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Abstract. Even though the support is finite, because of the disparity of the topologies between the circle
and the line and as also of the additional réequirement of periodicity of the density functions, as interesting
situation is posed for the constructions of probability distributions for directional data. Drawing from certain
results on characterization theory based on the calculus of variations and on functional annalysis, we enhance
here the desirable properties of maximum entropy and conditional specificaticns. It is demonstrated in this paper
how the adoption of such principles leads to the construction of interesting and useful probability distributions
of the eircle, torus and cylinder and their generali'zations. f

1. Introduction. Directional data arise in many diverse scientific investigations
encountered frequently in our day-to-day life as observations on directions, orentations, angular
displacements, periodic occurrences, etc. Construction of such distributions pose interesting
problems since methods for linear data cannot be directly adopted due to the disparity of the
tpoologies on the line and the circle. Further, the additional requirement of periodicity of such
distributions need to be met. Several distributions have been proposed (Jammalamadaka and
Sen Gupta, 2001, Chapter 2) to model such data, mostly on the circle. Here an attempt is
made to unify certain results on characterizations of distributions and generalize them to yield
not only new probability distributions on the circle but also those for the bivariate cases, such
as for models on the torus, cylinder and their multivariate generaliztions.

2. Maximum entropy characterizations. The concept of information, equivalently of
negative entropy, is commonly used in statistics. We demonstrate in this section how probability
distributions may be characterized, and hence constructed, fér directional data by invoking the
criterion of maximization of certain entropy measures. While Shannon’s entropy (section 2.1)
has been the most popular one for such purposes, it is observed that maximization of certain
other such functionals (section 2.2) also lead to useful probability distributions on the circle.
A generalization of the basic result for the univariate case is seen to yield distributions on.the
torus, eylinder (section 2.3) and their multivariate extensions (section 4.1).

2.1 Univariate case : Characterizations based on Shannon’s entropy. Let X be a
continuous random variable having the probability density function f(z;7n). Then Shannon’s

IThis paper is based in part on the Invited lecture presented by the author at the International Conference
of the Calcutta Mathematical Society, Kolkata, December 2002.
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information is defined as the negative entropy
oG
H == [ fan)iog f(winda.
—o0

It follows, e.g., by results on majorization with Schur-convex functions (Marshall and Olkin,
1979), that this information measure is non-negative. Let

fleyn) >0, z € (a,b) and, =0 otherwise. (1)

Consider the class F of parametric density functions f(x,7) that satisfy the constraints

. .
| T@@nde=r, =19,k @)
a
for a given set of integrable functions T\(z),- - -, Tk(z) on (a, b} and constraints 7y, - - -, 7. Then
variational methods can be used to find the class of densities that maximize H(f) over the class
F. Using the Lagrangian,

k-
L=—ylogy+y Y _ nTi(z)
i=1
and the corresponding Euler-Lagrange equation, the extremal density functions is given by :

THEOREM 1. The maximum entropy over the class F' is attained by the exponential family of
distributions, i.e., with the density of the form

fan) = C.exp [Smin(@)] (3)

where C is the normalizing constant to be determined by invoking the constraints (1) and (2),
if (and only then) there exist i, g, -+, 7 such that (3) satisfies the conditions (1) and (2).

An alternative proof of the above characterization result based on inequalities is available
from Theorem 13.2.1 of Kagan, Linnik and Rao (1973).

For distributions on the circle, it is customary to represent the random variable X above
by # and the support by usually [0,27) or by [—=, 7).

2.1.1 Examples. 1. Circular Normal (CN) Distribution. A circular r.v. & is said
to have a von Mises or a Circular Normal (CN) distribution (von Mises, 1918) if it has the
probability density function :

1

g — = prcos(f—u) 0<g 2 4

f( 1#!"{) 2ﬂfo(ﬂ)e ] —_ < ﬂ', ( )

where 0 < u < 2n and K > 0 are parameters. Here Io(k), the normalizing constant, is the
modified Bessel function of the first kind and order zero.
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By taking 7; and 7 consistent with the expectations of T1(8) = cos(8) and T»(#) = sin(f)
respectively, i.e., by specifying the first harmonic of 8, (3) yields {4).

2. Multimodal CN distributions. A circular r.v. 8 is said to have a p-modal von Mises
or a pmodal CN distribution (p known), if it has the probability density function :

flO; k)= 2WIO(K)6"°°SP(9"“), 0<0<2n, {5)

where 0 < g < 27 and & > 0 are parameters.

