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one needs to compare variabilities of several mul-
idimensional populations. The concept of standardized generalized variance (SGV)
s introduced as an extension of the concept of GY. Considering multivariate nor-
mal populations of possibly dilerent dimensions and general covariance matrices,
LRTs are derived for SGVs. The criteria turn out to be elegapt multivariate analogs
o those for tests for variances in the univariate cases. The null and nonnull dis-
tributions’ of the test criteria are deduced in computable forms in terms of Special
Functions, €.g., Pincherle's H-function, by exploiting the theory of calculus of
residues (Mathai and Saxena, Ann. Math. Statist, 40, 1439-1448).  © 1987 Academic

ress, Inc.

In many practical problems,

1. INTRODUCTION AND SUMMARY

h Cov(X)=2Z2>0. In many
lio analysis, the overall
y in agricultural

¢t X be a p-dimensional random vector wit
applied problems, e.g., the overall risk in portfo
Diecision in statistical quality control, the overall variabilit
Statistics, the overall homogeneity in cluster analysis, etc, a measure of

-
‘overall scatter becomes pecessary. Use of 2 will require specification on
the variables are

ach variable individually while tr Z will be useless in case
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standardized. Wilks [14, 15] has proposed the generalized variance (G
|21, for such a purpose and has shown that it possesscs many desirap
properties. Intuitively also, since |Z] is proportional to the vo]um
p-dimensions the greater the GV, the greater will be the scatter of th j
multidimensional points. Further, for elliptically symmetric distribug;
and, in particular, the multivariate normal distribution, with location’
parameter yu, the higher the value of GV, the flatter will be the probab‘ht
surface at X' = u and the less the concentration there.
A further generalization of overall scatter seems nccessary Conside;s
generalized canonical variable analysis [13]. Let the criteriop: “fo
optimization be the GV. There may be several types of possible group1
[4, p.77] which might possibly differ also in their dimensions, ie, -
number of groups. Naturally the smallest dimensional GCV will be the b _
choice if its GV is the smallest. However, it will not be meaningful heré
‘compare GVs of different dimensions. Similarly, there are many 51tuat1 "
in which one might be interested in comparing overall scatter for popl,_ '
ulations of different dimensions, e.g., portfolio analysis with different
bers of entries, additional or missing information on components of |
same item produced by different factories, etc. For such a compariso
propose as a measure, the standardized generalized variance (SGV), | Z|
This scales down the values (in case the components are measured i

of GV and SGV can be found in [6 12].
The prob]em of estimating GV has received much attention, wherca

form using the theory of the caiculus of residues. An example is alsd fvent

2. LIKELIHOOD RATIO Tests FOR SGVs

Let X~ N,{(u, 2'). Throughout our discussion, unless otherwise state we:
will assume X to be nonsingular. Denote the population SGV of X;° .
by 4% and that of the sample, |.S/N|# by 4% where S is the sample sums 0f;
products matrix based on a sample of size N. Also denote |S|#
[ Note that Anderson [ 1] defines GV with the divisor N — 1 instead |
A straightforward derivation of the LRTs through direct different
here can be quite frustrating. :
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Let Xy, .., Xy be @ random sample from N,(y, 2) and suppose we want
1o test Ho: A% =} (specified) against H,: A2 #o2. (Note that Ho is
;cqulvalent to the hypothesis that the GV, |.2|, has the specified value o).
E:L"Smce the H, does not constrain yx, we have gi=2X. To find the MLE of X
der H,, consider

N . ?
S=InC+ Z (Eln 9:“%)+g(lnsz“’— Y. Inég,—In a%“’),
f=1

i=1

\where C={(2m)~""S| 7" 1 is the Lagrange undetermined multiplier, §,,
f,__ 1, .., P are the charactenstlc roots of Z 'S and we have used the fact
fthat |E|”P— c? is equivalent to Ins¥—3%_, Inf,=In¢?, s = [Sl le-
fcrcntlatmg & w.r.t. 8, and equating to zero we have N-1=8,i=1,.

