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Abstract: Hayakawa (1990) has very recently studied the behavior of the power for several large sample tests for the mean direction 

vector of the Langevin distribution. These tests are not known to possess any non-trivial optimal property. Here we derive some 

multiparameter locally optimal tests, e.g., best first and second directional derivative tests and locally most mean powerful tests. For 

the case when K, the concentration parameter, is known, these tests are exact and some cut-off points are presented. For the case 

when K is unknown, we propose C(a)-type tests which are expected to be asymptotically locally optimal. Some open problems are 

indicated. 

1. Introduction 

For testing the mean direction vector of the Lan- 
gevin distribution L(p, K), Hayakawa (1990), has 
compared the Likelihood ratio test, Rao’s test, 
Watson’s test and modified Wald’s test, using 
asymptotic expansions and simulations. In gen- 
eral, no small sample optimal properties of these 
tests could be claimed and as expected none of 
them shows uniform dominance. Also they are 
known to be asymptotically equivalent. These large 
sample tests, usually employed as the last resorts, 
have been widely criticized. 

The least one should require of a test, is that it 
be admissible. Although the Langevin distribution 
is a member of the regular exponential family, 
difficulties arise when testing for CL. Even with K 

known, the distribution reduces to a curved ex- 
ponential family and general approaches e.g. Bayes 
test (Kiefer and Schwartz, 1965), Stein’s (1955) 
generalization of Birnbaum’s theorem etc. to ob- 
tain admissible tests for the exponential family are 
thus either not applicable or difficult to compute. 
This has made the locally best or locally most 

powerful (LMP) test (see e.g. Ferguson, 1967) a 
popular choice in the one-parameter case. Based 
on the criterion of statistical curvature (Amari, 
1985; Efron, 1975), one can even initially obtain 
an idea of the performance of the LMP test and 
the sample size required to expect it to be reasona- 
ble. A unique LMP test is, of course, admissible. 

However, for the multiparameter case, there are 
several versions of local bestness and hence several 
types of LMP tests. In this note, we take up the 
problem dealt by Hayakawa. But, in contrast to 
his consideration of the large sample tests whose 
(non-trivial) optimality properties are unknown, 
the aim here is to derive tests which are locally 

optimal. We also point out the difficulties that one 
encounters in fulfilling this aim and suggest some 
open problems for future research. Some numeri- 
cal results through simulations, are also presented. 

We first consider tests which maximize the 
power in a preferred direction (John, 1971). Since 
maximizing power in any given direction will usu- 
ally result in pulling down powers in other direc- 
tions, we consider next maximizing ‘overall’ power. 
Type D or locally most total power unbiased 
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(LMTPU) test proposed by Isaacson (1951) maxi- 
mizes total curvature of the power hypersurface. 
However, the critical region has to be guessed and 
is thus practically inconvenient. Well known opti- 
mal tests may not be optimal in the sense of total 
power as e.g. Hotelling’s T2- and R*-tests (Giri 

and Kiefer, 1964). Finally LMTPU test may not 
even exist (e.g. SenGupta and Vermeire, 1986, 
henceforth SV) as for instance, for the important 
problem of testing p = 0, a2 = 1 for a normal 
population. Locally most mean powerful unbiased 
(LMMPU) test proposed by SV maximizes mean 
curvature of the power hypersurface, is easy to 
construct and coincides with several popular tests 
in standard problem, e.g., Hotelling’s T*, a test in 
linear models (Scheffe, 1959) etc. We derive the 
LMMPU test. A similar approach due to Cohen et 
al. (1985) will not be discussed here. It should be 
pointed out that for both the directional derivative 
and the LMMPU test, requiring unbiasedness po- 
ses computational problems. For the former, the 
test depends on the direction chosen inextricably. 
For the latter, we show elsewhere that the LMP 
test is globally unbiased in the one-parameter case 
(SenGupta and Jammalamadaka, 1989, henceforth 
SJ). We conjecture that for the LMMPU test also 
(because of the symmetry of the Langevin distri- 
bution), the coefficients corresponding to the local 
unbiasedness conditions can be taken to be zeros 
through approaches similar to those for the Cauchy 
or normal distributions or through variations of 
Anderson’s theorem (Tong, 1980). Thus the LM- 
MPU test will result in a very simple criterion. 

