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Observations on axes which lack information on the direction of propagation are referred to as axial
data. Such data are often encountered in enviromental sciences, e.g. observations on propagations
of cracks or on faults in mining walls. Even though such observations are recorded as angles,
circular probability models are inappropriate for such data since the constraint that observations
lie only in [0, π) needs to be enforced. Probability models for such axial data are argued here
to have a general structure stemming from that of wrapping a circular distribution on a semi-
circle. In particular, we consider the most popular circular model, the von Mises or circular normal
distribution, and derive the corresponding axial normal distribution. Certain properties of this
distribution are established. Maximum likelihood estimation of its parameters are shown to be
surprisingly, in contrast to trigonometric moment estimation, numerically quite appealing. Finally
we illustrate our results by several real life axial data sets.

Keywords: axial data, bivariate axial normal conditionals distribution, circular normal distribution,
method of trigonometric moments, tests for axial uniformity, wrapped models

1 Introduction

Data relating to the angular position of random lines which do not have a natural orientation
associated with them, or in which neither end can be identified as the starting point, are mea-
sured in terms of angles, in radians (degrees), with a range of possible values [0, π)([0, 180)).
We will call such data axial data. Examples of axial data abound in environmental and
ecological sciences, e.g. data (Fisher, 1993) on face-cleats in walls of coal mines, long-axis
orientations of feldspar laths, horizontal axes of outwash pebbles, groove and tool marks,
orientations of rock cores, etc.

Considerable discussion may be found in the literature on the related topic of circular
data, which has a range of values [0, 2π). In particular, circular normal and various wrapped
distributions have been proposed to model such data. In many papers, researchers faced with
axial data have merely multiplied it by 2, to change the range to [0, 2π), and used circular
models to fit the data. Minimal introspection confirms that this approach is inappropriate.
Also, observations on a circular variable with high concentration, for which the (circular)
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range of data is below π, may mislead one to adopt an axial distribution as the underlying
model. Loosely stated, in contrast to such concentrated circular variables, it is not only
“improbable” but it is simply “impossible”, for observations on an axial variable to have
range beyond π. Essentially, axial data is best viewed as circular data modulo (π).

If we begin with Φ having a circular normal distribution (which might well be deemed
appropriate) then the resulting distribution for Θ = 2Φ(mod π) will look superficially similar
to a circular normal density but it will not be circular normal. This means that the “doubling
approach” may not be that bad but it seems more natural to assume a model such as (5)
given below for our data if we believe that it really is circular normal data modulo π. In the
present paper we will discuss properties of such axial normal (AN) distributions as in (5).
Inference for such models will also be investigated as will be certain multivariate distributions
with AN components in their structure.

2 General representation of a p.d.f. for axial data

Assume that the axial random variable Θ,Θ ∈ [0, π), has an absolutely continuous distribu-
tion. Any probability density function (p.d.f), f(θ), for an axial random variable Θ should
then satisfy the following properties:

(i) f(θ) ≥ 0 (ii) f(θ) = f(θ + π) and (iii)
∫ π

0
f(θ)dθ = 1. (1)

Due to the periodicity constraint in (ii) and noting (iii), it also follows that the c.d.f. of an
axial random variable must obey the relation F (θ+(k+1)π)−F (θ+kπ) = 1, k = 0,±1,±2, ...
Remark 1. It follows from condition (ii) above that the usual methods of construction of
distributions on restricted range from those on a wider range by truncation, say e.g. an axial
distribution on [0, π) from the circular normal density on [0, 2π), will not, in general, be a
valid method here.

As is well known for circular distributions, we observe here that an axial distribution too
admits of representation in terms of a Fourier series. Let f(θ) ∈ [0,∞) have period π. Then
the Fourier series generated by f is

f(θ) ≡ a0

2
+

∞
∑

m=1

(am cos 2mθ + bm sin 2mθ) , (2)

where

am =
2

π

∫ π

0
f(α) cos 2mα dα, bm =

2

π

∫ π

0
f(α) sin 2mα dα, m = 0, 1, 2, . . . .

