases (i), (ii), and

(iii) of Proposition 2 have an interpretation similar to Proposition 1. However, a case analogous to

case (iv) of Proposition 1 (when ∆r≥ δct) does not arise in Proposition 2, because −(Ct− ct)< ct.

Exerting low effort and testing all patients is never socially optimal, because the system incurs a

non-zero cost of the test (Ct). By contrast, under the fee-for-service payment system, the physician’s

optimal strategy is to exert low effort and test all patients when the revenue from testing is

sufficiently high.

4.3. Case Study

We now provide a case study to illustrate our model and analysis. Consider the example of a derma-

tologist who diagnoses a patient for cutaneous melanoma, as described in detail in Section 1. The
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dermatologist begins with a schematic consultation, and may provide a more in-depth consultation,

corresponding to a high level of effort. Then, she can either perform a biopsy as a confirmatory

test for a melanoma, or diagnose the absence of melanoma without performing a biopsy.

Cutaneous melanoma is a rare condition. According to the U.S. National Cancer Institute (2022),

the rate of new cases of cutaneous melanoma was 215 per million per year (0.0215%), and the

death rate of cutaneous melanoma was 22 per million per year (0.0022%).5 Significant risk factors

for cutaneous melanoma include older age, naturally lighter skin, blue or green eyes, blonde or red

hair, and a personal or familial history of skin cancer. For example, whereas the 30–39 age group

has a melanoma incidence rate of approximately 150 per million for a woman and 90 per million

for a man, the 80–89 age group has a melanoma incidence rate of 550 per million for a woman and

1,800 per million for a man.

We calibrate our model parameters as follows. Aires et al. (2016) and Goldsmith (2013) use

a $200 estimate for the biopsy charges. Using a $200 estimate, and a typical copayment rate of

20%, we estimate ct at $40.6 The $200 biopsy charge includes the total financial cost of the biopsy

Ct (e.g., charged by an external laboratory) as well as the physician profit margin ∆r = rt − rn.

Following Aires et al. (2016), we estimate ∆r= rt− rn = $36 in the base case, and we estimate the

financial cost of the test at Ct = $164. (In the rest of the case study, we fix the value of Ct and

vary the value of ∆r to focus on the impact of the physician payment scheme.) Aires et al. (2016)

estimate that a delay in diagnosing a melanoma incurs a cost of $33,989, which corresponds to the

difference between the benefit +b experienced in the case of a correct diagnosis of the presence of

the severe condition and the harm −h experienced in the case of a missed diagnosis of the severe

condition, that is, b+h= $33,989. We estimate θ at 70% (Swetter and Geller 2022).

We consider a population with a higher incidence rate than that of the overall population

(0.0215%), because low-risk patients without the common risk factors are rarely referred for

melanoma diagnosis. We assume the prior probability of melanoma follows a beta distribution

Beta(α,β), with a probability density function of pα−1(1 − p)β−1/Beta(α,β) and a support of

[0,1], where Beta(α,β) = Γ(α)Γ(β)/Γ(α+ β), and Γ(·) is the gamma function such that Γ(z) =∫∞
0

xz−1e−xdx. We calibrate the parameters of the beta distribution at α= 1 and β = 600. Under

this distribution, the mean prior probability of melanoma is µ= α/(α+β) = 0.00166 = 0.166%.

Using the above parameters, Proposition 2(ii) indicates performing a biopsy for patients with

an incidence rate (i.e., prior) no less than Ct/(b+ h) = 0.0048 = 0.48% (i.e., 4,800 per million) is

5 https://seer.cancer.gov/statfacts/html/melan.html, Accessed October 1, 2022

6 We do not consider the non-financial cost of the biopsy in this case study because, according to Aires et al. (2016),
complication rates from biopsies are low and such complications are minor and can be treated with inexpensive
generic antibiotics.

https://seer.cancer.gov/statfacts/html/melan.html
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socially optimal. This cutoff corresponds to 5.49% of all the patients. By contrast, Proposition 1

indicates the physician’s optimal strategy is quite different from what is socially optimal. By

analyzing a group of medical students’ medical treatment choices, Godager and Wiesen (2013)

find the mode of the distribution of physician altruism is close to one. In the case of δ = 0.95, the

physician’s decision follows one of the cases (ii)–(iv) of the proposition. Specifically, if ∆r ≥ $38,

Proposition 1(iv) applies; that is, the physician exerts low effort and orders a test for all patients.

Otherwise (i.e., ∆r < $38), we have two cases:

• Case (ii) applies if ce > c̄F = $9.59. In this case, the physician exerts low effort and tests

patients with an incident rate of no less than δct−∆r
δ(b+h)

= 0.000248 = 0.0248% (i.e., 2,480 per million)

in the case of ∆r= $30, which corresponds to 86.18% of all patients.

• Case (iii) applies if ce ≤ c̄F = $9.59. In this case, the physician (1) exerts low effort and does

not order a test if p ≤ pF1 , (2) exerts low effort and orders a test if p > pF2 , and (3) exerts high

effort and tests according to the obtained signal if pF1 < p≤ pF2 . At c
e = $6 and ∆r= $15, we have

pF1 = 0.000571 = 0.0571% and pF2 = 0.00104 = 0.104%; the physician exerts high effort for 17.48%

of all patients and exerts low effort and orders a test for 53.51% of all patients.

Across cases (ii)–(iv), the physician orders a test far more frequently than at the social optimum.

In practice, the biopsy rate varies across providers. According to one observed study, a significant

proportion of physicians perform biopsies on nearly all patient visits (Hamid et al. 2019). This case

study illustrates that understanding diagnostic behavior helps us reveal the gap between physician

behavior under the fee-for-service payment scheme and the social optimum. Stated differently, a

better knowledge of diagnostic behavior in response to a payment system can lead to better design

of the payment scheme, and our model can be used as a building block for policymakers to evaluate

and compare different physician payment schemes.

5. Performance Measures

We define three performance measures: (1) diagnostic accuracy, (2) level of diagnostic effort, and

(3) social welfare. We aim to compare fee-for-service to the social optimum with regards to these

measures and to determine how the revenue from testing drives the physician’s diagnostic strategy.

5.1. Diagnostic Accuracy

We define diagnostic accuracy as the probability that the diagnosis matches the patient condition.

Proposition 3. The aggregate population diagnostic accuracy under fee-for-service is monoton-

ically increasing from 1−µ to 1 as ∆r increases. Moreover, the average socially optimal diagnostic

accuracy is a constant equal to a value within [1−µ,1).
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The intuition underlying Proposition 3 is higher-powered financial incentives for testing lead to

better diagnostic accuracy, due to the more frequent testing it induces (and despite the effect on the

physician’s diagnostic effort, which we analyze in the next section). It follows from Proposition 3

that, depending on ∆r, the aggregate accuracy under fee-for-service may be less or more than at

the social optimum. In other words, a threshold exists for the revenue from testing, above which

the aggregate accuracy under fee-for-service is better than in the social optimum (see Figure 2).

Figure 2 Aggregate accuracy under fee-for-service (FFS) and at the social optimum.
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5.2. Diagnostic Effort

Diagnostic effort incurs a cost to the physician, yet its benefit accrues to the patient. As such,

one of the challenges in this setting is incentivizing the physician to exert an appropriate level

of diagnostic effort. In this section, we compare the range of priors that lead to high diagnostic

effort (when high effort is exerted on at least some patients; otherwise, the range is equal to zero)

under fee-for-service and at the social optimum. We refer to “range” in the statistical sense, as

the difference between the highest and the lowest priors that lead to high effort.

Corollary 1. Under the fee-for-service payment scheme, the physician exerts high effort on

certain patients if and only if

ce ≤ (2θ− 1)
δ(b+h)

4
and

δct − δ
b+h

2

(
1+

√
1− 4ce

δ(b+h)(2θ− 1)

)
≤∆r≤ δct − δ

b+h

2

(
1−

√
1− 4ce

δ(b+h)(2θ− 1)

)
.

For the physician to exert high effort on at least some patients, as noted in the previous section,

the cost of effort cannot be too high and the revenue from testing should not be extreme (not so

low that never testing is optimal, and not so high that testing everyone is optimal).
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Corollary 2. The range of priors for which the physician exerts high effort is unimodal in

∆r, reaching a maximum equal to equal to 2θ− 1− 4ce/(δ(b+h)) at ∆r= δ(ct − (b+h)/2).

This result establishes that the testing revenue has a non-monotonic effect on the incentive to

exert effort. As ∆r first increases, more testing compensation incentivizes more effort: the extra

revenue compares favorably with the patient’s share of the cost (which impacts the patient-centered

physician’s objective). However, as ∆r increases past a certain point, more compensation reduces

the incentives to exert high effort: the extra revenue becomes so advantageous that the physician

prefers to exert low effort and directly test more patients (see Figure 3).

It remains to investigate how the amount of high effort exerted under fee-for-service compares

with that at the social optimum.

Proposition 4. Under fee-for-service, when ∆r is such that the range of priors with high effort

is at its widest, that range is wider than the socially optimal range if and only if either (i) δ > 1,

or (ii) δ≤ 1 and either Ct < c0 or Ct > c1, where

c0 ≜
b+h

2
(1−√

q) ; c1 ≜
b+h

2
(1+

√
q) , and q≜

ce(1− δ)

(2θ− 1)[ce(2θ− 1)+ θ(1− θ)δ(b+h)]
.

Otherwise (i.e., δ≤ 1 and c0 ≤Ct ≤ c1), the socially optimal range of high effort is wider than the

fee-for-service range of high effort for all ∆r.

Figure 3 Range of priors leading to high effort under FFS and at the social optimum (with δ > 1).
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This result indicates the range of priors for which the physician exerts high effort (which correlates

with the number of patients receiving high effort) is not necessarily smaller under fee-for-service

than at the social optimum. Fee-for-service may lead to a wider range of priors with high effort in
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several scenarios: (1) when δ > 1, as the physician prioritizes patient welfare over her own financial

gain, whereas the social planner values both equally; (2) when δ≤ 1 and the total test cost is low,

as the social planner prefers to directly test patients (i.e., with low effort); or (3) when δ≤ 1 and the

total test cost is high, as the social planner prefers to avoid excessive testing, whereas high effort

results in testing when the signal is positive. Figure 3 illustrates scenario (1). In all these scenarios,

the physician, while acting in her own self-interest, may exert high effort for a wider range of

patients under the fee-for-service payment scheme than under the social optimum. Therefore, the

fee-for-service scheme does not necessarily lead to less physician effort than the socially optimal.