In case K is unknown, the problem is open. In 
this case there is no useful exact invariant or 
unconditional similar tests. Thus standard meth- 
ods for obtaining unconditional LMMPU similar 
(e.g. Sv), LMMPU Invariant, locally minimax (e.g. 
Giri and Kiefer, 1964) or locally best invariant 
(e.g. Kariya, 1978) tests through Wijsman’s repre- 
sentation of the distribution of the maximal in- 
variant and application of the Hunt-Stein theo- 
rem, are useless. For the one-parameter case, as an 
unconditional optimal test, the asymptotically 
LMP test has been derived in SJ as the Neyman’s 
C(a) test (Neyman, 1959), since all the conditions 
are satisfied. There is quite some interesting litera- 
ture (e.g. Chibisov, 1978) also on the asymptotic 
distribution of the C(a) test statistic. However, 
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for the multiparameter case, we are unaware of 
any generalization of the C(a) test. For the K 

unknown case, we thus propose, recalling our re- 
sult for the one-parameter case, replacing the lo- 
cally optimal tests for the K known case by R,, the 
MLE of K under H,. 

Clearly local optimality does not guarantee 
good global properties like monotonicity etc. and 
even consistency, which need to be investigated 
separately. These global properties have been 
established for the one-parameter case by us in SJ 
and one would expect them to hold good for the 
multiparameter case also. Further, since good lo- 
cal behavior is often practically essential and theo- 
retically necessary for good global behavior, lo- 
cally optimal tests are definitely reasonable 
candidates for multiparameters tests of hypothesis 
in general, and for testing the mean direction 
vector of the Langevin distribution, in particular. 

2. Locally best test 

A p-dimensional unit random vector X follows 
the Langevin or the p-variate von Mises-Fisher 
distribution L,(p, K) with mean (modal) direction 
vector p and concentration parameter K if its 
density function on the surface of a unit hyper- 
sphere Sp, centered at the origin, is given by 

f(X; CL, K) = a,‘(k) exp(&), (2.1) 
K > 0, P’c1=1, 

xELsp={X~xER~, x’x= JJxJJ*=l}, 

a,(K) = (2a)P’21p,2_1(K). K’-“*, 

and I,(K) being the modified Bessel function 
of the first kind of order v. Consider the polar 
transformation y = u(y), y and y being p- and 
( p - l)-dimensional vectors respectively. Then, 
letting 8 and a be the spherical polar coordinates 
of x and p respectively, the p.d.f. of 0 from (2.1) 
can be written as 

g(d, a, K> = u,‘(K)[exP{KU’(~)U(a)}]bp(e), 
oGe,GT, i=l,_.., p-2, oGeP_,<2a, 

p-1 

dSP = b,(B) de, b,(e) = n siri-’ ej_l, 
J=2 

b2(e) = 1. (2.2) 
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For p = 2, the distribution is termed the von 
Mises or circular normal distribution and reduces 
to 

g,(8; ff, K)={2’d,,(K)}-1eXp{KCOS(8-~)}, 

0 < 0 < 27, (2.3) 

and y, = u,(y) = sin y, y, = +(y) = cos y. 
For p = 3, the distribution is termed the Fisher 

distribution and reduces to 

= {K/(471 sin K)} exp[ K {cos a, cos 61 

fsin a, sin 6, cos(8, - az)}] sin B,, 

O<tl,<T, o<e,<2a, (2.4) 

and y, = U,(Y,, Yz>, i = 1, 2, 3, Y, = 

sin y, sin y2, y2 = sin yr cos y2, y, = cos y. For a 
random sample X,, . . . , X,, of size n from the 
Fisher distribution, the p.d.f. of the sufficient sta- 

tistic R = (R,, R,, Rx)‘, Ri = nx,, i = 1, 2, 3 un- 
der a = 0 is given by 

h,(R) = {2+)}“h,(R) exP(kR,). 