In exponential form we have

f(θ) ≡
∞
∑

m=−∞

γme
2imθ ,

where

γm =
1

m

∫ π

0
f(α)e−2imαdα, m = 0,±1,±2, . . . .
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It is known that all the convergence theorems for Fourier series of period 2π (i.e. for the
circular case) can also be applied to the case of a general period p, and hence to the period
π, i.e. to the axial case, by making a suitable change of scale. Letting f(θ) be a proper
p.d.f. defined for the axial variable θ ∈ [0, π), evaluating the Fourier coefficients am and
bm and substituting these in the expression for f(θ) given in (2), we get the Fourier series
representation of the corresponding axial p.d.f.

3 Constructions of axial distributions

We now discuss a method for constructing axial distributions. As remarked above, it has
frequently been assumed that axial data can be appropriately analyzed by assuming that,
when multiplied by 2, it will have a circular distribution. It is interesting to investigate
the nature of a circular distribution for Φ which will have the property that doubling its
associated axial variable will lead to a circular distribution on [0, 2π). We thus wish to
identify the nature of the distribution for Φ which will be such that 2(Φ mod π) will have a
circular distribution.

To avoid confusion let us define Θ = Φ(mod π) and V = 2Θ. We will then have

fΘ(θ) = [fΦ(θ) + fΦ(θ + π)] I(0 ≤ θ < π) (3)

and consequently

fV (v) =
1

2
[fΦ(

v

2
) + fΦ(

v

2
+ π)] I(0 ≤ v < 2π)

Remarks 2. (a) Observe that since fΦ(.) is a circular p.d.f., the construction in (3) implies
that fΘ(.) satisfies (ii) of (1) and hence qualifies to be an axial p.d.f.

(b) The above representation of fΘ(θ) is clearly seen as “wrapping” of a circular distri-
bution to yield an axial distribution. In case the original circular distribution is a wrapped
distribution obtained by wrapping a linear distribution, corresponding to the linear random
variable defined on R or R+, by the operator mod 2π, this resulting axial distribution can
be viewed as a “doubly wrapped” distribution.

4 The axial normal distribution

4.1 Representations of AN distribution

The most popular circular distribution is the von Mises or circular normal density of the
form

fΦ(φ) ∝ exp(a sin φ+ b cos φ) I[0 < φ < 2π) . (4)

Due to the important role played by the circular normal distribution in the analysis of di-
rectional data, we now investigate the nature of a circular distribution for Φ which will

3



have the property that doubling its associated axial variables will lead to a circular nor-
mal distribution on (0, 2π]. Thus the nature of the distribution for Φ should be such that
2(Φ mod π) ∼ CN(a, b) . This leads to the following
Definition. A random variable Θ will be said to have an axial normal distribution if its
density is of the form

fΘ(θ) ∝ cosh(a sin θ + b cos θ) I[0 < θ < π) (5)

where a, b ∈ R. In such a case we will write

Θ ∼ AN(a, b) .

The genesis of such variables via the relation Θ = Φ(mod π) where Φ ∼ CN(a, b) (as in
(3)), was remarked on section 1. In both (4) and (5) the admissible range of the parameters
is a ∈ R, b ∈ R. Note that in (5)

lim
θ→0+

fΘ(θ) = lim
θ→π−

fΘ(θ) = cosh b .

It may be noted that while the circular normal distributions constitute an exponential family,
such is not the case for the axial normal distributions. As a consequence, inference for
axial normal data will not be as straightforward as was the case for circular normal data.
For example, no data reduction via sufficiency will be possible for the axial normal case
(in contrast to the circular normal case where sufficient statistics for a, b based on n i.i.d.
observations will be (

∑n
i=1 cosφi,

∑n
i=1 sinφi)).

An alternative parameterization is available for the circular normal distribution (and
indeed it is more commonly encountered in the literature than is the parameterization used
in (4)). We will write Φ ∼ CN(µ, κ) if the density of Φ is of the form

fΦ(φ) = [2πI0(κ)]
−1 exp[κ cos(φ− µ)] I(0 ≤ φ < 2π) (6)

for some µ ∈ [0, 2π) and κ > 0. In (6), I0(·) denotes the modified Bessel function of the
first kind and of order zero. It is not difficult to determine the relationship between the
parameters (µ, κ) in (6) and (a, b) in (4). We have:

a = κ sin µ, b = κ cosµ .