By taking 73 and 7 consistent with the expectations of T1(8} = cosp(f) and T5(#) = sinp(#)
respectively, i.e., by specifying the p-th harmonics of 8, (3) yields (5).

3. A skewed CN distribution. A three parameter circular distribution which is a
member of the exponential family and may be looked upon as a generalization of the two
parameter CN distribution, has been suggested by Rattihalli and Sen Gupta (2002). This
density {to be referred to as the SGR density) is given by

F(6; 11,81, 52) = C.exp(ky cos(f — p1) + K3z cos 28),

USQ<27T1 DSM1<2W1 "'1!’{220; . (6)

where C is the normalizing constant and can be expressed in terms of the weighted sum of
independent non-central x? variables or may be computed in the same lines as done for example
4 below.

By taking 71,7 and 73 consistent with the expectations of T1(8) = cos(#), Ta(#) = sin(@)
and T3(8) = cos 2(f) respectively, (3) yields (6).

4. Rukhin’s generalized CN distribution. A four parameter circular distribution which
is a member of the exponential family and may be looked upon as yet another generalization
of the two parameter CN distribution, has been suggested by several researchers, e.g., Rukhin
{1972), Cox (Mardia, 1975a), Beran (1979). This density is given by,

fl8;e,8,a,b) = C.expla cos(é —a) +beos2(8 — B)),

0<8<2r, 0<e, f<2n,a20,b>0, (M

where € is the normalizing constant, which may be obtained as below Yfantiz and Borgman,
1982). After calculating the Fourier series expansions of

F = eacos(ﬂ‘—-a)’ and F2 — ebcos(2(9—,’3)),

and using some manipulations, it turns out that,

Cl=2r¢ {Iu(a)Ig(b) +2 i I (b)a,(a) cos(2n(f — a))} ,

n=1
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here I,{a), I,(b) are the modiﬁed Bessel functions of the first kind and order n, i.e.,
I.(s)= }—f e cos(nh)df, s=a,b.
T Jo

By taking 71, 72,73 and 14 consistent with the exprectations of T1(8) = cos(#), T3(f) =
sin(8), T3(8) = cos2(8) and Ty4(f) = sin2(@) respectively for the above distribution, (3) yields
(7).

Both the distributions in (6} and (7) are capable of capturing a variety of shapres, both
symmetric and aszymmetric; both unimodal and bimodal. However, note that (6) requires one
parameter less than (7).

2.2 Univariate distributions derived from other entropy measures/functionals.
We now briefly discuss the invocation of other entropy measures for deriving circular distribu-
tions. Solutions {Ochoa and Delgado-Gonzalez, 1990} through variational trechniques may be
obtained to the classic inverse theory problem arising out of characterizing a density function
D(8) which under isoperimetric constraints minimizes (maximizes) a relevant combination of
some integral measure v of D or a functional (an entropy in most cases) for various such
functional. D(f) is obtained by minimizing a fairly general functional,

T

S = [F(D) 4 {Xo + M cos8 + Agsiné + Az cos 20 + Ay sin 26} D(6)] d6

—-T
Note that our constrains correspond to specifying the first two harmonics of D (first two
trigonometric moments of #). Unimodal versions of the solutions to various choices of F(D)
yield various circular probability distributions. Below we show how some particular such choices
yield familiar circular distributions.

2.2.1 Examples. General Wrapped Stable (WS) family of distributions. Wrapped
distributions on the circle are obtained by wrapping the correspending distribution on the line,
ie, by using & = X mod 27. Note that the trinonometric moments uniquely characterize
a circular distribution. Further, the trigonometric moment of order p for a wrapped circular
variable 8 corresponds to the value of the characteristic function of the unwrapped linear random
variable X, say ¢.(t) at the integer value p, i.e., ¢, = ¢, (p) (Proposition 2.1 of Jammalamadaka
and Sen Gupta, 2001). Thus wrapped a-stable distributions may be constructed by using the
characteristic function of the a-stable distribution of the real line, which is given by

) exp {—7*}¢|* [1 — iBsgn (t) tan 5] +iut}, if as(0,1)U(1,2),
AT exp {—7[t| +iut}, if a=1,
with 7 > 0, {8] € 1,0 < @ < 2, while u is a real number.