5.3. Social Welfare

By definition, the fee-for-service payment scheme leads to lower social welfare than in the social

optimum. In this section, we analyze how varying the revenue from testing affects social welfare

under fee-for-service. Namely, we address the following question: To maximize social welfare, how

should testing be compensated? To answer this question, we obtain social welfare under fee-for-

service in closed form (Proposition A3 in the online appendix) and we analyze how it varies with

respect to ∆r. The next result examines the special case of a high cost of effort.

Proposition 5. If ce > (2θ− 1)δ(b+h)/4, the value of ∆r that maximizes social welfare under

fee-for-service is

∆r=

{
−δ(Ct − ct) if b+h>Ct

any value within (−∞,−δ(b+h− ct)] otherwise.

Moreover, at these levels of compensation, social welfare under fee-for-service reaches the socially

optimal social welfare if b+h≤Ct or if ce > c̄S.

This result shows that, when the cost of effort is high (such that the physician never chooses to exert

high effort), to maximize social welfare, the testing compensation should be such that ordering

testing would incur a penalty for the physician (rather than an added payment). If b+ h > Ct

(i.e., testing some patients is socially optimal due to the reasonable cost of the test), this penalty

is equal to the payer’s cost share of the test multiplied by the parameter δ. The intent of such a

compensation mechanism would be to force the physician to internalize not only the patient’s cost

share of the test, but also the payer’s. If b+h≤Ct (i.e., testing no patient is socially optimal due

to the excessive cost of the test), a penalty of at least δ(ct − b−h)< 0 ensures fee-for-service also

gives rise to no testing on any patient. Clearly, such a payment scheme is implausible in practice,

because it amounts to charging the physician for the payer’s share of the cost of a test ordered for

a patient. The proof shows that if we optimize social welfare with the constraint that the testing

compensation be no less than the compensation in the absence of testing, the optimal compensation
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is a flat payment: social welfare is maximized when the physician is paid the same regardless of

whether a test is ordered (but social welfare would no longer match the social optimum).

The case ce ≤ (2θ − 1)δ(b+ h)/4, where the physician exerts high diagnostic effort on certain

patients, remains to be considered. Unfortunately, analytically studying the effect of ∆r on social

welfare in this situation is intractable. Numerically, we find social welfare appears unimodal with

respect to ∆r. However, the compensation scheme that maximizes social welfare is not necessarily

in the negative domain, a point that we expand on in Section 6.3.

6. Managerial Implications

We now discuss managerial implications arising from our results. Section 6.1 discusses whether

the physician’s diagnostic effort and testing complement or substitute for each other. Section 6.2

examines the effect of patient-centeredness on several performance metrics. Section 6.3 discusses

whether a flat or a differentiated payment scheme is optimal under fee-for-service. Section 6.4

investigates an alternative payment scheme and shows this scheme can yield the social optimum.

6.1. Effort and Testing: Complements or Substitutes?

A commonly held view contends that physicians use diagnostic tests to substitute for their diagnos-

tic effort (Sirovich 2011). Bertakis and Azari (2011) show that, in a Canadian primary care setting,

when physicians paid more individual attention to patients, patients underwent significantly less

testing.7 On the other hand, Trzeciak and Mazzarelli (2019) demonstrate diagnostic tests may be

omitted due to the physician’s failure to pay sufficient attention to clinical indicators.

Corollary 2 (in Section 5.2) provides a more nuanced understanding of the relationship between

diagnostic effort and testing, as illustrated in Figure 4. This result suggests the physician may view

diagnostic effort and confirmatory testing as either complementary or substitutive, depending on

the incremental revenue from testing. Specifically, when testing compensation is low (i.e., ∆r <

δ(ct− (b+h)/2)), as it increases, the physician has an incentive to exert a high diagnostic effort for

certain low- or medium-risk patients, because their updated prior may trigger a test. When testing

compensation is sufficiently high (i.e., ∆r ≥ δ(ct − (b+ h)/2)), however, testing is so financially

beneficial that the physician substitutes diagnostic effort with testing.

The above observation implies increasing the reimbursement for testing does not always mean

the physician will exert less effort. Rather, in some scenarios, the physician may exert a high

diagnostic effort on more patients in response to increased revenue from testing, which could lead

to a better understanding of the patient’s condition.

7 In the case of medication prescriptions, studies have established a link between shorter visits and higher prescription
rates; see Dugdale et al. (1999) for a review of these studies.
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Figure 4 Tested fraction of the population and range of priors leading to high effort under FFS.
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6.2. Effect of Patient-Centeredness

Increasing patient-centeredness has become a major focus of health leaders (Bergeson and Dean

2006). In this section, we seek to understand the effect of the degree of patient-centeredness (δ),

that is, the level of awareness that the physician has of the test costs borne by patients and of the

eventual health outcome. Accordingly, we investigate the effect of varying δ on three performance

metrics, namely, diagnostic accuracy, the range of priors with high diagnostic effort, and social

welfare. Throughout this section, we consider a fixed testing compensation rt− rn ≥ 0 to focus our

discussions on the most practically relevant scenarios (see Section 3.1 for a detailed discussion).

6.2.1. Effect of Patient-Centeredness on Diagnostic Accuracy. We examine how the

average diagnostic accuracy varies as δ increases.

Lemma 4. If ∆r > 0 and ce < θ(1−θ)∆r(b+h)/((1−θ)ct+θ(b+h−ct)), the diagnostic accuracy

is non-increasing in δ.

Lemma 4 reveals the effect of the physician’s degree of patient-centeredness on diagnostic accu-

racy. Interestingly, we find that for a low cost of effort and a positive revenue from testing, the accu-

racy worsens when the physician is more patient-centered. Indeed, when the patient-centeredness

is low, the physician is primarily influenced by her own financial incentives, which, when ∆r > 0,

push for more testing and thus yield high accuracy. As patient-centeredness increases, the physician

uses testing less broadly, thereby reducing accuracy, due to the rising influence of the patient’s cost

share of the test.

The case in which ∆r > 0 and the cost of effort is high is analytically intractable. Numerically, we

find that, depending on the input parameters, the accuracy is either non-increasing (as illustrated

in Figure 5, left-hand-side panel) or non-monotonic (i.e., constant then decreasing then increasing,

as illustrated in Figure 5, right-hand-side panel).
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Figure 5 Average diagnostic accuracy under fee-for-service and at the social optimum for a varying δ.
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These results show that when the provider is financially advantaged by testing, initiatives aimed

at increasing the degree of patient-centeredness can worsen the diagnostic accuracy. The next result

proves this issue can be remedied under certain conditions by removing financial incentives to test.

Lemma 5. Suppose ∆r= 0. Let D1 ≜ (1− θ)ct + θ(b+h− ct) and D2 ≜ θct +(1− θ)(b+h− ct).

If f(pF1 )/D
2
1 ≥ f(pF2 )/D

2
2, the diagnostic accuracy is non-decreasing in δ. Otherwise, the diagnostic

accuracy is unimodal (constant then increasing then decreasing) in δ.

When payment is flat, the diagnostic accuracy may improve when the degree of patient-

centeredness δ increases when the condition f(pF1 )/D
2
1 ≥ f(pF2 )/D

2
2 holds or when the range of

values reached by δ is not too high. Intuitively, when the payment is flat, the physician has no direct

incentive to test. She is influenced by her cost of effort and the patient’s utility (test cost share

and benefit or harm from (in)correctness of diagnosis). As δ increases, the cost of the test pushes

the physician to exert more high effort, as formally shown in the next proposition (which improves

accuracy), and to refrain from unnecessary testing (which hurts accuracy); the benefit/harm from

(in)correctness of diagnosis pushes the physician to test more to avoid an incorrect diagnosis. These

effects interact in a non-trivial way, resulting in accuracy that may not be monotonic in δ.

6.2.2. Effect of Patient-Centeredness on Diagnostic Effort. We next focus on the effect

of patient-centeredness on the range of priors for which the physician exerts high effort.

Proposition 6. If ∆r = 0, the range of priors leading to high effort under fee-for-service is

monotonically increasing in δ. If ∆r > 0, the range of priors leading to high effort under fee-for-

service is either monotonically increasing or unimodal in δ.8

8 Proposition A4 in Appendix A2 fully characterizes the conditions under which the range of priors leading to high
effort is monotonic, and, when it is unimodal, for which value of δ it reaches a maximum.
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Proposition 6 shows that increasing the value of δ lowers the physician’s incentives to exert

high effort. Although in some cases (e.g., ∆r = 0), increasing δ expands the range of priors with

high effort, in other cases, increasing δ could reduce this range. The reason is that when testing

leads to a higher payment, increasing the degree of patient-centeredness can lead the physician to

directly test more patients (accompanied by low diagnostic effort) to take advantage of the added

compensation, lack of cost of effort, and fewer misdiagnoses, despite the cost of the test. This effect

can be avoided using a flat payment system: when ∆r= 0, increasing δ leads to an increasing range

of priors with high effort, because direct testing is less advantageous to the physician, and thus,

the effect of the cost of the test prompts the physician to exert high effort instead.

The following corollary provides a simple and sufficient condition for a monotonically increasing

range of priors that correspond to high effort even in the case of ∆r > 0.

Corollary 3. If 0< ct ≤ (b+h)/2, the range of priors with high effort is increasing in δ.

Intuitively, when the cost of the test (to the patient) is sufficiently low relative to its value (i.e.,

ct ≤ (b+ h)/2), the test is high-value. If δ is very small, the physician directly tests every patient

(with low effort). As δ increases, the cost of testing gains more importance in the physician’s

decision-making. Thus, to avoid unnecessary tests, she exerts high effort before testing.

6.2.3. Effect of Patient-Centeredness on Social Welfare. The next result considers the

effect of patient-centeredness on the average social welfare in the case of a flat testing compensation.

Lemma 6. Suppose ∆r= 0 and the patient priors are uniformly distributed. For δ below a thresh-

old, social welfare is a constant with respect to δ. Above the threshold, if ct ≥ (b+ h)/2 or if ce is

large enough, social welfare in this region is either monotonically decreasing or unimodal. Other-

wise (i.e., ct < (b+h)/2 and ce is low enough9), social welfare in this region is either monotonically

increasing or sequentially decreasing then increasing.