One advantage of the (µ, κ) parameterization is that it permits a superficially simple expres-
sion for the value of the normalizing constant required to make the density integrate to 1.
We can and will borrow this parameterization for use in the axial data setting. Thus we will
write Θ ∼ AN(µ, κ) if Θ = Φ(mod π) where Φ ∼ CN(µ, κ). On using (6) in (3), the AN
distribution can be directly written as :

fΘ(θ) = [2πI0(κ)]
−1[exp(κ cos(θ − µ)) + exp(−κ cos(θ − µ))] I(0 ≤ θ < π) (7)

An alternative representation of the AN distribution similar to that in (5), in terms of (µ, κ),
is given by

fΘ(θ) = [πI0(κ)]
−1 cosh{κ cos(θ − µ)} I(0 ≤ θ < π) (8)

We will find later (Section 5) that the representations in (7) and (8) are more convenient to
deal with for statistical inference.
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4.2 Properties of AN distribution

The AN distribution possesses the properties stated as:
Result 1. The AN distribution

(i) reduces to the axial uniform distribution , i.e. uniform distribution on the semi-circle
[0, π), when κ = 0
(ii) is symmetric about µ and
(iii) possesses no non-trivial sufficient statistic for its parameters (µ, κ).
(iv) For p even, E(cos pΘ) = E(cos pΦ), E(sin pΘ) = E(sin pΦ).
Proof: It is straight forward to prove the properties (i) - (iii). We establish (iv) below.

We define for p = 1, 2, . . .

δc,p(Θ) = E(cos pΘ), δs,p(Θ) = E(sin pΘ). (9)

In (9) we permit Θ to have support [0, π) or [0, 2π).
If Φ ∼ CN(µ, κ) then its trigonometric moments are given by :

δc,p(Φ) = Ap(κ) cosµ (10)

δs,p(Φ) = Ap(κ) sinµ (11)

where Ap(κ) ≡ Ip(κ)/I0(κ), Is(κ) being the modified Bessel function of the first kind and
order s. Expressions for the moment generating functions of sin Φ and cos Φ (where Φ ∼
CN) are most easily written using our a, b parameterization. Let us define the normalizing
constant in terms of a, b as:

C(a, b) =
∫ 2π

0
exp[a sin θ + b cos θ]dθ . (12)

It follows readily that
E(et sinΦ) = C(a + t, b)/C(a, b) (13)

and
E(et cos Φ) = C(a, b + t)/C(a, b) . (14)

Turning to consider axial normal variables, recall that Θ ∼ AN iff Θ = Φ(mod π) where
Φ ∼ CN . If follows that

E(cos pΘ) =
∫ π

0
cos pθfΘ(θ)dθ

=
∫ π

0
cos pθfΦ(θ)dθ +

∫ π

0
cos pθfΦ(θ + π)dθ

=
∫ π

0
cos pθfΦ(θ)dθ +

∫ 2π

π
cos p(θ − π)fΦ(θ)dθ

=
∫ π

0
cos pθfΦ(θ)dθ + (−1)p

∫ 2π

π
cos pθfΦ(θ)dθ (15)

Consequently for p even,
E(cos pΘ) = E(cos pΦ) . (16)
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Analogously we may verify that for p even

E(sin pΘ) = E(sin pΦ) . (17)

Thus the even trigonometric moments of the axial normal distribution coincide with the even
trigonometric moments of the circular normal distribution, which proves (iv).

The odd trigonometric moments of Θ and Φ do not coincide. From (15) and an analogous
computation for E(sin pΘ) we have that, for p odd,

E(cos pΘ) =
∫ π

0
cos pφfΦ(φ)dφ

−
∫ 2π

π
cos pφfΦ(φ)dφ (18)

and

E(sin pΘ) =
∫ π

0
sin pφfΦ(φ)dφ

−
∫ 2π

π
sin pφfΦ(φ)dφ . (19)

Remarks 3. (a). It may be remarked in passing that (16) and (17) are equivalent to

the statement that 2[Φ(mod 2π)]
d
= 2Θ, an observation which is actually obvious from the

definition of Θ(= Φ(mod π)).
(b). For axial data, as is the case for circular data, trigonometric moments are useful

informative statistics.
(c). The Fourier series representation for the AN distribution is obtained from the general

representation (2) by using CN(µ, κ) as fΦ. This yields the required ap and bp respectively
from (16)-(17) or equivalently as in (10)-(11) for p even and from (18)-(19) for p odd.