The density function of a wrapped a-stable random variable § € [0, 2r), is given by (Lukacs,
1970) '

f(B)—g—F;kz::lexp{ﬂ' k }cos{k(f)—,u)—r kB tan 2 },
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where a € (0,1) U (1,2}, with u conveniently redefined as u = pu (mod 27). Note that although
there is generally no closed form expression for the density of an a-stable distribution on the
real line, we are able to write such density for the wrapped case, at least as an infinite series.
The particular case corresponding to 3 = 0 gives us the symmetric Wrapped Stable (SWS)
family of circular densities, to be simply referred to as Wrapped Stable (WS) family, given by

F:p.cup) = =+ = 7 cos{k(0 - ), ®
k=1

where p = exp(—7*). For further discussions see, e.g., Jammalamadaka and Sen Gupta (2001).

When p = 0, we get the Circular Uniform (CU) distribution, o = 1, and 2 give the Wrapped
Cauchy (WC) (Levy, 1939) and wrapped normal (WN) distributions, respectively. Further, if
only the first term in the summation is retained, one gets the Cardioid distribution.

Observe now that optimal solutions to maximizing the functional ¥ for various choices of
F(D) yield familiar circular distributions. For example, F(D) = —In D yields the WC density
(Lygre and Krogstad, 1986); F(D} = —D1In D yields the CN or von Mises density (Burg, 1975)
- recall (Collett and Lewis, 1981) that any CN distribution may be represented for all practical
purposes by the corresponding WN distribution; F(D) = D? yields the Cardioid density (Long
and Hasselmann, 1979). Other appropriate choices of F(D) will yield new circular probability
distributions. However, the identification of the general functional F(D) with corresponding
suitable constraints which will vield, at least, the symmetric wrapped stable family is still an
open problem. .

Use of distributions from the WS family enables one to capture higher kurtosis in the data
which is otherwise not possible through the CN distribution. These distributions have been
found useful (Beal, 1991; Tucker, 1991) in the context of several aspects of wave theory. From
both theoretical and parametric “complete class” of useful unimodal distributions for circular
data.

The shapes of the various distributions discussed above, as displayed over the circle, may be
viewed through the statistical package DDSTAP developed by the author (Sen Gupta, 1998).

' 2.3 Bivariate Case : Characterizations based on Generalization of Theorem 1.
Suppose that we are interested in distributions .defined over a space S and that these
distributions are to be represented by densities relative to some familiar measure such as
Lebsegue, Harr, ete. let ¢, - - -, ¢, represent specified g real valued measurable functions over s
such that no linear combination of £;, - - -, ¢4 is constant.

THEOREM 2. If for a probability density funetion f(z)

(i} S, is the support of f(x) where z € 51,81 C S,

(i) E{t;(z)} = a; (fized), i=1,--,q,
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(iii) the entropy is maximized,

then f(x) should be of the form

f(.’E) = exp {bo -+ Zb,t,(:ﬂ)} , T E Sl; (9)

i=1
provided there erist by, by, - -, such that (9) satisfies (i) and (ii). Purther, if there erists such a
density, then it is unique.
Proof: See Theorem 3.1 of Mardia (1975b).
2.3.1 Examples. 1. Distributions on the Torus. Let £ € 8, i =12 Let
E( rfl),E( Ag) and E( f’l 32) be specified. From (9) this yields the dNitstriblition on the torus
given by (Mardia, 1975b).

f(8,8) = C.explr) cos(6 — ) + Kz cos(d — v) + p(r1K2)"/? cos(B + ¢ — ¥, (10)

where, £; = (cos6,sin ), £, = (cos¢,sing), 0 <8, 9 < 2m, k1,42 >0, 0 < p, v, ¥ < 27 and
o9
C = Iy(m1)lo(x2)lo {p(mz)l/ﬁ} +2 3 Lis) I(sa), {p(mnz)lﬂ} cospip.
p=1

Using the same constraints for the marginals but invoking the constraint for a joint moment
as E(sin(8 — p} sin{¢ — v)) being specified, Jammalamadaka and SenGupta (2001).obtained
another distribution on the torus given by

f(8,¢) = C.exp k1 cos(f — 1) + k2 cos(¢p — v) + Kz sin(0 — p) sin(é — v)], (11)

where ( is the normalizing constant.

This distribution imbeds the bivariate normal distribution with a small range for the
observations, permitting the quadratic and linear terms of the latter to be replaced by their
circular analogues. The distribution in (11) has been used by Singh et al. (2002) for probabilistic
modelling of torsional angles in molecules.