This finding shows increasing patient-centeredness does not necessarily benefit social welfare,

even when the revenue from testing is flat. Although this result is obtained in the special case of

a uniform distribution of patient priors, its implication is more general because it establishes that

the effect of patient-centeredness on social welfare is not generally monotonic.

6.3. Flat versus Differentiated Payment Schemes

We showed in Section 5.3 that, for a high cost of effort, the testing compensation that maximizes

social welfare is negative. Hence, when the testing compensation is constrained to be non-negative,

social welfare is highest under a flat compensation scheme (for a high cost of effort). However,
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Figure 6 Sign of the social-welfare-maximizing testing compensation for varying δ and ce.
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this scenario may not hold true for a lower cost of effort. Indeed, we obtain numerically that the

optimal testing compensation may be positive in some instances, as shown in Figure 6.

When the social planner designs the optimal payment scheme with the goal of maximizing social

welfare constrained by a non-negative compensation, our study shows that if one ignores the role of

physician effort in the diagnostic process (e.g., when the cost of effort is so high that the physician

never chooses to exert high effort), the optimal payment scheme is flat (see Proposition 5). The

finding is due to the fact that the physician does not internalize the payer’s share of the cost of the

test, so tends to under-count the cost of testing; as a result, higher-powered incentives for testing

would only further distort the incentive structure. However, when the social planner takes into

account the role of physician effort, this result may no longer hold true (see, e.g., Figure 6). A

positive financial incentive for testing may be optimal to incentivize the right level of effort.

6.4. Incentive Alignment

We now analyze how to redesign the physician payment scheme to shift the physician’s incentives in

the direction of the social optimum. To align decisions, the goal is essentially to align the thresholds

(pF1 , p
F
2 ) with (pS1 , p

S
2 ), as well as align c̄F with c̄S.

With this goal in mind, we considered augmenting the current fee-for-service payment model with

a combination of performance incentives and/or subsidies. For example, we considered rewarding

the physician in the case of a correct severe diagnosis and/or penalizing her in the case of an

incorrect mild diagnosis (assuming the outcomes could be observed and the correctness of the

diagnosis identified). In the context of our model, such a performance incentive translates into

inflating the value of b+h. Likewise, providing subsidies to the patient and/or physician for testing

would boil down to adjusting parameters ct and/or ∆r. Awareness programs could help adjust the

9 The thresholds on δ and ce are provided in closed form in the proof in Appendix A2.
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value of δ. Therefore, we examine in the next proposition whether a combination of such incentives

could achieve the social optimum.

Proposition 7. Suppose b,h, ct, δ, and/or ∆r can be adjusted. The only adjustment yielding

the socially optimal policy is such that δ= 1 and ∆r= ct −Ct.

This result implies that no performance incentive aiming to change the physician’s reward and

penalty associated with (in)correctness of diagnosis (b and h) can help obtain the social optimum.

Similarly, testing subsidies for the patient and/or physician are not helpful. To align with the social

optimum, δ needs to be adjusted, so the physician weighs equally her own benefit and the patient’s,

and the compensation scheme needs to consist of penalizing the physician for ordering a test, with

a penalty equal to the payer’s share of the cost of the test, so that the physician internalizes that

cost and bases her decision on the total cost of the test, like the social optimum does. Because such

a payment scheme lacks practicality, we next consider a different type of performance incentive.

Physicians are shown to be more likely to use diagnostic tests unnecessarily when they profit from

them (Shute 2011). Motivated by this observation, we now consider a diagnosis-based payment

scheme whereby, when a test is ordered, the physician’s payment depends on the test result. Namely,

we consider a payment scheme whereby, when the physician orders a diagnostic test, she receives

a payment of r+ if the result is positive and a payment of r− if the result is negative. We continue

to use rn to denote the payment that the physician receives for not ordering the test. Intuitively,

by differentiating the payment according to the test result, it may be possible to incentivize the

physician to order a test only for those patients who are most likely suffering from the severe

condition and thus have a high chance of receiving a positive test result.

The analysis of the physician’s effort and testing decisions is similar to that under the fee-for-

service payment scheme. For brevity of presentation, we omit the detailed analysis and summarize

the physician’s decision rule in the following proposition, in which we define

pd1 ≜
(1− θ)(δct + rn − r−)+ ce

(1− θ)(δct + rn − r−)+ θ[δ(b+h− ct)+ r+ − rn]

pd2 ≜
θ(δct + rn − r−)− ce

θ(δct + rn − r−)+ (1− θ)[δ(b+h− ct)+ r+ − rn]

c̄d ≜
(2θ− 1)(δct + rn − r−)[δ(b+h− ct)+ r+ − rn]

δ(b+h)+ r+ − r−
.

Proposition 8. Under the diagnosis-based payment scheme, the physician’s optimal policy is

as follows:

(i) If r+ − rn ≤ δ(ct − b− h), the physician exerts low effort and does not order a test for any

patient.



Adida and Dai: Impact of Physician Payment Scheme on Diagnostic Effort and Testing 27

(ii) If r+ − rn > δ(ct − b− h) and ce > c̄d, the physician exerts low effort for all patients, and

orders a test if and only if p > δct+rn−r−

δ(b+h)+r+−r− .

(iii) If r+ − rn > δ(ct − b−h) and ce ≤ c̄d, the optimal policy depends on the patient’s prior:

(a) if p≤ pd1, the physician exerts low effort and does not order a test;

(b) if pd1 < p≤ pd2, the physician exerts high effort and tests according to the signal obtained

(i.e., if the signal is indicative, the physician orders a test; if the signal is non-indicative, the

physician does not order a test);

(c) if p > pd2, the physician exerts low effort and orders a test.

The next proposition shows this type of diagnosis-based payment scheme can align the physician’s

incentives with the social planner’s objective.

Proposition 9. The physician’s effort and testing decisions maximize social welfare under a

diagnosis-based payment scheme that satisfies

b1 ≜ rn − r− =Ct − δct

b2 ≜ r+ − r− = (1− δ)(b+h).

In particular, both rn and r+ as defined above are greater than r− (i.e., b1, b2 > 0) if and only if

δ < 1.

Proposition 9 shows that aligning the physician’s incentives with those of the social planner

is possible when δ is not too large and entails providing two bonuses. We start with a baseline

payment level (r−) that applies when a diagnostic test returns a negative result. The physician

receives a bonus (b1 =Ct−δct) over that baseline payment when the physician chooses not to order

a test; the physician receives a different bonus (b2 = (1−δ)(b+h)) over the baseline payment when

the physician orders a test that returns a positive result.

An important implication from Proposition 9 is that the physician should be rewarded for not

only skipping testing but also for ordering a diagnostic test that confirms a severe condition. On the

one hand, under this payment system, the physician will always receive a bonus for not ordering the

test. By contrast, if the physician chooses to order the test, whether she receives a bonus depends

on the test’s outcome. By selecting the optimal bonuses, the optimal payment scheme induces the

physician to make the diagnostic effort and testing decisions that maximize social welfare: the first

bonus reflects the cost saving from not ordering the test, whereas the second reflects the benefit

from ordering a test that returns a positive result.

In the next corollary, we compare r+ and rn (i.e., b1 and b2).

Corollary 4. Suppose δ < 1. At the socially optimal payment scheme, b1 < b2 if and only if

δ < (b+h−Ct)/(b+h− ct) (< 1).
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Corollary 4 gives a condition that ensures the bonus for a positive test is higher than the bonus

for not testing. In particular, when δ is low enough, under the fee-for-service payment system, the

physician tends to order tests that do not necessarily justify the cost-benefit tradeoff. Consequently,

in the redesigned payment system, to align with the social optimum, the bonus for a positive test

should be set higher than the bonus for not testing, providing an incentive for the physician to order

a test only when it gives “bang for the buck.” When δ is too high, under the fee-for-service payment

system, the physician already has an incentive to order tests. To attain the social optimum, the

payer would need to provide stronger incentives for not testing than for obtaining a positive test,

reflecting the focus on curbing unnecessary testing.

7. Conclusions

So far, most of the research on physician payment schemes has focused on their effect on physicians’

treatment decisions. Little attention has been paid to diagnostic decisions (Berenson and Singh

2018). The impact is not immediately clear, especially when physicians are expected to perform

a confirmatory test before diagnosing the severe condition, meaning physicians may be able to

use testing to substitute for their diagnostic effort. In this paper, we develop a parsimonious

model to analyze the impact of a physician payment scheme on a physician’s effort and testing

decisions made during the diagnostic process and thus on diagnostic accuracy and social welfare.

Our paper represents an initial attempt to understand the impact of the physician payment scheme

on the diagnostic decision-making process. By modeling the decisions pertaining to both diagnostic

effort and confirmatory testing, our paper generates novel insights into how to design physician

payment schemes in view of the intricacies of diagnostic decision-making. When a physician receives

additional compensation for confirmatory testing, yet the diagnostic effort incurs a cost that is

borne solely by the physician, the physician’s incentives may be misaligned with those of the patient

and payer.

One might expect the physician to use confirmatory testing to substitute for costly diagnostic

effort (Sirovich 2011). Following this logic, increased revenue from testing would incentivize the

physician to increase the use of testing and reduce the level of effort. Interestingly, we show that,

depending on the additional revenue from testing, the physician can use testing and effort in either

a complementary or substitutive manner. In fact, scenarios exist in which higher testing revenue

motivates the physician to choose higher diagnostic effort. Thus, when designing the physician

payment scheme, the payer must consider the potential impact on diagnostic effort.

Our analysis also demonstrates a fee-for-service payment scheme can result in higher diagnostic

accuracy and diagnostic effort than at the social optimum. In terms of designing a fee-for-service

payment scheme, one can use a flat payment in which the physician receives no additional payments
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for testing, or one can charge an additional fee for testing. In many cases, a flat compensation

scheme maximizes social welfare, but not in all cases. When a physician is sufficiently patient

centered, providing additional fees for testing may increase social welfare.

We also demonstrate how the practice environment can defy certain monotone effects. Although

improving patient-centeredness may seem intuitive, we show doing so does not always improve

accuracy, effort, or social welfare. In other words, the complex interaction between a physician’s

diagnostic effort and testing decisions leads to non-monotonicity in this incentive environment.