So, _

(N=AY =s*[c¥ =0,=s63, i=1,..,p.

chce L,/Lo=C " exp(—(p/2) a'?)= f(a), say, where C,= (¢/N)""
'zanda s[5 However,

fla)ta<N? .and la> N?

:So, we get, .

::.Resultl The LRT for H,:4°=02 agamst H,:A*#06% can be
equwalently given by

Reject H, iff d¥/e¥>a, or <a,

whcre ag and a, are constants to be.determined from the specified level of
thc test.

5 he following two results can be proven also using the same technique as
above.

esult 2. The LRT for Hy:d?=4A% against H,:A2#42 can be
ivalently given by

Reject Hy, il R=d¥di<r, or.  >ry,

Where r, and r, are constants to be determined from the specified level of

The LRT for Hy: 42, all equal against H,: at least one of the
- k, differ is given by

k
Reject Hy  iff n= ][ (d%/63)%"" <1,

a1
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where 63 =2 p,;s}/Zp,N,; and where n, is a constant to be determined froﬁé
the specified level of the test. o

referred to the defmitions and discussions in Mathai [7—9] or Sé,‘?
Gupta [12]. :

3.2 Exact Distributions of d**/c%’ and R for p, = p,

Since the sample GV, 4% and the ratio R? (for p,=p,=p, say] %
frequently in many multivariate tests, various authors have worked on th%g
exact null and nonnull distributions and are available, e.g. :fron
Mathai [8].

3.3 Exact Distributions of R for p; # p,

In the case of unequal dimensions, the distribution of R is not avallab]e
We obtain the distribution in terms of the H-function and present i D
computable form through the use of the calculus of residues. Now

sowr=cus i {32} b2

2

where

2,(7), can be written as
galr)=mi) ™ r=t | E(R") r~"dh
L

_ -1 xyp1, P2 (ah l/pl) (apzs I/PZ)
=Cr A [52 (b1, Up1), oy (8,5 1/P4)

where a;=1— (N, —j)/2 and b;= (N, — j)/2.
We can use the Gauss—Legendre multlphcatlon formula to express £

], 0<r<o
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~in terms of the G-function also. However, use of the H-function here is a
“more direct and convenient approach.

% In order to present (3.3.2) in a computable form, note the discussions in
{fMathai [7] The notations in the remainder of this section correspond also
to those in Mathai [7].

"~ We now determine the poles and their corresponding order for only the
Tfirst product of gammas in (3.3.1). It will thus be convenient, for com-
putatlonal purposes, to choose p, <p,.

‘7 For a fixed i, the poles of F[(Nl-—:)/z-i-h/plj I; are g1ven by the
;—_'gquatlon

—S=pl{(N1-“'1]/2+‘-’}, v=0,1,2,..

éte that the poles of I'; and I'; coincide only when / and j are both even
‘both odd. From Mathai [7], we note

Hz=S ¥ R, (3.3.3)
Il

'LEMMA '3.3..1. The poles, with their cgrrespondihg orders, are given by
_‘;Case A. p, _o;id:

b e = {0, 1,2, .. ={v}. (3.3.4)
s are p,((N, — 1)/2+v): repeated (py+1)/2 tirries; |
{V(.U -0t0f - 101} - {0}

i- I

ole is p,(N, - 7)/2, repeated (p, +1)/2—(j—1)/2 times, j=3, 5, ..., p1}
{(v§2 . o0} =10,1,2,..}={v}.

: 6ié§;‘:'are Pi((N;—2)/2+v), repeated (p, ~1)/2 times;

{vgg;gm---om} = {0}.