5 Inference for axial normal data

Suppose that θ1, θ2, . . . , θn, is a random sample from the AN distribution parameterized
either by (a, b) or by (µ, κ), whichever conveniently suits our purpose. We wish to estimate
the parameters and test some important simplifying hypotheses in this model.

5.1 Estimation of parameters

5.1.1 Method of maximum likelihood

Maximum likelihood estimation when feasible, typically provides fairly good estimates. In
order to implement maximum likelihood estimation, we will need an explicit expression for
the normalizing constant in the AN density. The common density of the Θi’s, using (5) with
the (a, b) parameterization, is

fΘ(θ; a, b) =
cosh(a sin θ + b cos θ)

πI0(
√
a2 + b2)

(20)
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and so the log likelihood function of a sample will be

`(a, b) =
n

∑

i=1

log(cosh(a sin θi + b cos θi))

−n log π − n log I0(
√
a2 + b2) . (21)

The corresponding likelihood equations, obtained by setting ∂
∂a
`(a, b) = 0 and ∂

∂b
`(a, b) = 0,

are:
1

n

n
∑

i=1

tanh(a sin θi + b cos θi) · sin θi =
I ′0(

√
a2 + b2)

I0(
√
a2 + b2)

a√
a2 + b2

(22)

and
1

n

n
∑

i=1

tanh(a sin θi + b cos θi) · cos θi =
I ′0(

√
a2 + b2)

I0(
√
a2 + b2)

b√
a2 + b2

(23)

The system of likelihood equations in (22) - (23) seem complicated to solve. We present
now an alternative system of likelihood equations based on the representation (7), which lends
itself amenable to solution conveniently. Based on (7), the likelihood equations obtained by
setting ∂

∂µ
`(µ, κ) = 0 and ∂

∂κ
`(µ, κ) = 0, are given respectively by

f(µ, κ) =
n

∑

i=1

sin(θi − µ) − 2
n

∑

i=1

[sin(θi − µ)/{1 + exp(2κ cos(θi − µ))}] = 0 (24)

g(µ, κ) =
n

∑

i=1

cos(θi − µ) − 2
n

∑

i=1

[cos(θi − µ)){1 + exp(2κ cos(θi − µ))}] + nA(κ) = 0 (25)

where A(κ) = I1(κ)/I0(κ) ≡ I ′0(κ)/I0(κ). A convenient yet reasonably good approximation
for A(κ) is given by,

A(κ) =











κ
2
{1 − κ2

8
+ κ4

48
− 11κ6

3072
}, κ ≤ 1

1 − 1
2κ

− 1
8κ2 − 1

8κ3 , κ > 1
(26)

Equations (24) and (25) need to be solved iteratively for µ and κ. The Newton-Raphson
method of iteration for multiple parameters can be used here. This requires all the partial
derivatives of both functions f and g w.r.t. µ and κ both. These are given by

fκ(µ, κ) =
n

∑

i=1

(− cos(µ− θi) +
2 cos(µ− θi)

1 + e2κ cos(µ−θi)
+

4e2κ cos(µ−θi)κ(sin(µ− θi))
2

(1 + e2κ cos(µ−θi))2
)

gµ(µ, κ) =
n

∑

i=1

(− sin(µ− θi) +
2 sin(µ− θi)

1 + e2κ cos(µ−θi)
− 4e2κ cos(µ−θi)κ sin(µ− θi) cos(µ− θi)

(1 + e2κ cos(µ−θi))2
)

fκ(µ, κ) =
n

∑

i=1

−(
4e2κ cos(µ−θi) cos(µ− θi) sin(µ− θi)

(1 + e2κ cos(µ−θi))2
)

gκ(µ, κ) =
n

∑

i=1

(
4e2κ cos(µ−θi)(cos(µ− θi))

2

(1 + e2κ cos(µ−θi))2
) − (nA′(κ))
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For this we need A′(κ). Again, a convenient form for it also may be used, as given by

A′(κ) = 1 − A(κ)/κ− A2(κ).

The initial values of µ and κ required for the iteration above, may be taken as the sample
mean direction θ̄ and κ̂ = A−1(R̄), R2 = C2 + S2, the MLE of κ for a CN distribution,
respectively. We have implemented this approach for the two examples presented later.