Finally, we propose an alternative payment scheme in which compensation is tied to the result of

the test. We show the payment scheme can, in some cases, align decisions with the social optimum.

This result sheds light on a multi-stakeholder perspective on designing proper incentives for better

diagnostic services that balance individual health benefits and social welfare. Our findings have

implications for a practice environment where AI and other cutting-edge technologies are used

more frequently and are becoming part of the standard of care (Price et al. 2019): This alternative

payment system is very much in the spirit of how providers are compensated when they use AI

tools in their care delivery process (Parikh and Helmchen 2022).

Our model has some limitations. First, in line with the literature, we assume the confirmatory

test is perfect. Relaxing this assumption complicates the analysis of the diagnostic outcome after the

test—which is beyond the scope of our paper—but may not directionally change the key tradeoffs

in the physician’s diagnostic decision-making. Second, in our model, the patient’s prior is the

source of patient heterogeneity, and all patients bear the same cost share for the test. In practice, all

patients may not have the same co-payment or co-insurance for a given test, and heterogeneity may

derive from other sources, such as the benefit (harm) from a correct (incorrect) diagnosis. Third,

consistent with the literature (e.g., Bester and Dahm 2017; Jelovac 2001), our model assumes that

the basic exam provides an unbiased prior. However, if the basic exam is biased, it could impact the

value of the confirmatory test in different ways depending on the direction and degree of the bias, as

well as the relative costs of false-positive versus false-negative diagnoses. Furthermore, we assume

all physicians are characterized by the same degree of patient-centeredness δ, whereas physicians

may not actually all grant the same weight to the patient’s benefit. Relaxing such assumptions

to obtain a deeper understanding of the effect of the payment scheme on a physician’s diagnostic

decisions represents an interesting direction for future research.
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Online Appendix to “Impact of Physician Payment Scheme on
Diagnostic Effort and Testing”

A1: Notations

s∈ {s̄,
¯
s} the patient’s true state: severe or mild

p the prior probability that the patient’s state is severe
f(·), F (·), and µ the pdf, cdf, and mean of the distribution of the patient priors

e∈ {L,H} the physician’s effort level: low or high
ce the cost of effort when effort level is e=H

σ ∈ {σ̄,
¯
σ} the signal (indicative or not indicative), which imperfectly reflects patient state

θ the probability that the signal matches the true state
t∈ {0,1} testing decision: do not test or test

ct the patient’s cost share of the test
Ct total cost of the test (payer and patient shares combined)
h the penalty incurred to patient in the case of false negative diagnosis
δ the physician’s degree of patient-centeredness
b the benefit incurred to the patient in the case of a true positive diagnosis

rt, rn physician compensation, based on testing decision: with test or without test
∆r the net payment differential: rt − rn

Upatient the patient’s utility
Πphysician the physician’s payoff
Uphysician the physician’s utility
Πpayer the payer’s payoff
SW social welfare

c̄F , c̄S, c̄D thresholds on the cost of effort
pF1 , p

F
2 , p

S
1 , p

S
2 , p

D
1 , p

D
2 thresholds on patient prior probability

r+, r− parameters of the diagnosis-based payment scheme

Table A1 Notations

A2: Proofs of Technical Results

Proof of Lemma 1. The physician should order a test if rt + δ(pb− ct)> rn − δph, which is equivalent to

p >
δct −∆r

δ(b+h)
,

and provide a diagnosis of mild otherwise.

We have 0< δct−∆r
δ(b+h)

< 1 if and only if

δ(ct − b−h)<∆r < δct. (A1)

If ∆r ≤ δ(ct − b− h), the physician never orders a test, regardless of p. If ∆r ≥ δct, the physician orders a

test for all patients. Q.E.D.

Proof of Lemma 2. If the consultation generates a positive signal, the physician updates the patient’s

probability of suffering from the condition:

Pr(s= s̄|σ= σ̄) =
θp

θp+(1− θ)(1− p)
.
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The physician should order a test if

rt + δ · θp

θp+(1− θ)(1− p)
· b− δct > rn − δ · θp

θp+(1− θ)(1− p)
·h,

which gives

p >
(1− θ)(δct −∆r)

(1− θ)(δct −∆r)+ θ[δ(b+h− ct)+∆r]
.

We have 0 < (1−θ)(δct−∆r)

(1−θ)(δct−∆r)+θ[δ(b+h−ct)+∆r]
< 1 if and only if δ(ct − b− h) <∆r < δct, which coincides with

(A1). If ∆r≤ δ(ct− b−h), the physician never orders a test, regardless of p. If ∆r≥ δct, the physician orders

a test for all patients.

If the consultation generates a negative signal, the physician updates the patient’s probability of suffering

from the condition:

Pr(s= s̄|σ=
¯
σ) =

(1− θ)p

(1− θ)p+ θ(1− p)
.

The physician should order a test if

rt + δ · (1− θ)p

(1− θ)p+ θ(1− p)
· b− δct > rn − δ · (1− θ)p

(1− θ)p+ θ(1− p)
·h,

which is equivalent to

p >
θ(δct −∆r)

θ(δct −∆r)+ (1− θ)[δ(b+h− ct)+∆r]
.

We have 0< θ(δct−∆r)

θ(δct−∆r)+(1−θ)[δ(b+h−ct)+∆r]
< 1 if and only if δ(ct − b− h)<∆r < δct, which coincides with

(A1). If ∆r≤ δ(ct− b−h), the physician never orders a test, regardless of p. If ∆r≥ δct, the physician orders

a test for all patients.

If δ(ct − b−h)<∆r < δct, the inequality

(1− θ)(δct −∆r)

(1− θ)(δct −∆r)+ θ[δ(b+h− ct)+∆r]
<

δct −∆r

δ(b+h)
<

θ(δct −∆r)

θ(δct −∆r)+ (1− θ)[δ(b+h− ct)+∆r]

can be obtained from simple algebra using the condition θ > 1/2. Q.E.D.

Proof of Lemma 3. We consider the following cases:

(i) If ∆r ≤ δ(ct − b− h) or ∆r ≥ δct, based on Lemmas 1 and 2, the final decision is the same under low

and high effort (regardless of the signal), so the physician has no incentive to exert costly high effort.

(ii) If δ(ct − b− h)<∆r < δct, the physician’s effort decision can be determined as follows, according to

Lemmas 1 and 2:

(a) If θ(δct−∆r)

θ(δct−∆r)+(1−θ)[δ(b+h−ct)+∆r]
< p< 1, the physician orders the test regardless of the effort or the

signal (if applicable). Thus, the physician chooses not to exert high effort.

(b) If 0 < p ≤ (1−θ)(δct−∆r)

(1−θ)(δct−∆r)+θ[δ(b+h−ct)+∆r]
, the physician provides a mild diagnosis regardless of the

effort or the signal. Thus, the physician chooses not to exert high effort.

(c) If (1−θ)(δct−∆r)

(1−θ)(δct−∆r)+θ[δ(b+h−ct)+∆r]
< p≤ θ(δct−∆r)

θ(δct−∆r)+(1−θ)[δ(b+h−ct)+∆r]
, the physician follows the signal if

exerting high effort. The condition for the physician to exert high effort is as follows:
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i. If (1−θ)(δct−∆r)

(1−θ)(δct−∆r)+θ[δ(b+h−ct)+∆r]
< p≤ δct−∆r

δ(b+h)
, the physician exerts high effort if and only if

[θp+(1− θ)(1− p)] ·
[
rt + δ · θp

θp+(1− θ)(1− p)
· b− δct

]
+ [(1− θ)p+ θ(1− p)] ·

[
rn − δ · (1− θ)p

(1− θ)p+ θ(1− p)]
·h
]
− ce > rn − δph,

which gives

p >
(1− θ)(δct −∆r)+ ce

(1− θ)(δct −∆r)+ θ[δ(b+h− ct)+∆r]
= pF

1 .

We can easily verify that

pF
1 >

(1− θ)(δct −∆r)

(1− θ)(δct −∆r)+ θ[δ(b+h− ct)+∆r]
.

Moreover, we have

pF
1 ≤ δct −∆r

δ(b+h)
,

if and only if

ce ≤ (2θ− 1)(δct −∆r)

[
1− δct −∆r

δ(b+h)

]
= c̄F . (A2)

If ce is above the threshold c̄F , the physician does not exert high effort for any patient within this range of

priors.

ii. If δct−∆r
δ(b+h)

< p≤ θ(δct−∆r)

θ(δct−∆r)+(1−θ)[δ(b+h−ct)+∆r]
, the physician exerts high effort if and only if

[θp+(1− θ)(1− p)] ·
[
rt + δ · θp

θp+(1− θ)(1− p)
· b− δct

]
+ [(1− θ)p+ θ(1− p)] ·

[
rn − δ · (1− θ)p

(1− θ)p+ θ(1− p)]
·h
]
− ce

> rt + δpb− δct,

which gives

p <
θ(δct −∆r)− ce

θ(δct −∆r)+ (1− θ)[δ(b+h− ct)+∆r]
= pF

2 .

We can easily verify that

pF
2 <

θ(δct −∆r)

θ(δct −∆r)+ (1− θ)[δ(b+h− ct)+∆r]
.

Moreover, we have

pF
2 ≥ δct −∆r

δ(b+h)
,

if and only if

ce ≤ (2θ− 1)(δct −∆r)

[
1− δct −∆r

δ(b+h)

]
= c̄F ,

which coincides with (A2). If ce is above the threshold, the physician exerts low effort for any patient within

this range of priors. Q.E.D.
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Proof of Proposition 3 We denote by aF (p) (resp. aS(p)) the diagnostic accuracy for a patient with a

prior p under fee-for-service (resp. in the social optimum). To prove the result, we proceed by stating and

proving three intermediary results. We first establish the following corollary:

Corollary A1. Under fee-for-service, the diagnostic accuracy is as follows:

(i) If ∆r≤ δ(ct − b−h), then aF (p) = 1− p;

(ii) If δ(ct − b−h)<∆r < δct and ce > c̄F , then

aF (p) =

{
1− p if p < δct−∆r

δ(b+h)

1 else;

(iii) If δ(ct − b−h)<∆r < δct and ce ≤ c̄F , then

aF (p) =

 1− p if p≤ pF
1

1− p(1− θ) if pF
1 < p≤ pF

2

1 if p > pF
2 ;

(iv) If ∆r≥ δct, then aF (p) = 1.