The p.d.f. of R, is given by 

(2.5) 

f(R,) = {c(~)}~%.~-i(R3) exp(KRj)7 

IR, I <n. (2.6) 

Further, under the polar transformation, letting 
R2 = E:=,Rf, the p.d.f. of R given R, is 

I&I <R<n, GH,(R)=&,,,p~(R). (2.7) 

The expressions for C(K), h, and +,, j are available 
from Mardia (1972). In practice we will be con- 
cerned mostly with p < 3 and the above expres- 
sions will be found useful to give exact results. 
For general p, (2.1) being a multivariate generali- 
zation of (2.3) and (2.4) is often termed the 
p-variate von Mises-Fisher distribution. When /J 
and K are unknown, (2.1) is a member of the 
p-dimensional regular_exponential family with the 
sufficient statistics X for the parameter vector 

(/Ji,...,pp-i, K)‘. However, when K is known, say 
K = Kg, this distribution becomes a number of the 
curved exponential family (CEF), a (p - 1, p) 
CEF (in the notation of Amari, 1985) - im- 

bedded in the p-dimensional regular exponential 
family 

g(x; c19 KO) 

= C(Ko, p) exp{ -;‘%(V)‘(X-p)}> 

x and p~~[-l, l]‘, 

with the p-dimensional sufficient statistic x for 
the (p - l)-dimensional parameter vector 

(Pi> . . . > Pp-1)’ or equivalently for a = 

(a,,...,a,-,)‘. 
It is clear from (2.3) that a is a location param- 

eter. To identify ~1 in (2.1) as a location parameter, 
note simply that p’x = 1 - i( x - p)‘( x - cc) since 
x’x = p’p = 1. Hence results pertaining to a loca- 
tion parameter vector may be exploited if neces- 

sary. 
We are interested in tests for the parameter a. 

Note from (2.3) that without loss of generality we 
can test for H ,,: a = a0 = 0, i.e., for Ha: /J = cl,, = 
(0, 1)‘. For the multiparameter case, Ha: a = a0 = 
0 corresponds to H,: p = p0 = (0,. . . ,O, 1)‘. Thus 
H,: p=(O,..., 0, 1)’ has received considerable at- 
tention (Mardia, 1972) and large sample tests, e.g. 
likelihood ratio test, have been investigated. In 
fact, since p is the location parameter, in testing 
for the mean direction one may without loss of 
generality, confine to this specific pO. 

Case 1. K known 

Note the CEF representation of (2.1) for known K. 

Rather than searching for an ancillary statistics 
(exact, local, second order etc.) and using a condi- 
tional test based on the principle of ancillarity by 
Fisher, we propose here an unconditional test. 
Unfortunately the distribution of the sufficient 
statistic _% is not available in a closed form and we 
will need to deal with the likelihood function 
using the original observations. Also let K = 1. We 
will present unconditional small sample tests which 
are locally best (most powerful) according to dif- 
ferent notions or criteria. 

(a) Maximum directional power test. We first 
consider a test ‘p that is best for detecting small 
deviations from H,. It is derived by maximizing 
power in a preferred direction, say vO, through the 
use of the generalized Neyman-Pearson lemma. 
This test has the optimal property of being a 
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locally best test in the sense that for every other 
test @ of the same size, there is a neighborhood 
N(Q) of q,, such that the power of cp is not 
smaller than that of $. Further @ maximizes the 
rate of change of the power function in the direc- 
tion Q. A similar approach has been used by John 
(1971) to obtain locally optimal tests for covari- 
ante matrices of multivariate normal populations. 

The first directional derivative of In f(x; ~1, 1) 
with respect to p,‘s, i = 1,. . . , p - 1 in the direc- 
tion n=(nr,..., ~-t) at CL=CL~, CL~CL~ = 1, is 
given by 

p-1 = C x,T, - (xp/PpO) 
1 

where we recall that 11.: = 1 - E[-‘pLf. Then, for a 
random sample xl, . . . , x,, of size n, by the gener- 
alized Neyman-Pearson lemma, the test that max- 
imizes the corresponding first directional deriva- 
tive of the power function has the critical region 

p-1 

*: T= C X,V, - (Xp/~po) 
1 

(2.8) 

where C is chosen to give the desired level of 
significance. 

Consider for example n,, = al, a = 
+ l/d-. Further, as a special case, let pa1 = 

(0,. . ., 0, 1)‘. Then the critical region reduces to 

p-1 

w: q= C X,> (<) C for a> (c)O. 

As another special case, let po2 = (l/G) 
X(1,..., 1)‘. Then, we have the critical region as 

p--l 

w: T,= c Xi-X,,> (<) K fora> (c)O. 

For p=2, {pO=(O, 1)‘) = {ao=O} and the 
test for Ho: 0~~ = 0 against H,: (Y > 0 then has the 
critical region 

which agrees with that previously obtained by SJ. 
Also, 

T2 = Xl - X2 

= isin8,- tcos *, /n 
i 1 1 i 

= (S- C)/n 

=s-c. 