5.1.2 Method of trigonometric moments

As an alternative to maximum likelihood estimation, we may consider some form of the

method of moments estimation. Since, as observed in Remark 3(a), 2Θ
d
= 2Φ(mod 2π)

and since sine and cosine functions have period 2π, it follows then that sin 2Θ
d
= sin 2Φ

and cos 2Θ
d
= cos 2Φ. Consequently the following two moment equations could be used to

estimate (a, b) :
1

n

n
∑

i=1

sin(2θi) = E(sin 2Φ) (26)

and
1

n

n
∑

i=1

cos(2θi) = E(cos 2Φ) (27)

On differentiating fΘ(θ) w.r.t. µ, we have

(
∂

∂µ
)
∫

fΘ(θ)dθ = −E sin(θ − µ) + 2
∫ π

0
sin(θ − µ)fΦ(θ)dθ = 0

E sin(θ − µ) = 2
∫ π

0
sin(θ − µ)fΦ(θ)dθ (29)

Similarly differentiating fΘ(θ) w.r.t. κ, we have

E cos(θ − µ) = 2
∫ π

0
cos(θ − µ)fΦ(θ)dθ − A(κ) (30)

So
∫ π

0
sin(θ − µ) exp{κ cos(θ − µ)}dθ

=
1

κ

∫ π−µ

−µ
κ sin θ exp{κ cos θ}dθ =

1

κ
[− exp{κ cos θ}]|π−µ

−µ

=
1

κ
[exp{κ cos(−µ)} − exp{κ cos(π − µ)}]

=
1

κ
[exp{κ cosµ} − exp{κ(− cosµ)}]

=
1

κ
[eκ cos µ − e−κ cos µ] ≡ U(µ, κ), say.
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So,

E sin(θ − µ) =
1

π

1

I0(κ)
U(µ, κ)

⇒
n

∑

i=1

sin(θi − µ̂) =
n

πI0(κ̂)
U(µ̂, κ̂)

⇒ [S cos µ̂− C sin µ̂][πI0(κ̂)] = nU(µ̂, κ̂), (31)

where, S =
∑n

i=1 sin θi, C =
∑n

i=1 cos θi. Also, define

N(κ, µ) ≡ 1

π

∫ π

0
exp[κ cos(θ − µ)]dθ

Note that N(κ, 0) = I0(κ) and N ′(κ, 0) = I1(κ). N(·) and N ′(·) are to be obtained by
numerical integration using, e.g. Gaussian quadrature. Then

∫ π

0
cos(θ − µ) exp[κ cos(θ − µ)]dθ = πN ′(κ, µ)

So, using (30) we get,

E cos(θ − µ) =
1

π

1

I0(κ)
πN ′(κ, µ) − A(κ)

⇒ [(C cos µ̂+ S sin µ̂][I0(κ̂)] = n[N ′(κ̂, µ̂) − I1(κ̂)] (32)

Thus it is left only to solve (31) and (32) iteratively for µ(0 ≤ µ < π) and κ(> 0).
The method of trigonometric moments for axial data are thus seen to be more compli-

cated, unlike for the linear and circular data, than the method of maximum likelihood.

5.2 Testing of hypotheses

We consider in this section two important problems related to axial data and our model
(4). We may also wish to test whether the AN model for the Θi’s is preferable to an
assumption that each 2Θi has a CN distribution - this hypotheses, however, will be dealt
with elsewhere. As with circular data, test for isotropy or equivalently for uniformity is the
first and fundamental test required for axial data. The second important testing problem is
that of testing for a specified direction of symmetry. Both these problems pose interesting
situations. In the first problem, the nuisance parameter µ appears only under the alternative,
which is a somewhat non-standard situation. In the second problem, no usual reduction, e.g.
through sufficiency, invariance or ancillarity can be achieved, since the nuisance parameter
κ is a non location-scale parameter. Also, note that there does not exist any non-trivial
sufficient statistic for (µ, κ) appearing in model (1). Below we present statistical tests for
the above two testing problems.
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5.2.1 Tests for axial uniformity