Proof of Corollary A1. The four parts of the corollary correspond to those in Proposition 1. Note from

Proposition 1 that in case (i), the physician always reaches a mild diagnosis after exerting low effort. Thus,

the diagnostic accuracy corresponds to the likelihood that the patient’s true state is negative; that is, 1− p.

Similarly, in case (iv), the physician always orders the test. Because the test can perfectly reveal the patient’s

true state, the diagnostic accuracy is 1.

In case (ii), the physician exerts low effort for all patients and orders a test if and only if p ≥ δct−∆r
δ(b+h)

.

Thus, if p≥ δct−∆r
δ(b+h)

, the diagnostic accuracy is 1; otherwise, the physician reaches a mild diagnosis, so the

diagnostic accuracy is the likelihood that the patient’s true state is negative, that is, 1− p.

In case (iii), if p≤ pF
1 , the physician exerts low effort and reaches a mild diagnosis; thus, the diagnostic

accuracy is 1−p. Next, if pF
1 < p≤ pF

2 , the physician exerts high effort and follows the signal obtained; thus,

the diagnostic accuracy is

[pθ+(1− p)(1− θ)]︸ ︷︷ ︸
Pr(σ=σ̄)

·1+ [p(1− θ)+ (1− p)θ]︸ ︷︷ ︸
Pr(σ=

¯
σ)

· (1− p)θ

p(1− θ)+ p(1− θ)︸ ︷︷ ︸
Pr(s=

¯
s|σ=

¯
σ)

= pθ+(1− p)(1− θ)+ (1− p)θ

= 1− p(1− θ).

Finally, if p > pF
2 , the physician orders a test, so the diagnostic accuracy is 1. Q.E.D.

We next establish the following result, where we define Q(x) =
∫ x

0
tf(t)dt and µ=Q(1).

Proposition A1. Under FFS, the average population diagnostic accuracy is as follows:

(i) If ∆r≤ δ(ct − b−h), then Ep[a
F (p)] = 1−µ;

(ii) If δ(ct − b−h)<∆r < δct and ce > c̄F , then

Ep[a
F (p)] = 1−Q

(
δct −∆r

δ(b+h)

)
;

(iii) If δ(ct − b−h)<∆r < δct and ce ≤ c̄F , then

Ep[a
F (p)] = 1− θQ(pF

1 )− (1− θ)Q(pF
2 );
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(iv) If ∆r≥ δct, then Ep[a
F (p)] = 1.

In addition, the average population diagnostic accuracy is continuous and non-decreasing in ∆r.

Proof of Proposition A1 The expression of Ep[a
F (p)] follows directly from Corollary A1. It remains to

show the monotonicity. For ∆r≤ δ(ct− b−h), Ep[a
F (p)] is a constant (case (i)). For δ(ct− b−h)<∆r < δct,

at the left extreme of the range, δ(ct − b− h)+, we have c̄F = 0+, and thus ce > c̄F , so we are in case (ii).

Moreover, at this extreme, Ep[a
F (p)] = (1− µ)+, so the expected accuracy is continuous. Because ∆r < δct

in this range,

∂Ep[a
F (p)]

∂∆r
=

δct −∆r

δ2(b+h)2
f

(
δct −∆r

δ(b+h)

)
> 0,

so the expected accuracy is increasing while in case (ii). If ce > (2θ− 1)δ(b+ h)/4 (which is the maximum

value taken by c̄F ), we remain in case (ii) over the whole range, and at (δct)−, Ep[a
F (p)] = 1−, so the

aggregate accuracy is continuous and non-decreasing. Otherwise, we switch to case (iii) within the range

δ(ct − b− h)<∆r < δct, and then back to case (ii) because c̄F is unimodal. The switch occurs when ∆r is

such that ce = c̄F . When ce = c̄F , we have (see proof of Lemma 3) pF
1 = pF

2 = (δct −∆r)/(δ(b+h)); thus, the

aggregate accuracy is continuous. Monotonicity in case (iii) follows from pF
1 and pF

2 decreasing in ∆r (see

proof of Corollary 1). Q.E.D.

We next establish the following result:

Proposition A2. In the social optimum, the average population diagnostic accuracy is as follows:

(i) If b+h≤Ct, then Ep[a
S(p)] = 1−µ;

(ii) If b+h>Ct and ce > c̄S, then

Ep[a
S(p)] = 1−Q

(
Ct

b+h

)
(> 1−µ) ;

(iii) If b+h>Ct and ce ≤ c̄S, then

Ep[a
S(p)] = 1− θQ(pS

1 )− (1− θ)Q(pS
2 )

(
≥ 1−Q

(
Ct

b+h

)
> 1−µ

)
.

Proof of Proposition A2. The result follows similarly to Proposition A1 after noting the socially optimal

policy is as follows:

(i) If b+h≤Ct, then aS(p) = 1− p.

(ii) If b+h>Ct and ce > c̄S, then

aS(p) =

{
1− p if p < Ct

b+h

1 else.

(iii) If b+h>Ct and ce ≤ c̄S, then

aS(p) =

 1− p if p≤ pS
1

1− p(1− θ) if pS
1 < p≤ pS

2

1 if p > pS
2 .

Q.E.D.

Proposition 3 then follows from the above intermediary results. Q.E.D.
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Proof of Corollary 1. We first establish a preliminary result: if δ(ct − b− h)<∆r < δct, then pF
1 and

pF
2 are decreasing in ∆r and c̄F is unimodal in ∆r, reaching a maximum equal to (2θ − 1)δ(b + h)/4 at

∆r= δ(ct − (b+h)/2).

To show this preliminary result, note we have

∂pF
1

∂∆r
=

−(1− θ)((1− θ)(δct −∆r)+ θ[δ(b+h− ct)+∆r])− [(1− θ)(δct −∆r)+ ce](2θ− 1)

((1− θ)(δct −∆r)+ θ[δ(b+h− ct)+∆r])2

=
−(1− θ)θδ(b+h)− ce(2θ− 1)

((1− θ)(δct −∆r)+ θ[δ(b+h− ct)+∆r])2
< 0,

where the last inequality follows from θ > 1/2. Similarly,

∂pF
2

∂∆r
=

−θ(θ(δct −∆r)+ (1− θ)[δ(b+h− ct)+∆r])− [θ(δct −∆r)− ce](1− 2θ)

(θ(δct −∆r)+ (1− θ)[δ(b+h− ct)+∆r])2

=
−θ(1− θ)δ(b+h)− ce(2θ− 1)

(θ(δct −∆r)+ (1− θ)[δ(b+h− ct)+∆r])2
< 0.

∂c̄F

∂∆r
= (2θ− 1)

(
−1+

δct −∆r

δ(b+h)
+ (δct −∆r)

1

δ(b+h)

)
= (2θ− 1)

(
−1+2

δct −∆r

δ(b+h)

)
.

Therefore, c̄F increases in ∆r when ∆r < δ(ct − b+h
2

), and c̄F decreases in ∆r when ∆r > δ(ct − b+h
2

). By

substitution, we find it reaches a maximum equal to (2θ − 1)δ(b + h)/4 at ∆r = δ(ct − (b + h)/2). This

concludes the proof of the preliminary result.

Hence, ce ≤ c̄F can occur only when ce is below the maximum value reached by c̄F . In that case, ce ≤ c̄F

occurs whenever ∆r is between the two roots of the quadratic equation ce = c̄F ; that is, denoting x= δct−∆r,

ce = (2θ− 1)x

(
1− x

δ(b+h)

)
⇔x2 − δ(b+h)x+

ceδ(b+h)

2θ− 1
= 0.

The result follows from the standard solution of a quadratic equation. Q.E.D.

Proof of Corollary 2.When δ(ct−b−h)<∆r < δct and ce ≤ c̄F , we show from the proof of Proposition 4

that the range of the priors that correspond to high effort is

pF
2 − pF

1 =
θ(δct −∆r)− ce

θ(δct −∆r)+ (1− θ)[δ(b+h− ct)+∆r]
− (1− θ)(δct −∆r)+ ce

(1− θ)(δct −∆r)+ θ[δ(b+h− ct)+∆r]

=
c̄F − ce

θ(1− θ)δ(b+h)+ (2θ− 1)c̄F

after simplifications. Moreover,

∂(pF
2 − pF

1 )

∂c̄F
=

θ(1− θ)δ(b+h)+ (2θ− 1)c̄F − (2θ− 1)(c̄F − ce)

(θ(1− θ)δ(b+h)+ (2θ− 1)c̄F )2

=
θ(1− θ)δ(b+h)+ (2θ− 1)ce

(θ(1− θ)δ(b+h)+ (2θ− 1)c̄F )2
> 0.

Thus, it suffices to use the monotonicity results on c̄F . From the above preliminary result, we know that c̄F

increases in ∆r when ∆r < δ(ct − b+h
2

), and c̄F decreases in ∆r when ∆r > δ(ct − b+h
2

). By substitution, we

obtain that for ∆r= δ(ct − b+h
2

), the range pF
2 − pF

1 equals 2θ− 1− 4ce/(δ(b+h)). Q.E.D.
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Proof of Proposition 4. From the proof of Corollary 1, the widest range of high effort under the

physician’s optimal strategy is obtained for ∆r = δ(ct − b+h
2

), where pF
2 − pF

1 = 2θ− 1− 4ce/(δ(b+ h)) and

where c̄F = (2θ−1)δ(b+h)/4. Therefore, we want to determine the sign of pS
2 −pS

1 − (2θ−1−4ce/(δ(b+h))).

Using derivations from the proof of Corollary 1, we have

pS
2 − pS

1 =
c̄S − ce

θ(1− θ)(b+h)+ (2θ− 1)c̄S
.

As shown in the proof of Corollary 1, the expression for pS
2 −pS

1 is increasing in c̄S. Thus, the socially optimum

range of priors leading to high effort reaches a maximum (over Ct) when c̄S is at its maximum, that is, for

Ct = (b+h)/2, and c̄S then equals (2θ− 1)(b+h)/4, and pS
2 − pS

1 then equals 2θ− 1− 4ce/(b+h).

