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Abstract. Generalized variance (GV), proposed by Wilks, is an

one-dimensional measure of multidimensional scatter. It plays an

important role in both theoretical and applied research. GV has

been extended to Standardized GV (SGV) to enable comparison

of scatters in differing dimensions. Interesting results on the dis-

tribution, estimation, and testing of GVs and SGVs have been

emerging. Also, these measures have been finding novel applica-

tions in a variety of applied problems, ranging from such age-old

areas as agriculture and sample surveys to the modern develop-

ments in signal processing and Bioinformatics.
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Introduction

The generalized variance (GV) of a p-dimensional random vector variable X is de-

fined as the determinant of its variance-covariance matrix. GV was introduced by

Wilks [33, 34, 36] as a scalar measure of overall multidimensional scatter. We will

denote the population and sample GVs by |Σ| and |S| respectively. The standardized
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GV (SGV) [24, 25•] of X is the positive pth root of GV. GV has several interesting•Q1

interpretations. For an optimal estimator of a multidimensional parameter, GV is

the reciprocal of the determinant of the information matrix. GV is the only criterion

for which the function-induced ordering of information matrices is invariant under

reparameterization. The determinant function is invariant under reparameterization

in the D-group, that is, under such transformations as with determinant of the coef-

ficient matrix being +1 or −1. The modal value of the pdf of a multivariate normal

distribution is inversely proportional to the square root of the GV. Under normality,

in a linear model set up, the optimal confidence ellipsoid of an estimable parametric

function has (the smallest) volume that is inversely proportional to the square root

of the GV of the optimal estimator.

While GV is used as a measure of multidimensional scatter, SGV can serve the

same purpose as well as be used for comparing scatter in different dimensions. Fur-

ther, for applying the theory of information functions, Pukelsheim [20] points out

that SGV is to be preferred.

Here, we present the developments on GV and SGV in both the areas of theory

and applications, mostly since the review by Kocherlakota and Kocherlakota [16].

While some interesting theoretical results on GV and SGV have emerged in the as-

pects of distributional derivations and statistical inference, to date little seems to be

available beyond the underlying multivariate normal distribution or its ramifications.

On the other hand, there has been a rich variety in novel applications of GV and

SGV. This ranges from their use as theoretical measures for comparison of estimators

and construction of test statistics to their use as applied scalar measures of overall

multidimensional scatter spanning such an age-old area as sample surveys to a newly

emerging area as bioinformatics.

Advances In Theory

An elementary yet expository interpretation of GV, including related geometry, has

been given by Johnson and Wichern [15, pp. 129–145]. The exact distributions of

|S| for an underlying real and complex (S being the Hermitian sample covariance

matrix then) multivariate Gaussian distribution are available from Mathai [18] and

Goodman [12] respectively. The exact distribution of GV when a sample is drawn
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from a mixture of two multivariate normal populations has been expressed in terms of

Meijer’s G-functions and related residues, as for the nonmixture case, by Castañeda

and Nagar [5]. The asymptotic distribution of ln |S| here also is normal.

Since the exact distribution of the sample GV, though available, is quite compli-

cated, good approximations are of interest and usefulness. In the context of general-

ized Wilk’s Λ statistic, a product of certain independent Beta random variables, near-

exact as well as asymptotic distributions, have been suggested through generalized

near-integer Gamma distributions [7]. For obtaining tail probabilities, saddle-point

method has been enhanced [31]. These approaches may be explored explicitly for

GV, a product of certain independent Gamma random variables.