The joint distribution of S and C are available 
from (4.5.4) in Mardia (1972) from which the 
p.d.f. of T, may be obtained. For p = 3, Tl = RI 

+x2 and T, = 2, + R, - R3 where Ri = R/n, i 

= 1, 2, 3. The p.d.f.‘s of Tl and T, may be ob- 
tained from (2.5). 

For other directions n and p. in general, the 
critical region will depend more intricately on 
these vectors chosen. These tests remind us of the 
one-sided LMP test in the one-parameter case and 
as in there, here also unbiasedness, either local or 
global, for the multiparameter case needs to be 
verified. 

Recalling the two-sided locally unbiased LMP- 
test for the one-parameter case, we may attempt 
as above to obtain a test that maximizes the 
second directional derivative among tests for which 
the first directional derivative is zero. This may be 
looked upon as maximizing ‘directional curvature’ 
after invoking the condition of ‘directional unbi- 
asedness’ in the direction q at pO. This test, how- 
ever, is not unbiased or even LU. The conditions 
for a test to be LU in the multiparameter case are 
given below with the discussions on the LMMPU 
test. The critical region is given by 

a: f=n2T2 

- C - C,T>O, 

where T is defined in (2.8) and C and C, are 
constants to be so chosen as to satisfy the condi- 
tions of size and directional unbiasedness. It is 
easily seen that this test depends on the direction 
inextricably for a general pa. However, for pal 
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and po2 it is given respectively by the simpler 
forms 

p-1 
-nF, ( i C vf fB,>O 

1 

and 

[ 

p-1 

1 
2 

w: f2=n2 c (VXp)vli+A2 

-~p:JF[~1%+(p$%~2] +B2>0. 

For p = 2 and p = 3 one may attempt to derive 
the exact distributions for f, f,,, and f2 using 
(4.5.4) of Mardia and (2.5) respectively. 

A two-sided size-a test that is locally direc- 
tional unbiased for any direction can also be de- 
rived easily following John (1971). For example, 
the acceptance region W can be given by, W,: 
7; E [ ci,, c,*], 71’s corresponding to pO,, i = 1, 2, 
defined as above, and where c,, and ciZ are chosen 
so that 

(1) [;‘g,,(t,) dt, = 1 -a 

and 

(2) jc’h,(t,) dt, = 0, 
C,I 

where gO( t,) is the null density of Ti under poi, i 
= 1, 2, and K = 1. These tests, however, do not 
maximize the second directional directional de- 
rivative of the power function and we are not 
aware of any optimal property of such tests. It 
would be interesting to derive a test which is 
optimal in the sense that it maximizes principal 
(power) curvature corresponding to some prin- 
cipal (power) direction of the (test cp) power hy- 
persurface /3 at pclo, rather than considering any 
arbitrary direction 9. This is left for future re- 
search. 

Note the elegant forms for Tl and T, and even 
T. For p = 3, Table 1 gives the cut-off points for 
the first directional derivative test based on Tl 
and T, with a > 0. 10000 values of each T, i = 
1, 2, were generated corresponding to each combi- 
nation of (K, ,n, a), K = 1, 5, 10; n = 19, 15, 20 
and cx = 0.01, 0.05, 0.10. Though the exact distri- 
butions seem quite complicated, the asymptotic 
distributions, however, can be easily given from 
which the cut-off points for large values of n may 
then be obtained. By the central limit theorem, for 
a random sample X,, i = 1,. . . , n, for large n, 

v%(x- 19) = N,(O, a) where 8, 52 and more re- 
fined approximations are given in Hayakawa 
(1990). Then for large n, the null and non-null 
distributions of T and T are easily obtained. For 
example, & 7] = N(a:8, a:&,), i = 1, 2, where 
a, = (l,..., 1, 0)’ and a2 = (l,..., 1, - 1)’ respec- 
tively. For large n, the null and non-null distribu- 
tions of F and c, i = 1, 2, can also be easily 
derived by use of the Delta method. 