When δ > 1, the biggest FFS range of priors leading to high effort is bigger than the socially optimal

largest range of priors leading to high effort; thus, it is bigger than the socially optimum range of priors

leading to high effort for any Ct.

When δ≤ 1, the biggest FFS range of priors leading to high effort is bigger than the social optimal range

of priors leading to high effort when Ct is outside the two roots of the equation pS
2 −pS

1 − (2θ−1−4ce/(δ(b+

h))) = 0, which is quadratic in Ct. The result follows from the standard solution of a quadratic equation.

Q.E.D.

Proof of Proposition 5 To prove this result, we start with showing an intermediate result, where F̄ (·) =

1−F (·) and Q(x) =
∫ x

0
tf(t)dt:

Proposition A3. Under fee-for-service, the average population social welfare is as follows:

(i) If ∆r≤ δ(ct − b−h), then Ep[SW
F (p)] =−hµ;

(ii) If δ(ct − b−h)<∆r < δct and ce > c̄F , then

Ep[SW
F (p)] = bµ−CtF̄

(
δct −∆r

δ(b+h)

)
− (b+h)Q

(
δct −∆r

δ(b+h)

)
;

(iii) If δ(ct − b−h)<∆r < δct and ce ≤ c̄F , then

Ep[SW
F (p)] = bµ−Ct − ce[F (pF

2 )−F (pF
1 )] +Ct[θF (pF

2 )+ (1− θ)F (pF
1 )]

−Ct
[
θQ(pF

2 )+ (1− θ)Q(pF
1 )
]
− (b+h−Ct)

[
(1− θ)Q(pF

2 )+ θQ(pF
1 )
]
;

(iv) If ∆r≥ δct, then Ep[SW
F (p)] = bµ−Ct.

Proof of Proposition A3 The result follows from noting that for a patient with given prior p, the social

welfare is as follows:

(i) If ∆r≤ δ(ct − b−h), then SWF (p) =−ph;

(ii) If δ(ct − b−h)<∆r < δct and ce > c̄F , then

SWF (p) =

{
−ph if p < δct−∆r

δ(b+h)

pb−Ct else;

(iii) If δ(ct − b−h)<∆r < δct and ce ≤ c̄F , then

SWF (p) =

−ph if p≤ pF
1

−ce −Ct(pθ+(1− p)(1− θ))+ bpθ−hp(1− θ) if pF
1 < p≤ pF

2

pb−Ct if p > pF
2 ;

,
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(iv) If ∆r≥ δct, then SWF (p) = pb−Ct. Q.E.D.

We now return to the proof of Proposition 5. If ce > (2θ − 1)δ(b+ h)/4, case (iii) does not occur. As ∆r

increases from −∞ to +∞, we go from case (i) to case (ii) to case (iv) of Proposition A3. Taking the

derivative of Ep[SW
F (p)] w.r.t. ∆r in case (ii), we obtain

−∆r− δ(Ct − ct)

δ2(b+h)
f

(
δct −∆r

δ(b+h)

)
.

It follows that Ep[SW
F (p)] is unimodal in case (ii), reaching a maximum for ∆r =−δ(Ct − ct). This value

is in the range of case (ii) if b+ h > Ct. (Otherwise, social welfare is decreasing over case (ii).) By simple

substitution, we find the value reached by Ep[SW
F (p)] at ∆r=−δ(Ct − ct) is

bµ−CtF̄

(
Ct

b+h

)
− (b+h)Q

(
Ct

b+h

)
.

We next prove this quantity is greater than both (1) −hµ (value in case (i)) and (2) bµ−Ct (value in case

(iv)):

• Proof of (1): We have

xF (x) =

∫ x

0

xf(t)dt >

∫ x

0

tf(t)dt=Q(x).

The result follows after substituting x with Ct/(b+h).

• Proof of (2): We have

Q(1)−Q(x) =

∫ 1

x

tf(t)dt >

∫ 1

x

xf(t)dt= xF̄ (x).

The result follows after substituting x with Ct/(b+h).

The socially optimal social welfare can be obtained using Proposition A3 with the values δ = 1 and

∆r=−(Ct − ct). Hence, if b+ h≤Ct, the maximum social welfare is −hµ, which matches the FFS case. If

b+h>Ct, we are in case (ii) when ce > c̄S, and the maximum social welfare matches FFS. Q.E.D.

Proof of Lemma 4. Note that, for δct =∆r, c̄F = 0< ce. Moreover, we obtain

∂c̄F

∂δ
= ct

(
1− ct

b+h

)
+

∆r2

δ2(b+h)
> 0;

lim
δ→∞

c̄F =∞.

Hence, when ∆r > 0, it can be seen from Proposition A1 that, as δ increases from 0, we go from case (iv)

(where the diagnostic accuracy is constant) to case (ii) (as δ passes the value ∆r/ct) to case (iii) (as c̄F passes

the value ce). In case (ii), using the expression in Proposition A1(ii), the diagnostic accuracy is decreasing

in δ, because Q(·) is increasing. For case (iii), we need to consider how pF
1 and pF

2 vary with δ. We find

∂pF
1

∂δ
=

θ(1− θ)∆r(b+h)− ce[(1− θ)ct + θ(b+h− ct)]

((1− θ)(δct −∆r)+ θ[δ(b+h− ct)+∆r])2
,

which is positive under the assumption that ce < θ(1− θ)∆r(b+h)/((1− θ)ct + θ(b+h− ct)). Moreover,

∂pF
2

∂δ
=

θ(1− θ)∆r(b+h)+ ce[θct +(1− θ)(b+h− ct)]

(θ(δct −∆r)+ (1− θ)[δ(b+h− ct)+∆r])2
> 0.
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Therefore, in the situation considered in the lemma, both pF
1 and pF

2 are increasing in δ. Using the expression

in Proposition A1(iii), because Q(·) is increasing, it follows that in case (iii), the diagnostic accuracy is

decreasing in δ. Q.E.D.

Proof of Lemma 5. The proof of Lemma 4 shows c̄F increases from zero to infinity as δ increases. Hence,

when ∆r = 0, Proposition A1 shows that as δ increases from 0, we go from case (ii) to case (iii) (as c̄F

passes the value ce). In case (ii), using the expression in Proposition A1(ii), the diagnostic accuracy is

independent of δ. In case (iii), Q(·) is increasing, but we now have pF
1 decreasing in δ while pF

2 is increasing

in δ. We thus obtain the derivative of the diagnostic accuracy (denoting D1 ≜ (1− θ)ct + θ(b+ h− ct) and

D2 ≜ θct +(1− θ)(b+h− ct)):

∂Ep[a
F (p)]

∂δ
=− θpF

1 f(p
F
1 )

∂pF
1

∂δ
− (1− θ)pF

2 f(p
F
2 )

∂pF
2

∂δ

=θ
ce

δ2
(1− θ)ct + ce/δ

D2
1

f(pF
1 )− (1− θ)

ce

δ2
θct − ce/δ

D2
2

f(pF
2 )

=
ce

δ2
θ(1− θ)ct

(
f(pF

1 )

D2
1

− f(pF
2 )

D2
2

)
+

(ce)2

δ3

(
θf(pF

1 )

D2
1

+
(1− θ)f(pF

2 )

D2
2

)
.

The diagnostic accuracy is increasing in case (iii) when f(pF
1 )/D

2
1 ≥ f(pF

2 )/D
2
2.

Otherwise, the derivative of the accuracy has the sign of

−θ(1− θ)ct
(
f(pF

2 )

D2
2

− f(pF
1 )

D2
1

)
+

ce

δ

(
θf(pF

1 )

D2
1

+
(1− θ)f(pF

2 )

D2
2

)
,

which is positive if and only if

δ <
ce

θ(1− θ)ct

(
θf(pF

1 )

D2
1

+
(1− θ)f(pF

2 )

D2
2

)
1

f(pF2 )

D2
2

− f(pF1 )

D2
1

.

Q.E.D.

Proof of Proposition 6. To prove this result, we establish a more detailed result below.

Proposition A4. The range of priors leading to high effort under fee-for-service is monotonically increas-

ing in δ if and only if

1. ∆r= 0, or

2. ∆r > 0 and K ≥ 0, or

3. ∆r > 0 and K < 0 and

−θ(1− θ)(b+h)

ce
+

1

∆r

√
−K(b+h)

ce
≤ 0,

where

K ≜−θ2(1− θ)2(∆r)2(b+h)

ce
+

ce

b+h
(2θ− 1)2ct(b+h− ct)+ ceθ(1− θ)(b+h)+ θ(1− θ)(2θ− 1)∆r(b+h− 2ct).

Otherwise, the range of priors leading to high effort is unimodal in δ, increasing if and only if

δ <
2θ− 1

− θ(1−θ)(b+h)

ce
+ 1

|∆r|

√
−K(b+h)

ce

.
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Proof of Proposition A4. The derivative of pF
1 w.r.t. δ has the sign of

θ(1− θ)∆r(b+h)− ce((1− θ)ct + θ(b+h− ct)).

The derivative of pF
2 w.r.t. δ has the sign of

θ(1− θ)∆r(b+h)+ ce(θct +(1− θ)(b+h− ct)).

The derivative of c̄F w.r.t. δ has the sign of(
∆r

δ

)2

+ ct(b+h− ct)> 0.

From the proof of Corollary 1, we have

pF
2 − pF

1 =
c̄F − ce

θ(1− θ)δ(b+h)+ (2θ− 1)c̄F
.

Thus, ∂(pF
2 − pF

1 )/∂δ has the sign of

∂c̄F

∂δ
[θ(1− θ)δ(b+h)+ (2θ− 1)c̄F ]− (c̄F − ce)

[
θ(1− θ)(b+h)+ (2θ− 1)

∂c̄F

∂δ

]
=
∂c̄F

∂δ
[θ(1− θ)δ(b+h)+ c̄F (2θ− 1)]− (c̄F − ce)θ(1− θ)(b+h)

=
2θ− 1

b+h

[(
∆r

δ

)2

+ ct(b+h− ct)

]
[θ(1− θ)δ(b+h)+ c̄F (2θ− 1)]+ ceθ(1− θ)(b+h)

− θ(1− θ)(2θ− 1)(b+h)δ

(
ct − ∆r

δ

)[
b+h− ct +

∆r

δ

]
=

ce

b+h
(2θ− 1)2

(
∆r

δ

)2

+2(2θ− 1)θ(1− θ)δ

(
∆r

δ

)2

+
ce

b+h
(2θ− 1)2ct(b+h− ct)+ ceθ(1− θ)(b+h)

+ θ(1− θ)(2θ− 1)∆r(b+h− 2ct).