Likelihood ratio tests (LRTs) for SGVs in one or several different-dimensional

multivariate normal populations and the exact, in terms of Pincherle’s H-function, and

asymptotic distributions of some of these test statistics have been given by SenGupta

[24]. A multivariate version of Hartley’s Fmax statistic that provides a shortcut test

for homogeneity of variances in the univariate case may be based on SGVs. Such a

test and associated distributional results have been given by SenGupta [25]. Union–

intersection tests for SGVs are available from Reference 21. Tests for SGVs with

equicorrelation structures and under order constraints have been considered through

the technique of isotonic regression by SenGupta [23]. Bhandary [4] has derived

LRTs for GVs having specified structures under some additive models relevant to

signal processing. Specifically, the testing problem under white noise case can be

formulated as follows. Let X1, . . . , Xn be independent and identically distributed as

Np(0, Γ+σ2Ip), where Γ is a nonnegative definite matrix of rank q(< p). The problem

then is to test H0 : |Γ+σ2Ip| = σ2
0 against H1 : |Γ+σ2Ip| �= σ2

0. The LRT statistic can

be written down explicitly. For the case of colored noise, the underlying distribution is

taken as Np(0, Γ+
∑

1), where
∑

1 is some arbitrary positive definite matrix. Assuming

that there is an independent estimate of
∑

1, the null and alternative hypotheses are

formulated similar to those in the case of white noise above and the LRT has been

derived.

Results of Reference 24 on LRTs for a single specified SGV and for the equality of

several SGVs have been extended by Behara and Giri [3] to the complex case. More

specifically, they formulate the problem as follows. For i = 1, 2, let ξ
(i)
1 , . . . , ξ

(i)
Ni

(Ni >
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pi) be a sample from a pi-dimensional complex Gaussian population with mean γi and

Hermitian positive definite covariance matrix
∑

i. Let ξ
(i)

=
∑Ni

j=1 ξ
(i)
j /Ni and d2

i =

[
∑Ni

j=1(ξ
(i)
j − ξ

(i)
)(ξ

(i)
j − ξ

(i)
)∗/Ni]

1/pi. The one- and two- population testing problems

for the complex setup then respectively become those of testing the hypotheses (i)

H01 : |∑1 |1/p1 = σ2
0 (given) and (ii) H02 : |∑1 |1/p1 = |∑2 |1/p2 against not equality

alternatives. The LRTs take similar forms as for the real cases. Their critical regions

are given respectively by (i) ω1 : d2
1/σ

2
0 > C0 or < C1 and (ii) ω2 : F = d2

1/d
2
2 < D0.

The exact distributions of these test statistics can be represented, as for the real cases,

in terms of products of independent χ2 and F random variables.

The admissibility and Bahadur optimality of the LRT for a GV for an underlying

multivariate normal population have been established by SenGupta and Pal [28].

However, detailed studies on the properties, including those on unbiasedness and

monotonicity, of the above LRTs for GVs are to be explored. In yet another direction,

ranking and selection procedures based on SGVs, as already available for GVs, remain

to be developed.

Nonparametric multivariate notions of “Scatter” and “More Scattered” based on

statistical depth functions are being studied by several researchers (see e.g., Ref. 39),

which may be viewed as counterparts of GV, primarily proposed for the parametric

situation.

Advances In Applications

GV has been found quite useful in statistical inference for multidimensional param-

eters. In the theory of estimation, GV plays an important role as a measure of

efficiency of an estimator. Also estimators having minimum GV are functions of the

sufficient statistic see, for example, Reference• 40, Sec. 5a.3. In the theory of testing•Q2

of hypotheses, Isaacson [14] has used the criterion of maximizing the total curvature

of the power hypersurface to suggest a locally best (optimal) test for a multidimen-

sional simple hypothesis. This criterion is related to the determinant of the power

Hessian matrix [29].

In Bayesian inference, one approach (see e.g., Ref. 41, pp. 53–54) of constructing

noninformative or vague priors for the scalar parameter θ is based on Jeffrey’s prior.

This prior results from the requirement of invariance of probabilistic inferences made
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about the data and is proportional to I(θ)1/2, I being the Fisher’s information for θ.

Generalization of this approach to the multiparameter case yields priors proportional

to the |I(θ)|1/2. However, caution must be taken with the choice of Jeffrey’s prior

when parameters are deemed dependent, see, for example, Reference 19, pp. 87–89,

for further discussions. Recall now that |I(θ)| corresponds to the inverse of the GV

associated with the optimal (frequentist) estimators of the parameters. In partic-

ular, with the multivariate normal distribution Np(µ, Σ), Geisser and Cornfield [9]

suggested the vague prior density g(Σ) for Σ to be proportional to the inverse of the

(p + 1)/2-th power of the GV, that is, g(Σ)α|Σ|−(p+1)/2. Interestingly, in case µ and

Σ are a a priori independent, this vague prior coincides with Jeffrey’s invariant prior.