Recently, Arnold and SenGupta (2002) has suggested the distribution given in (15). Because
of its genesis as discussed in section 3.2, its functional form and other details are given in
that section. However, we note that this distribution corresponds to the maximum entropy
distribution obtained on specifying the first marginal and first joint harmonics of 8 and o,
i.e., on specifying E{cosf), E(sind), E{cos¢), E(sing) and E(cos# cos¢), E(cosf- sing),
E(sin@-cos ¢), E(siné-sin ¢).

2. Distributions on the Cylinder. Since the supports for the random variables in
theorem 2 are quite general, the joint distribution of a linear random variable and a circular
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random variable may be derived from it using suitable constraints. This enabled Johnson and
Wehrly (1978) to present a variety of distributions, as given below, on the cylinder..

(2.1). The density function of (8, X') given by
F(8,2) = (A2 - k2)Y2(21)" . exp {—Az + Kz cos(8 — )}

where 0 < 8,27, z > 0, 0 < k < A, and 0 < p < 2m, is the maximum entropy distribution
subject to E(X), E{X cos8), and E(X sin8) taking specified values which are consistent with
expectation with respect to the above distribution.

(2.2) Let (8, X) have the joint density

2
f(6,z) = C-exp{——%a + % + %cos(é —_-gg)} ;

where € > 0 is a constant of integration, —00 < # < 00, 0 € 8 < 2%, —© < A < oo,
k,0 > 0and 0 < p < 27. Then f(6,z) is the maximum entropy angular-linear distribution
subject to E(X), E(X?), E(X cos8) and E{X sin@) taking specified values consistent with the

expectations with respect to the above distribution.

(2.3). Let (8, X) have the joint density
F(6,2) = C-exp{--Az + nz cos(f — 1) + v cos(d ~ )},

where 0 <8 <27, 0 <z < o0, A> K >0,0< iy, g <27, and
oo -1
C=()- k)2 (2m)~ L. {Io(u) = 22;}"[,(11) cos{p(p, — ,u,g)]} .
=1

p= I%[/\ 4+ (AZ - 52)1/2]_1,

with I,(-) being the modified Bessel function of the first kind and other p. Then f(8,z) is
a maximum entropy- density subject to E(X), E(cos@), E(sin6), E(X cosd) and E(X sin #)
taking specified values consistent with expectation with respect to the above.

The proofs of the above reuslts 1-3 are quite straightforward on noting theorem 2.

3. Specified Conditionals Family Characterizations. Often it is desirable to
specify the conditionals of a multivariate distribution. Arnold and Strauss (1991) gave an
unified approach of characterizing the class of bivariate distributions such that the conditional
distributions belong to any specified exponential family. Even though they considered linear
vector variables, we show below that their results can be exploited to yield also distributions
on the torus, cylinder (section 3.1) and their generalizations (section 4.2).
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* 8.1 Bivariate case : Characterizations based on conditionals exponential family
specifications

THEQREM 3. All solutions of the equation

Y fu(@)gr(y) =0, T S(X), yeS(Y),

k=1

can be written in the form

hi=) ( a1 @iz - Qi &y (x)

fa(z) _ | @n ez - aor $y(x)

fulT) \ Qn1 Gn2 ' Onp b, (z)

{ birrr biraz - bin
a(y) ; ) b; U1 (y)
2n+1 2r4+-2 e n
920y} | _ T, 40(y)
) \p,;

9n{y) burit bursa - bun (v)
where r is an integer between 0 and n, and ®1{x), D2(x), - -, P, (z) on the one hand and
U, (), Urpo(z), - U, (x) on the other are arbitrary systems of mutually linearly independent

functions and the constants a;; and by; satisfy

@11 Gy v Gp birpt bresz o0 bin
@12 G2 0 G2 b27‘+1 b2r+2 -o- o boy =0
a1y Qg - - Onp Burit bnr4z 0 Ban

Theorem 3 in the well known Aczel’s theorem. As a simple corollary to it, we have the following
{Arnold et al. 1999).

COROLLARY. All solutions of the equation

S fil@m)®iy) = Y gi()¥i(z), z€S(X), yeS(Y),
r=1 i=1
- where {®,}7_, and {¥;}]_, are given systems of mutuelly linearly independent functions, are
of the form
fiz) = C¥(x) and g(y) = D¥(y), where D =C".
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For constructing joint distributions with conditionals beiug specified, the above results are
exploited to yield the fundamental theorem.