This expression is positive when

ce >
(b+h)θ(1− θ)(2θ− 1)∆r

[
−(b+h− 2ct)− 2∆r

δ

]
θ(1− θ)(b+h)2 +(2θ− 1)2

[(
∆r
δ

)2
+ ct(b+h− ct)

] . (A3)

The above is necessarily true when ∆r= 0.

We can write differently that ∂(pF
2 − pF

1 )/∂δ is positive when

ce

b+h
(∆r)2

(
2θ− 1

δ
+

θ(1− θ)(b+h)

ce

)2

+K > 0,

where

K ≜−θ2(1− θ)2(∆r)2(b+h)

ce
+

ce

b+h
(2θ− 1)2ct(b+h− ct)+ ceθ(1− θ)(b+h)+ θ(1− θ)(2θ− 1)∆r(b+h− 2ct).

Hence, if K ≥ 0, pF
2 − pF

1 is increasing in δ. If K < 0, pF
2 − pF

1 is increasing in δ if and only if:

−θ(1− θ)(b+h)

ce
+

1

|∆r|

√
−K(b+h)

ce
> 0 and δ <

2θ− 1

− θ(1−θ)(b+h)

ce
+ 1

|∆r|

√
−K(b+h)

ce

.

Q.E.D.

Proposition 6 directly follows from Proposition A4. Q.E.D.
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Proof of Corollary 3 If ct ≤ (b+ h)/2, the right-hand-side in (A3) is negative (because the numerator

is negative), and thus, the inequality (A3) holds.

Note if ct = 0, from Proposition 1, regardless of δ, the physician will exert a low diagnostic effort level and

order a test for all patients, so the range will remain empty. Q.E.D.

Proof of Lemma 6 As detailed in the proof of Lemma 5, we go from case (ii) to case (iii) as δ increases.

Using Proposition A3, we observe that social welfare is independent of δ in case (ii) when ∆r= 0. We now

focus on case (iii). We denote D1 ≜ (1− θ)ct+ θ(b+h− ct) and D2 ≜ θct+(1− θ)(b+h− ct), which are both

positive. We obtain

∂Ep[SW
F (p)]

∂δ
=

ce

δ2

[
(θCt − ce)

f(pF
2 )

D2

− ((1− θ)Ct + ce)
f(pF

1 )

D1

−(θCt +(1− θ)(b+h−Ct))
θct − ce/δ

D2

f(pF
2 )

D2

+((1− θ)Ct + θ(b+h−Ct))
(1− θ)ct + ce/δ

D1

f(pF
1 )

D1

]
When priors have a uniform distribution, because f(.) = 1, the result simplifies into

∂Ep[SW
F (p)]

∂δ
=

ce

δ3D2
1D

2
2

(u+ vδ),

where

u≜ ceCt[θD2
1 +(1− θ)D2

2] + ce(b+h−Ct)[(1− θ)D2
1 + θD2

2],

v≜−ce(b+h)D1D2 +(2θ− 1)θ(1− θ)(b+h)2(Ct − ct)(b+h− 2ct).

Because the partial derivative is proportional to a linear expression in δ, it can change sign at most once.

Furthermore, the slope is negative if and only if v < 0. When the slope is negative, the partial derivative

in case (iii) either remains negative, or is positive and then negative as δ increases. If b+ h− 2ct ≤ 0, then

v < 0. When b+h− 2ct > 0, we have v < 0 if and only if

ce >
(2θ− 1)θ(1− θ)(b+h)(Ct − ct)(b+h− 2ct)

D1D2

.

When b+ h− 2ct > 0 and ce is less than the above threshold, the slope is positive, so the derivative either

remains positive or is first negative then positive as δ increases. Q.E.D.

Proof of Proposition 7. Let A=Ct, B = b+ h−Ct, A′ = δct −∆r and B′ = δ(b+ h− ct) +∆r. Then,

adjusting parameters b,h, ct, δ,∆r means we seek A′ and B′ so that pF
1 = pS

1 and pF
2 = pS

2 , that is,{
(1−θ)A+ce

(1−θ)A+θB
= (1−θ)A′+ce

(1−θ)A′+θB′

θA−ce

θA+(1−θ)B
= θA′−ce

θA′+(1−θ)B′ .

After simplification, we find this system is equivalent to{
B−B′ =A−A′

θ(1− θ)(AB′ −A′B) = ce[θ(B−B′)+ (1− θ)(A−A′)]

⇔ A−A′ =B−B′ = 0 or

{
B−B′ =A−A′ ̸= 0
ce = θ(1− θ)(b+h− 2Ct).

A−A′ =B −B′ = 0 means Ct = δct −∆r and b+ h−Ct = δ(b+ h− ct) +∆r, which is equivalent to δ = 1

and ∆r= ct −Ct. In this case, it is easy to check that we also have c̄F = c̄S.
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Now consider the other solution, which is possible when ce = θ(1− θ)(b+h−2Ct). In this case, let D such

that D=B−B′ =A−A′. Combining the equations D=Ct−δct+∆r and D= b+h−Ct−δ(b+h−ct)−∆r,

it follows that D = (b+ h)(1− δ)/2. Plugging into the expression of c̄F , we find that c̄F = c̄S implies δ = 1,

which implies D= 0 and thus reduces to the previous solution. Q.E.D.

Proof of Proposition 8. We start with the case in which the physician exerts low effort. In this case,

the physician should order a test if and only if

pr+ +(1− p)r− + δpb− δct > rn − δph,

which is equivalent to

p >
δct − (r− − rn)

δ(b+h)+ r+ − r−
.

and provide a mild diagnosis otherwise. To ensure 0≤ δct−(r−−rn)

δ(b+h)+r+−r−
< 1, we need

r+ − rn > δ(ct − b−h). (A4)

If r+ − rn ≤ δ(ct − b− h), the physician never orders a test, regardless of p. Different from the case of the

fee-for-service payment scheme, no case exists in which the physician orders a test for all patients.

Next, we consider the case in which the physician exerts effort in the consultation process. Depending on

the private signal, two scenarios exists:

(i) If the consultation generates a positive signal, the physician updates the patient’s probability of suf-

fering from the positive condition:

Pr(s= s̄|σ= σ̄) =
θp

θp+(1− θ)(1− p)
.

The physician should order a test if and only if

θp

θp+(1− θ)(1− p)
· (r+ + δb)+

(1− θ)(1− p)

θp+(1− θ)(1− p)
· r− − δct > rn − δ · θp

θp+(1− θ)(1− p)
·h,

which gives

p >
(1− θ)[δct − (r− − rn)]

(1− θ)[δct − (r− − rn)] + θ[δ(b+h− ct)+ r+ − rn]
.

To ensure 0≤ (1−θ)[δct−(r−−rn)]

(1−θ)[δct−(r−−rn)]+θ[δ(b+h−ct)+r+−rn]
≤ 1, we need r+ − rn > δ(ct − b−h), which coincides with

(A4). If r+− rn ≤ δ(ct− b−h), the physician never orders a test, regardless of p. No case exists in which the

physician orders a test for all patients.

(ii) If the consultation generates a positive signal, the physician updates the patient’s probability of

suffering from the positive condition:

Pr(s= s̄|σ=
¯
σ) =

(1− θ)p

(1− θ)p+ θ(1− p)
.

The physician should order a test if and only if

(1− θ)p

(1− θ)p+ θ(1− p)
· (r+ + δb)+

θ(1− p)

(1− θ)p+ θ(1− p)
· r− − δct > rn − δ · (1− θ)p

(1− θ)p+ θ(1− p)
·h,
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which is equivalent to

p >
θ[δct − (r− − rn)]

θ[δct − (r− − rn)] + (1− θ)[δ(b+h− ct)+ r+ − rn]
.

To ensure 0≤ θ[δct−(r−−rn)]

θ[δct−(r−−rn)]+(1−θ)[δ(b+h−ct)+r+−rn]
< 1, we need r+ − rn > δ(ct − b−h), which coincides with

(A4). If r+− rn ≤ δ(ct− b−h), the physician never orders a test, regardless of p. No case exists in which the

physician orders a test for all patients.

Finally, we compare the two cases (i.e., the physician exerts low vs. high effort) and analyze the physician’s

effort decision.

(i) If r+ − rn ≤ δ(ct − b−h), the physician should choose a low effort level.

(ii) If r+ − rn > δ(ct − b−h), the physician’s effort decision can be determined as follows:

(1) If θ[δct−(r−−rn)]

θ[δct−(r−−rn)]+(1−θ)[δ(b+h−ct)+r+−rn]
< p ≤ 1, the expert always orders the test regardless of the

effort or the signal. Thus, the expert exerts low effort.

(2) If 0< p≤ (1−θ)[δct−(r−−rn)]

(1−θ)[δct−(r−−rn)]+θ[δ(b+h−ct)+r+−rn]
, the expert always provides a mild diagnosis regardless

of the effort or the signal. Thus, the expert exerts low effort.

(3) If (1−θ)[δct−(r−−rn)]

(1−θ)[δct−(r−−rn)]+θ[δ(b+h−ct)+r+−rn]
< p≤ θ[δct−(r−−rn)]

θ[δct−(r−−rn)]+(1−θ)[δ(b+h−ct)+r+−rn]
, the expert follows

the signal if exerting effort. The condition for the physician to exert effort is as follows:

(a) If (1−θ)[δct−(r−−rn)]

(1−θ)[δct−(r−−rn)]+θ[δ(b+h−ct)+r+−rn]
< p≤ δct−(r−−rn)

δ(b+h)+r+−r−
, the physician exerts effort if and only

if

[θp+(1− θ)(1− p)] ·
[

θp

θp+(1− θ)(1− p)
· (r+ + δb)+

(1− θ)(1− p)

θp+(1− θ)(1− p)
· r− − δct

]
+ [(1− θ)p+ θ(1− p)] ·

[
rn − δ · (1− θ)p

(1− θ)p+ θ(1− p)]
·h
]
− ce

> rn − δph,

which is equivalent to

p >
(1− θ)[δct − (r− − rn)] + ce

(1− θ)[δct − (r− − rn)] + θ[δ(b+h− ct)+ r+ − rn]
.