The null hypothesis of axial isotropy translates to the multiparameter hypothesis H0: a=0
and b=0, in terms of the parameters a and b defining the AN distribution in the form given
in (4). The optimal locally most mean powerful unbiased (LMMPU) test can be derived
here following the construction given in SenGupta and Vermeire (1986). However, on using
property (i) and expression (4), this multi-parameter hypothesis can be stated equivalently
in terms of the much simpler one-parameter hypothesis H0 : κ = 0. Note that H0 specifies the
value of the parameter κ on the boundary. Further, the “nuisance” parameter µ is absent
under H0 and is present only under the alternative. Thus, the construction of an exact
optimal test seems to pose problems - though, see e.g. SenGupta (1991) and SenGupta and
Pal (2001) for methods to deal with such situations. However, a likelihood ratio test may be
conveniently invoked here, since as we have seen in Secn. 5.1.1, the (unconstrained) MLEs
of µ and κ can be computed without much difficulty. Under H0, no parameter appears and
hence (maximum likelihood) estimation is not called for. The critical region becomes:

ω : T1 ≡ −n log I0(κ̂) +
n

∑

i=1

log cosh[κ̂ cos(θi − µ̂)] > K1,

where κ̂ and µ̂ are the m.l.e.s of µ and κ respectively, given in Section 5.1.1 above, and
K1 is the cut-off point to be determined from the specified size of the test. T1 is easy to
compute. But the exact distribution of T1 is non-trivial to derive. Further, care needs to be
taken in deriving even its large-sample distribution. The standard result on the asymptotic
χ2 distribution of the -2 log likelihood ratio statistics need not hold, since here we are faced
with the non-regular situation of testing for the value of the parameter (κ) on the boundary,
and not for an interior point, of the parameter space. However, the exact cut-off points can
be conveniently determined through simulation since the generation of the necessary random
variables under H0, i.e. from a Uniform distribution on [0, π), can be trivially done.

5.2.2 Tests for specified direction of symmetry

For testing H0 : µ = µ0, the likelihood ratio test may be adopted. The unconstrained m.l.e.s
κ̂ and µ̂ of µ and κ are available again from (24) and (25) of Section 5.1.1. The m.l.e. κ̂0 of
κ under H0 is obtained by solving (24) with µ simply replaced by µ0. The test then has the
critical region:

ω : T2 ≡
n

∑

i=1

[log cosh[κ̂0 cos(θi−µ0)−n log I0(κ̂0)]−[log cosh[κ̂ cos(θi−µ̂)−n log I0(κ̂)] < K2,

where the cut-off point K2 is to be determind from the specified size condition. The exact
distribution of T2 is complicated even under H0 and the cut-off points are to be obtained by
simulation. However, in large samples, −2T2 follows a χ2 distribution with 1 d.f., and this
yields K2 easily.
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6 Bivariate axial distributions

Related sets of axial data are frequently encountered. It is thus of interest to consider
bivariate distributions (eventually multivariate distributions) with marginals of the AN type.
Alternatively, if we think that conditional densities might be more easily visualized than
marginal densities, we might consider distributions with conditional densities of the AN
type. Arguments in favor of such conditional specification may be found in Arnold, Castillo
and Sarabia (1999).

6.1 Distributions with AN marginals and conditionals

Consider bivariate distributions of two axial random variables Θ and Λ with support on
[0, π) × [0, π). Joint densities of Θ and Λ which are desired to have AN marginals can be
constructed in the usual way as done for bivariate distributions on R2. That is, we may
appeal to the well-known methods by Morgerstern, Gumbel or Frechet.

Now consider the construction of bivariate axial distributions for which it is desired to
have AN conditionals. Consider bivariate axial densities of the form:

fΘ,Λ(θ, λ) ∝ cosh(a11 sin θ sin λ + a12 sin θ cos λ

+ a21 cos θ sin λ + a22 cos θ cosλ) I(0 ≤ θ < π, 0 ≤ λ < π) . (33)

Here a11, a12, a21, a22 ∈ R. It is obvious that densities of the form (33) have axial normal
conditionals. Thus for each λ ∈ [0, π),

Θ|(Λ = λ) ∼ AN(a11 sin λ+ a12 cosλ, a21 sin λ+ a22 cos λ) .