Table 1 
Cut-off points of r,- and T,-tests for certain values of K, n and (Y 

a n =lO n=15 n = 20 

G T, ? T, Tl T2 

K=l 0.10 
0.05 
0.01 

K=5 0.10 
0.05 
0.01 

!c=lO 0.10 
0.05 
0.01 

0.3422 0.0942 0.2550 - 0.0021 0.2442 - 0.0244 
0.4447 0.2005 0.3225 0.0950 0.3015 0.0456 
0.6279 0.4173 0.4671 0.2435 0.4143 0.2506 

0.2232 - 0.5547 0.1860 
0.2796 - 0.4790 0.2410 
0.4106 - 0.3296 0.3259 

0.1580 -0.7315 0.1325 
0.2014 - 0.6847 0.1694 
0.3111 - 0.5803 0.2536 

- 0.6081 
- 0.5353 
- 0.4217 

- 0.7596 
- 0.7174 
- 0.6371 

0.1629 
0.2057 
0.2882 

0.1298 
0.1688 
0.2149 

- 0.6248 
- 0.5705 
- 0.4850 

- 0.7591 
- 0.7214 
- 0.6697 
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(b) LMMPU and LMTPU test. We present 
below some basic notions and results for the LM- 
MPU and LMTPU tests which are two-sided LU 
tests. For more details, the reader is referred to 
sv. 

Consider testing H,: /J= cl0 against H,: p # /.q,. 
A level (Y test ‘p is (strictly) LU if &,,(~a) (>) > (Y 
for all p in some neighborhood of pcLo. A test ‘p 
with /3(p) in C2 strictly LU of level (Y iff (1) 
p(pO) = (Y, (2) /?(~a) = 0, and (3) j?(p,,) is positive 
definite. The level (Y test cp is LMMPU if it is LU 
and for any other LU level (Y test 4, 3 and r, > 0 
(depending on $) such that 

J,.&(P) dCL’ Q+(P) d/J? 
J 

S,= {P: IP-cl01 <r}, r<ro. 

Let H = tr p(po) and K= det /!(po). A test-q is 
regular LMMPU/LMTPU iff P(r) satisfies (l)- 
(3) and (4) Hq > H+ / (4)’ K, > K, for any other 
level a test 4. LMMPU test maximizes the mean 
curvature H while LMTPU test maximizes the 
total or Gaussian curvature K. A critical region 
for a LMTPU test needs to be guessed and may 
not exist. We leave this for future research for our 
problem. The critical region for LMMPU test, 
however, can easily constructed using the result 
below, given as Theorem 2 in SV. 

Result 1. Let f(x, 8), 8 E 52 C iRk, be a k-parame- 

ter family of densities, E R”. Let Ho: 0 = 0, be a 
null hypothesis. Assume that the integral and de- 

rivative can be interchanged in p. Consider any 

Bore1 set w of the form 

o: $i;.(x, e,) > cf(x, 4) + &Xx, e,), 
1 

(3-l) 

where the constants c, c,, . . , , ck satisfy the condi- 
tions 

(1) Jfcx, 8,) = a 
w 

and 

(2) J~(x, e,)=O (l~i~k). 
0 
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Moreover, if w is essentially the on& set with the 
property 

is positive definite, then w is regular LMMPU level 

(Y critical region. If B(9,) is positive semidefinite, 

one has obtained a second-order LMMPU level a 

critical region. 0 

Expressed in the log-likelihood, , 1(x, 6) = 
In f (x, e), we have 

W: 5 [i;Ax, 8,) + i:b, e,)] 

2 c + &&, e,). (3.2) 

Application of Result 1, on assuming K = 1 and 
recalling $ = 1 - C{-$y, gives 

p-1 

>c+ c c,u, (3.3) 

where ui = P~~{(&/P,~) - (X,/P~~)}, and c and 
ci, i = 1,. . . , p - 1, are so chosen as to satisfy the 
following conditions: 

(1) /,fo=a> 

t2) Ji x xp 
L- 

I”0 fo=% 
w Pi0 p ) 

i=l,...,p-1, 

(3) (a,,;,) is positive definite 

where 

j?,,j;o = -nKo~Jpfo. i#j, 
P w 

and 



Volume 12, Number 6 STATISTICS & PROBABILITY LETTERS December 1991 

i, j=l >..‘> P-1, 

and where f0 = f( x; pa, IQ) defined in (2.1) being 

the p.d.f. of X under Ha: p = pa with K = K~ 

known. 
For the case pa = pai = (0,. . . ,O, l)‘, K~ = 1, the 

above conditions reduce to 

(1) l;h=,, 

(2)’ / X,f0 = 0 
w 

and 

(3)’ Jwj(n?l)z-nZ,)f,>O, i=l,...,p-1 

Note that since in this case, &j;O = 0, (3) greatly 
simplifies and reduces to (3)‘. 