We can easily verify that

(1− θ)[δct − (r− − rn)] + ce

(1− θ)[δct − (r− − rn)] + θ[δ(b+h− ct)+ r+ − rn]
>

(1− θ)[δct − (r− − rn)]

(1− θ)[δct − (r− − rn)] + θ[δ(b+h− ct)+ r+ − rn]
.

To ensure

(1− θ)[δct − (r− − rn)] + ce

(1− θ)[δct − (r− − rn)] + θ[δ(b+h− ct)+ r+ − rn]
≤ δct − (r− − rn)

δ(b+h)+ r+ − r−
,

we need

ce ≤ c̄d ≜
(2θ− 1)[δct − (r− − rn)][δ(b+h− ct)+ r+ − rn]

δ(b+h)+ r+ − r−
. (A5)

If ce is above the threshold, the physician exerts low effort for any patient within this range of priors.
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(b) If δct−(r−−rn)

δ(b+h)+r+−r−
< p≤ θ[δct−(r−−rn)]

θ[δct−(r−−rn)]+(1−θ)[δ(b+h−ct)+r+−rn]
, the physician exerts effort if and only

if

[θp+(1− θ)(1− p)] ·
[

θp

θp+(1− θ)(1− p)
· (r+ + δb)+

θp

θp+(1− θ)(1− p)
r− − δct

]
+ [(1− θ)p+ θ(1− p)] ·

[
rn − δ · (1− θ)p

(1− θ)p+ θ(1− p)]
·h
]
− ce

> pr+ +(1− p)r− + δpb− δct,

which yields

p <
θ[δct − (r− − rn)]− ce

θ[δct − (r− − rn)] + (1− θ)[δ(b+h− ct)+ r+ − rn]
.

We can easily verify that

θ[δct − (r− − rn)]− ce

θ[δct − (r− − rn)] + (1− θ)[δ(b+h− ct)+ r+ − rn]
<

θ[δct − (r− − rn)]

θ[δct − (r− − rn)] + (1− θ)[δ(b+h− ct)+ r+ − rn]
.

To ensure

θ[δct − (r− − rn)]− ce

θ[δct − (r− − rn)] + (1− θ)[δ(b+h− ct)+ r+ − rn]
≥ δct − (r− − rn)

δ(b+h)+ r+ − r−
,

we need

ce ≤ (2θ− 1)[δct − (r− − rn)][δ(b+h− ct)+ r+ − rn]

δ(b+h)+ r+ − r−
= c̄d,

which is identical to (A5). If ce is above the threshold, the physician exerts low effort for any patient within

this range of priors. Q.E.D.

Proof of Proposition 9. Setting pd
1 = pS

1 and pd
2 = pS

2 gives

r+ − rn = b−Ct +h− δ(b− ct +h) = δct −Ct +(1− δ)(b+h)

r− − rn = δct −Ct.

We can verify that under the above solution,

c̄d =
(2θ− 1)[δct − (r− − rn)][δ(b+h− ct)+ r+ − rn]

δ(b+h)+ r+ − r−

=
Ct(2θ− 1)(b+h−Ct)

b+h
,

which is equal to c̄S. The proof is complete. Q.E.D.

A3: Alternate Definition of Social Welfare

In this section, we consider a definition of social welfare that differs from that used in the main body.

Specifically, we define an alternative social welfare as the combination of expected patient utility, payer

expenditure, and physician utility:

SW =Πpayer +Uphysician +E[Upatient].
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This definition contrasts with that used in the main body of the paper, in that we use as the second term of

social welfare the physician utility Uphysician =Πphysician+δE[Upatient] instead of physician’s payoff Πphysician.

This new definition of social welfare implies

SW =Πpayer +Πphysician +(δ+1)E[Upatient];

that is, the expected patient utility has a weight δ + 1, whereas in the main body of the paper, this term

has a coefficient equal to 1, which changes the weight of parameters b,h, and ct in social welfare. More

fundamentally, the weight of the patient utility in social welfare (δ + 1) is now guaranteed to exceed the

weight of the patient utility in the physician’s objective (δ). By contrast, in our base model, the weight of

the patient utility in social welfare is equal to 1, which could be lower than the weight of the patient utility

in the physician’s objective (if δ > 1).

The results focused on the physician’s optimal policy are unaffected. Only the results that make use of the

socially optimal policy are affected. Namely, Proposition 2 is modified as follows (the proofs of all modified

results are omitted for the sake of brevity; they are very similar to the proof of the corresponding results

presented in Appendix A2):

Let

c̄S ≜ (2θ− 1)(Ct + δct)

(
1− Ct + δct

(δ+1)(b+h)

)
pS
1 ≜

(1− θ)(Ct + δct)+ ce

(1− θ)(Ct + δct)+ θ((δ+1)(b+h)−Ct − δct)

pS
2 ≜

θ(Ct + δct)− ce

θ(Ct + δct)+ (1− θ)((δ+1)(b+h)−Ct − δct)
.

Proposition A5. The socially optimal policy is as follows:

(i) If (δ+1)(b+h)≤Ct + δct, the physician exerts low effort and does not order a test for any patient.

(ii) If (δ + 1)(b+ h)> Ct + δct and ce > c̄S, the physician exerts low effort for all patients and orders a

test if and only if p≥ (Ct + δct)/((δ+1)(b+h)).

(iii) If (δ+1)(b+h)>Ct + δct and ce ≤ c̄S, the socially optimal policy depends on the patient’s prior:

(a) if p≤ pS
1 , the physician exerts low effort and does not order a test;

(b) if pS
1 < p≤ pS

2 , the physician exerts high effort and follows the signal (i.e., if the signal is positive,

order a test; if the signal is negative, do not order a test);

(c) if p > pS
2 , the physician exerts low effort and orders a test.

Although the thresholds for the different cases are slightly modified, the general structure of the socially

optimal policy remains unchanged.

Proposition 4 is modified as follows:

Proposition A6. When ∆r is such that the range of priors with high effort is at its widest under the

fee-for-service physician’s optimal strategy, that range is wider than the socially optimal range if and only if

either Ct + δct < c0 or Ct + δct > c1, where

c0 ≜
(δ+1)(b+h)

2
(1−√

q) ; c1 ≜
(δ+1)(b+h)

2
(1+

√
q) , q≜

ce

(2θ− 1)(1+ δ)[ce(2θ− 1)+ θ(1− θ)δ(b+h)]
.

Otherwise (i.e., c0 ≤Ct + δct ≤ c1), the socially optimal range of high effort is wider than the fee-for-service

range of high effort for all ∆r.
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The definitions of c0 and c1 are modified, but the main difference from the result in the base model is that

δ > 1 no longer guarantees fee-for-service leads to a wider range of priors leading to high effort than the

social optimum. The reason is that in the base model, δ > 1 corresponds to a situation where the social

planner weighs the patient utility less than the physician—a case that can no longer occur with this alternate

definition. However, the insight that fee-for-service may lead to a wider range of priors leading to high effort

than the social optimum remains true. It would be the case for sufficiently low or sufficiently high cost of

the test (condition similar to that obtained in the base model for δ≤ 1).

The intermediate result Proposition A3 is modified as follows:

Proposition A7. Under fee-for-service, the average population social welfare is as follows:

(i) If ∆r≤ δ(ct − b−h), then Ep[SW
F (p)] =−(δ+1)hµ;

(ii) If δ(ct − b−h)<∆r < δct and ce > c̄F , then

Ep[SW
F (p)] = b(δ+1)µ− (Ct + δct)F̄

(
δct −∆r

δ(b+h)

)
− (b+h)(δ+1)Q

(
δct −∆r

δ(b+h)

)
;

(iii) If δ(ct − b−h)<∆r < δct and ce ≤ c̄F , then

Ep[SW
F (p)] = b(δ+1)µ−Ct − δct − ce(F (pF

2 )−F (pF
1 ))+ (Ct + δct)(θF (pF

2 )+ (1− θ)F (pF
1 ))

− (Ct + δct)
(
θQ(pF

2 )+ (1− θ)Q(pF
1 )
)
− ((b+h)(δ+1)−Ct − δct)

(
(1− θ)Q(pF

2 )+ θQ(pF
1 )
)
;

(iv) If ∆r≥ δct, then Ep[SW
F (p)] = (δ+1)bµ−Ct − δct.

Using this intermediate result, Proposition 5 is modified as follows:

Proposition A8. If ce > (2θ−1)δ(b+h)/4, the value of ∆r that maximizes the average population social

welfare under fee-for-service is

∆r=

{
−δ(Ct − ct)/(δ+1) if (δ+1)(b+h)>Ct + δct

any value within (−∞,−δ(b+h− ct)] otherwise.

The above result is similar to that in the base model (with slightly modified optimal ∆r and associated

condition) and leads to the same insights.

Lemma 6 is modified as follows: suppose ∆r = 0 and the patient priors are uniformly distributed. For δ

below a threshold, social welfare is monotonic with respect to δ, with a slope equal to b/2− ct+(ct)2/(2(b+

h)), which is positive if b+ h− ct >
√

h(b+h), and negative otherwise. This property means social welfare

may be decreasing in δ in this region (when 0< b+ h− ct <
√
h(b+h)). Above the threshold, analytically

studying the sign of the derivative of social welfare with respect to δ is intractable: the derivative can no

longer be written as a linear expression of δ divided by δ3. Instead, it is a polynomial of degree 3 divided by

δ3. However, we find numerically that in this region, social welfare may also be decreasing with δ.

Let us now focus on the incentive-alignment results (in Section 6.4). Proposition 9 is modified as follows:

Proposition A9. The physician’s effort and testing decisions maximize social welfare under a diagnosis-

based payment scheme with r− − rn = −Ct and r+ − rn = b + h − Ct. In particular, r− − rn < 0 and, if

b+h>Ct, then r+ − rn > 0.

The result indicates that, even with the alternate definition of social welfare, a diagnosis-based payment

scheme can align the physician’s decisions to the social optimum. The main difference from the result obtained

in the main body of the paper is that there is no longer any condition on δ to ensure r+ − rn > 0.
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