J-1
7'13,; is p(N,—j)/2, repeated (p,— 1)/2—(j~2)/2 times, j=4,6, .., p;— 1.
ase B. p, even:

{vioih. .10} =10, 1,2, }={v} (3.3.5)
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Poles are p,((N,—1)/2+ v), repeated pl/Z times;
{v§" 010...10} = {¥}.
A pole is py(N, —j)/2, tepeated p,/2— (j—1)/2 times, j=3, 5, py— 1;
(v 1 =1{0,1,2,..}={v}.
Poles are p,((N; —2)/2 +v), repeated p,/2 times;
V. 1o} = {0},

A pole is p,(N, — j)/2, repeated p,/2 — (j—2)/2 times, j=4, 6, ..., p;.

For i # j, {v¥} is vacuous unless i and j are both odd or both even {W.
omit the subscripts of v¥), since it is clear what they are.)

I
{vur)}={v+ 5 }, v=0,1,2,..;I>1is odd. (3.36

Poles are identified with those of v

-2
{v&} ={v+ 5 }, v=0,1,2,..;>2is even.
Poles are identified with those of v**?;
, =1
{0 =-— I>1'">2; I'l both odd or both even,

Poles are identified with those of v\,

Proof. The above results follow from the following observatio
Consider Case A, Let i=1 and j< p, be any odd number. Ther, poles !
I'y and T coincide, as -

o, (le— 1 +v)=pl (N;—@;):»(», A)={(o,j-:2—1), (1%)

But this set excludes the poles coming from e {0, 1, .., (j—1)/2— I.}
Consider j, j/ both odd, 3<j< ;' < p,. Then ' ‘ ’

N,— N, —j ., _j—1 F—=J &
Pl( 3 -{-l) ( 3 +l) for A= s —1+ 5= 3.

Thus considering the “excluded sets” E;’s we note that the smallest elemen“%
ie, 0, is repeated in all succeeding E through the relation (3.3.7). TI‘HS-
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establishes {3.3.4). A similar argument holds for (3.3.5); (3.3.6) follows from
the definition of the corresponding sets.

. TueoreM 3.3.1. The probability density function of R is given by, for Py
a_Omt

oo (pr—1)2-1 :
g r)=C-p~! [ Y (@@= % f(r)6% u, @y, Ao, Bo)
v=1 u=0
+ 3 ety TS g
r{é% u, a;, Ao, By)
r ) u=0
. o (p1—1)2~1
+ Y, (o= N f(rf8%u, by, Ag, Bq)
: v==0 u=0
_" +E** (r/52)p1(N|—f)/2 (p1—l)/2—(j—2)f2—if(r/62.u b ‘ A~ B ):l
: s My iy £10s L20) |
J T
and for p, even,
L - " pllz _. |
l)=C-p™ | 3 (i =2+ " S5, a1, e, Bo)
. v u=0

(p/2)—f—1)y2-1

+37 (rf87yp= S(r/3%;u, a}, Ao, Bo)

. J =0
i 0 p1/2—1 '
: + Y (/MmN KT f(r)6% u, by, Ao, By)
v u(
3 o™ S 6, 0,8 ]
_ /6% u, by, Ao, Bo) |,
7 . u=0

_ L fug—1
s o 8= ()

u—1 _
x(_]ogr)uo—l—ll[z (u I)A(()u-l'—)’l)
Y1

n=2~0

-1
x?lz (}'I—I)A‘(}?l—l—?z)...]Bo
y2=0 ¥2

Al
fmtsmar L (2] aem
1 21
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where d is a pole of order uq (the upper limit +1, for u in the summation in’
the theorem) of the product of the gamma functions defined by By;

1+1

A((]r) Iog BOs 120:

5SI+3
C is the constant defined in (3.3.1) and 6* = A%/43. 3} and Zj** denote éhé
summations over all je{3,5, .., p¥} and je{4,6, ., pf*}, respectively;
pr=pifpis 0ddandp?‘=p1 —1if py is even; p* = p, if p, is even and

Proof. The proof follows by noting {3.3.3) and combining Lemma 3. 3 [
above with Lemma 1 of Mathai [7].