THEOREM 4. (Arnold and Strauss, 1991) Let fi(xin) and fo{y:7) denote members of two
£1- and £9-parameter exponentiol families. Let f(x,y) be e bivariate density whose conditional
densities satisfy

flzly) = filz;nly)) (12)
and
flylz) = f2(y; z(2)) : (13)
for some function n(y) and 7(x). It follows that f(x,y) is of the form
flz,y) = ri(z)ra(y) exp{g(x) Mg (v)} (14)
where
¢V(@) = (qo(), @), qa(2), -, 11 (),
a2 Y) = (q20(¥) 421 (¥), 922 (¥), -+, Lo ().
where q16(x) = g2o{y) = 1 and M is a matrix of constants parameters of approximate

dimensions {i.e., (£ + 1} x (€2 + 1)) suhject to the requirement that

/D, /;)2 fz, y)dpa(w)dpaly) = 1.

For convenience we can partition the matrix M as follows :

mop | mor -+ Mo
—_— + I —_—— _——
M= my |
| M
meo |

Note that the case of independence is included through the choice M = 0.

3.2 Examples. Even though Arnold and Strauss (1991) used theorem 4 to construct
bivariate distributions for only linear random variables, it is easy to see that the result extends
to a general vector variable with both or one of its components being circular. Thus, through
this extension, bivariate distributions on both the torus and cylinder may be derived.

1. Distributions on the Torus. Consider first bivariate distributions on the torus with
CN conditionals {CNC). Since CN distributions are members of the exponential family, theorem
4 readily applies to yield the CNC distribution (Arnold and SenGupta, 2002)

£(8,9) = explp'(B)Mq(¢)], (8,9) € [0,27)? (15)
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where

1
p(f) = | cosd |,
Ksin@
1
q(¢) = | cosg | ?

sin ¢

Mgy My Moo

and M = Mg M1y Mye

Moo My M2z

M is the matrix of parameters with mgp, a function of the other m,;s, being the normalizing

constant.

The marginal densities are not CN densities unless independence holds—the same is true
for the distributions on the torus obtained in section 2.3.1.

f
.r'ﬁ,
Sy

b,

Fig. 1. Scaled pdf on the torus for (mygy, mog, s, m11, Mi2,
Mmao, Ty, Ma2 = (23 3$ 4a 0, 015|O|O)‘
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{1

0809 1 111213 14

¢ o

Fig. 2. Scaled pdf on the torus for (mgy, mog, Myg, M11, M2,
M2g, Moy, Moy = (.02, .03, .04, .05, .06, .07..08, .09}.

Figures 1 and 2 depict the shapes of two distributions on the torus with their corresponding
parameter values, the former being for two independent circular variables. Note that both the

distributions (10) and (11) are obtained as special cases of (15) by setting appropriately some
of its parameters to be zeros.

2. Distributions on the Cylinder. Let,

f{6,x) = exp: [p' (@) Mqg(z)], (#,z)e[0,2n)x R

where
1
p(8) = | cosd and g{z) = T
sin @ x?

Then f(#, z) above defines the CN-normal (angular-linear) conditionals family of distributions.
It is obvious from the above derivations that one may derive a spectrum of bivariate distributions
on both the torus and the cylinder by this conditional approach. One may thus obtain CN-CN,
CNRukhin, CN-SGR, SGR-Rukhin, etc. conditionals distributions on the torus. Similarly;
CN-Exponential, CN-Beta, CN-Normal, Rukhin-Normal, SGR-Normal, etc. conditionals
distributions may be easily derived for random variables jointly distributed on the cylinder.
Exploiting the same theorem one may also construct joint distributions when the linear variable
happens to be discrete, e.g., CN-Poisson, CN-Binomial, SGR-Poisson, Rukhin-Poisson, etc.
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conditionals distributions. Figures 3 and 4 depict the shapes of two distributions on the cylinder

with their corresponding parameter values, the former being for two independent linear and
circular variables.

it

0 50 100 150 200 250

Fig. 3. Scaled pdf on the eylinder for (mg1, mog, M10, M11, M12,
map, Ma1, M22 = (_13 Ds —11 01 0! 01 01 0)

fi

7PN ot
'y 4 : o 3
s e
> E \ 2 \“e\a
7 o :

Fig. 4. Scaled pdf on the cylinder for (mo1, mo2, M1, M11, M2,
Mag, May, Maa = (02, .03, .04, .05, .06, .07, .08, 09)
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4. Multivariate case : Generalizations. Both the approaches discussed above may
be generalized to yield joint distributions for the multivariate case, i.e., when all or some of
the variables are circular random variables. We discuss below these situations briefly. The
generalized forms of the distributions may be written down with some care-however, the details
are omitted since the notations become increasingly complex.