In many problems, e.g. in univariate and multi- 
variate normal distributions considered in SV, c, ‘s 
of (3.2) can be chosen to be zeros by exploiting the 
symmetry of the distribution. (See also Ferguson, 
1967, p. 239.) It is also well-known that this is true 
for large samples in the one-parameter case under 
very general regularity conditions. For our case, 
let c, = 0, i = 1,. _ . , p - 1. Then (3.3) reduces to 

0: ~*+~p(R2- I$l*l)li*>c (3.4) 

i.e., 

0: v,= (R2-X;) -npFP>,c (3.5) 

where x2 = ( R/YI)~ = CfX,’ is obtained through 
the polar transformation and c is chosen to meet 
the desired level LY. 

We recall from Hayakawa (1990) that for large 
n, by virtue of the central limit theorem, fi( x - 
APL) - N,(O, a) where A = d In a,(K)/dK and 52 
= A’pp’ + A( I - /.$)/K, A’ = d A/dK. Thus x 

and also Xp have asymptotically symmetric (nor- 
mal distributions). Further, V, is an even function 
of x,, i=l,..., p - 1. Hence, it is expected that 
asymptotically the critical region in (3.5) will 
satisfy the conditions of null gradient vector and 
positive definite Hessian matrix for the power at 
ccc,. Generalization of the approach using Ander- 
son’s theorem (Tong, 1980) as exploited in SV for 

the LMMPU test for the mean vector of the 
multivariate normal distribution may be helpful. 
Note, however, that both E(x) and Disp(X) 
depend on ~1. Certainly w in (3.4) has a very 
elegant form and the distribution of V for large 
samples can be easily obtained through the Delta 
method. We conjecture that (3.5) will give a LM- 
MPU test. 

In general, the cut-off points for I/ have to be 
obtained through simulation since its distribution 
is quite complicated. However, for all practical 
purposes, p < 3 and in these cases the distribution 
may be obtained analytically. For p = 3, let W = 
n2V2 = ( R2 - R:) - 3n2R,. Then, 

F,(w) = j@(t) - G(-t)] f(u) du> 
u 

t = 1.4~ + 3n2u + w 
1 

where G(t) = F(R 1 R, = u) and f(R3) are availa- 
ble from (2.7) and (2.6) respectively. One may, in 
this case, thus obtain the cut-off points through 
numerical integration. 

Case 2. K unknown 

Let K be unknown. Then the principle of similar- 
ity, even for p = 2 leads to a conditional test. 
There is also no useful invariance with respect to 
K. The aim here is to obtain unconditional optimal 
tests. For p = 2 it has been shown in SJ that the 
conditions for Neyman’s C(a) test to be valid are 
all satisfied with K G K-c co. A C(a) test is 
asymptotically LMP for the one-parameter case. 
Imitating the statistic for the one-parameter case, 
we propose C( cr)-type tests for the multiparameter 
situation. We hope that these tests will also be 
asymptotically optimal-optimality corresponding 
to the K known case - asymptotically best first/ 
second directional derivative test, asymptotically 
LMMPU test, etc. Let S(K) be a test statistic 
when K is known. Under H,: p=pa, when K is 
unknown, let I?, be a locally root n consistent 
estimator of K. For example, the maximum likeli- 
hood estimator is easily seen to be such an estima- 
tor. Define 

s^= [S(f?,) -~o{S(K)}]/[VBr,{S(K)}]“2. 
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For the K unknqwn case, we propose the test 
statistics f, 6, Y?, f. and c, i = 1, 2, remem- 
bering to replace by $0 wherever we had used 
K = 1 previously. For T and 6, i = 1, 2,’ E, = 0 = 
&. Hayakawa (1990) has shown that E(X) = Ap 
and Var( X) = D for all n. So E, and Var, for f 
and f are easily obtained for all sample sizes, 
while those for the others may be obtained for 
large samples by use of the asymptotic normality 
of X. The exact distributions of these test statistics 
are complicated and cut-off points have to be 
obtained through simulation or by the method of 
bootstrap. Asymptotically, however, these will all 
be normally distributed. Investigations in these 
directions are left for future research. 
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