While dealing with independent parameters in several Poisson populations, Leonard

and Hsu [42, p.220] present Jeffrey’s prior, that is, the prior inversely proportional to

the positive square-root of such GV. They also illustrate its use by a real-life exam-

ple from cross-classified data on performance evaluation of engineering apprentices.

Applications of such priors are envisaged in many other areas including business and

industry.

As noted earlier, while GV is used as a measure and for comparison of multidimen-

sional scatters of equal dimensions, the same purposes are served by SGVs even for

differing dimensions. The latter situation arises when one encounters missing data on

the components of a vector variable arranged in several groups with data available on

different number of components of the variable over the different groups. An example

from speech recognition or talker identification problem is discussed in Reference 25.

For problems in sample surveys involving correlated characters, minimization of

GV has been employed to achieve optimal allocation in a multistage survey [6] and

in stratified sampling [2, 10].

Construction of optimal designs through the D-optimality criterion aims at max-

imizing the determinant of the moment matrix of a design measure. This is achieved

by maximizing the determinant of the information matrix that is equivalent to the

minimization of the SGV of the optimal (least-squares) estimator for the relevant

parameter system of interest. Characterizations of the D-, equivalently, SGV-, opti-

mality criterion are available on the basis of certain invariance property and on certain

information functions, see , for example, Reference 20, Sec. 13.8. Even for discrete
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design measures, optimal n-point discrete designs may be obtained by maximizing

the relevant GV or SGV.

The use of GV as a measure of overall variability has been exemplified in agricul-

tural science by Goodman [13] and in behavioral and life sciences by Sokal [30].

In the construction of optimal predictors, Garcia Ben and Yohai [38] demonstrate

that in contrast to the Trace criterion, predictors obtained by minimizing the GV

have the appealing property of coinciding with the canonical variables.

GV has been popular in several areas of applied multivariate analysis. In the

techniques for reduction of dimensionality, GV has been used as a criterion for the

construction of generalized canonical variables [22, 27] by various authors, for exam-

ple, Kettenring [43], SenGupta [23], and Coelho [44].

In classification and discriminant analysis, Wilks [35] obtains the optimal linear

discriminant function by determining the space of dimension t < p, where |Tt|/|Wt|,
the ratio of the total to pooled within t-dimensional scatters (GVs), is maximized.

To explore the structure of heterogeneous multivariate data, Friedman and Rubin [8]

have advocated that partitioning in a predetermined number of groups that maximizes

the criterion |Tp|/|Wp|. They argued that this criterion has the desirable property of

being invariant under nonsingular linear transformations, has greater sensitivity to

the local structure of several data sets, and is computationally faster than the Trace

criterion. Clustering techniques based on GV have been proposed by SenGupta [21].

Behara and Giri [3] point out that GV and SGV are quite useful for assessing the

variability of estimators of spectral density matrix of a multiple stationary Gaussian

time series (see also Ref. 11) and for testing of hypotheses concerning the overall

variabilities in terms of SGVs of multiple Gaussian time series of different dimensions.

In the context of signal processing, Bhandary [4] has derived LRTs for several

statistical hypotheses involving GVs under both white and colored noises.

For modelling in reliability analysis, Tallis and Light [32] compare GVs to study

the efficiency of their generalized method of moments estimator relative to that of

the m.l.e. for an underlying mixture distribution.

|S|-chart, which we may term as GV-chart also, and its ramifications motivated by

GV have been enhanced in statistical quality control for monitoring process variability
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of a product with multiple correlated quality characteristics. Yeh et al. [37] give

several real-life applications of such charts.

In bioinformatics, the use of GV for the identification of differentially expressed

genes from microarray data has been advocated by SenGupta [26].
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