Analogously for each θ,Λ given Θ = θ has an AN distribution. One negative feature of the
model (33) is that it does not include any case with independent marginals. The model does
include the axial uniform (AU) distribution as a special case: a11 = a12 = a21 = a22 = 0.

6.2 A variant form of the AN conditionals model

For axial data we have noted that it is often plausible to require that the density satisfy:

lim
θ→0+

f(θ) = lim
θ→π−

f(θ) .

If we are willing to forego this requirement, we may consider an extended 3− parameter form
of axial normal family with densities of the form

f(θ; a, b, c) ∝ cosh(a sin θ + b cos θ + c) I(0 ≤ θ < π) . (34)

If Θ has density given by (34), we can write Θ ∼ AN ∗(a, b, c), where the star is used to
differentiate this extended family from the usual AN family. A flexible family of bivariate
densities with conditionals in this extended AN family (34), is given by:

f(θ, λ;A) ∝ cosh((1, sin θ, cos θ)A(1, sinλ, cosλ)′) I(θ, λ ∈ [0, π)) (35)
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where A is a 3 × 3 matrix of parameters. It is obvious that the conditional distributions for
(35) are all in the AN ∗ family (34). The model (35) of course includes the AN -conditionals
model (33) and also includes a model in which Θ and Λ have independent AN ∗ distributions
and, as a further specialization, a model with independent AN marginals.

6.3 Other bivariate axial distributions

An alternative approach to the construction of bivariate axial models is to begin with a
suitable model for a bivariate circular variable (Φ,Ψ) (see e.g., SenGupta, 2004) and then
define a related bivariate axial variable (Θ,Λ) by

Θ = Φ(mod π), Λ = Ψ(mod π) . (36)

For example, we could begin with a bivariate circular normal conditionals distribution of the
form discussed extensively in Arnold and SenGupta (2004),

fΦ,Ψ(φ, ψ) = exp{(1, sinφ, cosφ)A(1, sinψ, cosψ)′} I(φ, ψ ∈ [0, 2π)) . (37)

If we define (Θ,Λ) using (36) we will have

fΘ,Λ(θ, λ) = fΦ,Ψ(θ, λ) + fΦ,Ψ(θ, λ+ π) + fΦ,Ψ(θ + π, λ) + fΦ,Ψ(θ + π, λ+ π) . (38)

Such a distribution, though it may be a reasonable model, fails to have AN marginals or
conditionals.

7 Examples

We now illustrate our approach with two real-life examples. The first one refers to measure-
ments of long-axis orientations of 60 feldspar laths in basalt. The data are listed in degrees
in Appendix B5 (“164” there is a typo to be read as 60) of Fisher (1993). The raw plot of
the data is exhibited in Figure 1. The initial values of µ and κ were obtained (as explained
earlier) as 80.65 and 1.10 respectively. These led to the maximum likelihood estimates as
(µ̂, κ̂) = (108.9637, 1.0838). The low value of κ may be indicative of axial uniformity, a
hypothesis which was deemed to be of interest here. A formal test for uniformity may be
conducted using the likelihood ratio test derived in Section 5.2.1. The fitted AN distribution
is shown in Figure 3.

The second example refers to 63 measurements of median directions of face-cleats taken at
20-metre intervals along a tunnel in Wallsend Borehole Colliery, NSW, Australia. Changes in
the (median) directions of face-cleats are indicators of possible hazardous mining conditions
ahead. The data are listed in degrees in Appendix B22 of Fisher (1993). The raw plot of
the data is exhibited in Figure 2. The initial value of µ was obtained as 90.28 and that
of κ was taken as 1. These led to the maximum likelihood estimates as (µ̂, κ̂) = (89.9859,
10.9050). Since a change in the direction of face-cleat is important here, an initial test may
be formulated for the discrepancy of the underlying direction of symmetry from a specified
value. This boils down to a test for µ which may be conducted using the likelihood ratio
test given in Section 5.2.2. The fitted AN distribution is shown in Figure 4.
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The raw plots of the two data sets and the initial values of µ and of κ were obtained
using DDSTAP (SenGupta, 1998), a statistical package for the analysis of directional data.
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Figure 3. Fitted p.d.f of AN(1.9018,1.0838) for Feldspar data

Figure 4. Fitted p.d.f of AN(1.5706,10.9050) for Face−cleat data
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