4.1 Maximum entropy distributions
4.1.1 Examples
1. Distributions on the Hypershere. Let ¢ € 8p,1=1,2, and let these two random

~t
vector variables be correlated. Its easiest to specify the first order marginal and joint moments,
E( El), E{ 22) and E(f’1 £). In this case, the maximum entropy density from theorem 2 is
~ B ~la2

C-exp(ibifl + 5;f2 +a' ¢ €p), ‘ (16)

~ ]2

where C is the normalizing constant. The distribution given by (16) is termed (Mardia, 1975b)
a generalized von Mises-Fisher Distribution.

For p = 2, we get the distribution on the torus as given in section 2.3.1.

2. Distributions on the Hypercylinder. Let,

cosfy --- cosné, sind; --- sinnf,;
H{® =

cosfy, - cosnby sinf, - sinnd,

Let © and X have the joint density function .

f(8,z)= C-exp{—%a:’z_lx+)\'Z”r%—a(G)’Z_]:c}, : (17)
where C is a constant of integration, a(8)" = (a1(8),---,a —q(#)),
P n
a;i(8) = Z Z aijk cos[k(6; ~ pijn)]
i=l k=1

I
vM"

w
1
fat
o

[cijk cos(kB,) + Bijr sin(kb;)], i=1,---,q,
=1
z € RY,0€[0,17)", and 37! is positive definite. Then (Johnson and Wehrly, 1978) (6, z)
maximizes the entropy of multivariate angular-linear distributions subject to EIXX'|, E(X),
and E[X ® H(©)], where ® is the Kronecker product, taking specified values consistent with
expectation with respect to the distribution (17).
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Note. The conditional distribution of X given & = 6 is g-dimensional multivaiate normal
with mean A + a(8) and covariance matrix »_. Consequently, this model leads to a natural
method of predicting a linear vector variable X from a circular vector variable @ of directions.
The conditional distribution of © given X = z may be related to a multivariate circular
distribution with independent components. Being a member of the exponential family, this is
easily seen for n = 1 to be a special case of the multivariate CN-multivariate normal conditionals
distribution to be discussed in the next section.

4.2 Multivariate conditionally specified distributions. It is indicated in section 8
of Arnold and Strauss (1991) how the result in theorem 4 may be generalized to the case of
k > 2 variahles with the conditional density of each being a specified member of the exponential
family. The resulting joint density is again a member of the exponential family. We extend
this generalization to cover multivariate circular as well as linear-circular variables. Consider
first the joint density of k circular random variables 8 = (6;,602,---,6:), 8 € [0,2m)*. Let us
characterize the class of densities for g such the conditional density of each 6; given the rest is
a CN density. Since the CN density is in the exponential family, it follows from Arnold and
SenGupta (2002) that the family of joint densities is given by the (3¥ —1) parameter exponential
famnily of densities :

2 2 2 k ‘

f(_Q_(Q) = exp Z Z T Z Giy iz, in H Gi; () , e [0!2“)k (18)
ip=0ig=0 . ip=D =1

where we have defined functions ¢q, ¢ and g2 as : go(u) = 1, q:(u) = cosu, and ga(u) = sinu.

For k > 2, setting some of the parameters equal to zero will yield submodels with a lower

dimensional parameter space.

It is obvious from the above construction that, in lieu of the CN density, other circular
densities in the exponential family, e.g., the p-modal CN, Rukhin or SGR densities, can be
taken as the conditional densities to yield a spectrum of multivariate circular distributions
which are all different members of the exponential family.

Now suppose that we are interested in deriving joint distributions of random variables
defined over the hypertorus, i.e., when some of the variables are circular while the rest are
linear. Let us impose the constraints that the conditional distribution of each variable (linear
or circular) given the rest is specified as a member of the exponential family with parameters
possibly being functions of the conditioning variables. It is then obvious from the derivation for
the multivariate circular case above, that this joint density will be a member of the multivariate
multiparameter exponential family and can be written down explicitly.

Acknowledgement. The author would like to thank Mr. Sabyasachi Bhattacharyay for
his help with the figures in this paper.
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