Finally, a convenient computational form of the p.d.f'. of R is obtain
from the following theorem proved as Theorem ! in Mathai [7].

THEOREM M. H(z) is given in (3.3.3), where

R Ut oo i) ZOH Sl S e e
a Uit o +Ja)! Ea ( r
r--1 _
(=logay+ = wmir | T (7 Heg-1-m
rp=0 rl

rp—1 _1
% E (rlr )Cj(rl—l—rz)._.:'Dj’
rp=0 e

where the C;s and D;'s are defined in (4.23) and (4.24) of Mathai [71,

We note that the sets {v(*) 1 are not needed for 2 <j in (4.23) an
(4.24) of Mathai. Thus, Lemma 4 3.1 gives us all the desired sets needed
use Theorem M above, which expresses H(z) in terms of the convwne
computable functions, e.g., the psi and the generalized zeta functlog
Examples of the computation of H(z) are given in Section 5 of Mathai:
Also computational procedure and computer programs for calculatmg I
percentage points of the distribution of R can be obtained in a manm
similar to Mathai and Katiyar [10]. The nuil distribution is obtame\_
putting 8=4%/42=1 and the nonnull distribution by substituting;
specified value, under the given alternative, % = 4}/4% in Theorem 3
is known that for p,=1 or 2, X;= pJ u?/4?, where n;=N;—1;
nul=Nd?, j=1,2 is distributed as a y’ with d.f. pin;— p,+1) HBH'
p,=1o0r2, p, not necessarily equal to p,, the exact distribution of R,
both the null and alternative hypotheses are obtained as central Fi &
tributions, with obvious multipliers, having d.{ given by £;= p; (?I; P""
i=1,2. ,
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34. Exact Distribution of n
We consider a Bartlett type modification for n. Let X, = p,n,uj/c3, where

n,=N,—1 and mul=N,d?, i=1,.,k As in the univariate case, we
propose the modlﬁed test statistic
k

=11 (upyrosznn (}f mpid| 3 mup)

i=1 i=1 i=1
=C, ' IXYEX, (3.4.1)

" where

b;=(n;piZn;p,), Cy=1Ib}.

" For pi=1or 2, X;~y2, . Using this result and the represen-

?;:_tétion (3.4.1) we get

For py=1 or 2, p; not necessarily equal to p;, i+ ],

THEOREM 3.4.1.
;i.f:j, j=1,., k, the exact density of n% is given by -

1) = [r(m) / B r(maj)J(f[ b;,)m (lﬁ b t/z)

X [(ZR)"“””/F(( 1)/12)]

X ( —log 1)=3¥2y (1), O<t<l,

Tm=y Pf(”i.‘P:‘"‘l)/?" a;=pin;— p;+1)/2m, J=1 .,k

i=1

b, J=1,.,k, are defined in (3.4.1),

M, is defined in Theorem 2 of Chao and Glaser [2].

ercentage points and approximations to the above distribution are
btamed from Dyer and Keating [3]. For p, >3, the distributions of 5* or

0
gﬁ seem to be complicated.

4, EXAMPLE

Based on different varieties of rice, Goodman [5] had proposed a group-
g according to their sample GVs. This was also found to be consistent
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with geographical and other agro-economic considerations. However, the s
need for a statistical basis for such grouping is felt. Here, one may requirs ]
that the population GVs be same for two varieties to belong to the same
group. For 45 observations each on X = (ear length, ear breadth), for the
two varieties Cateto Sulino and Avanti Piching Thu, we have, R=d%/d2 =&
(0.8686/0.0961)* =3.01. Under H,, A2 =A%, R~ Fyus)_2,3a5~2 80 that ¥
using equal tails, Hy 18 rejected at 0.01 level of significance. Hence the two
varicties should belong to different classifications as also concluded byi&
Goodman using just the magnitudes of the GVs for the purpose. -
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