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Abstract

We discuss how we form a combined forecast in data rich environment where there
are many predictors or many forecasts. It is often necessary to use reduced-dimension
speci�cations that can span a large number of predictors or forecasts. The use of factor
models and principal component estimation has been advocated for forecasting in the
presence of many predictors. We decompose the space spanned by many predictors
using principal components. Or we can project the forecast target to many subspaces
spanned by the predictors, then obtain many arti�cially generated forecasts, and then
combine those forecasts generated from the subspaces. Finally, we discuss some issues
in forecast combination for quantile forecasts, density forecasts, interval forecasts, and
binary forecasts.
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1 Introduction

In practice it is quite common that one forecast model performs well in certain periods while

other models perform better in other periods. It is di¢ cult to �nd a forecast model that

outperforms all competing models. To improve forecasts over individual models, combined

forecasts have been suggested (Bates and Granger 1969). Newbold and Granger (1974),

Granger and Newbold (1986, Ch 9), Granger and Jeon (2004) and Yang (2004) show that

forecast combinations can improve forecast accuracy over a single model and show why

the forecast combination can achieve a better forecast in terms of mean squared forecast

error. Bayesian model averaging (BMA) may be used to form a weighted combined forecast.

See e.g., Lee and Yang (2006). A frequently asked question is: �how to combine�. See,

for example, Granger and Ramanathan (1984), Deutsch, Granger, and Teräsvirta (1994),

Palm and Zellner (1992), Shen and Huang (2006), and Hansen (2008). Clemen (1989) and

Timmermann (2006) provide excellent surveys on forecast combination and related issues.

Granger and Jeon (2004, p. 327) put the forecast combination in a general context of

thick modelling and write, �An advantage of thick modelling is that one no longer needs to

worry about di¢ cult decisions between close alternatives or between deciding the outcome

of a test that is not decisive. In time series such questions are whether the process has a

unit root or not, or how many cointegrations are in a vector of a series. For thick models

one considers all plausible alternatives and uses the outputs of the various models.�

Even when we have a single model, a combination of forecasts can also be formed over a

set of training sets. While usually in practice we have a single training set, it can be replicated

via bootstrap and the combined forecast trained over the bootstrap-replicated training sets

can improve over the original forecast of the model. This is the idea of bootstrap aggregating

(or bagging), introduced by Breiman (1996).

Huang and Lee (2010) consider the situation when one wants to predict an economic

1



variable using the information set of many relevant explanatory variables. Diebold and Pauly

(1990) point out, �... it must be recognized that in many forecasting situations, particularly

in real time, pooling of information sets is either impossible or prohibitively costly�. Likewise,

when models underlying the forecasts remain partially or completely unknown (as is usually

the case in practice, e.g., survey forecasts), one would never be informed about the entire

information set. Quite often the combination of forecasts is used when the only things

available are individual forecasts (for example the case of professional forecasters) while the

underlying information set and the model used for generating each individual forecast are

unknown.

In this paper we consider how to combine forecasts in a situation where many predictors

(i.e., large information set) are available, or in a situation where many forecasts are given

but models and predictors used for generating each individual forecast are not necessarily

known. In each of these situations, we explain how to use factor models. Much of the results

presented here are studied in Chan, Stock, and Watson (1999), Stock and Watson (2002),

Huang and Lee (2010), Hillebrand, Lee, Li, and Huang (2010), and Tu and Lee (2010)

2 Data rich environment

Bernanke and Boivin (2003) emphasize that the use of large data set is common environment

in practice such as in the central bank�s policy making analysis. They wrote, �Research

departments throughout the Federal Reserve System monitor and analyze literally thousands

of data series from disparate sources ... Despite this reality of central bank practice, most

empirical analyses have been con�ned to ... exploit only a limited amount of information.

For example, the VAR methodology generally limits the analysis to eight macroeconomic

time series or fewer. This disconnect between central bank practice and academic analysis

has several costs ... It thus seems worthwhile to take into account the fact that in practice
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monetary policy is made in a data-rich environment.�

For example, in forecasting stock market volatility, we can use many predictors frommany

options� implied volatilites. In predicting output growth and in�ation, we can use many

available economic predictors (Bernanke and Boivin 2003, Stock and Watson 2002, Wright

2009, Hillebrand, Lee, Li, and Huang 2010, Tu and Lee 2010). Stock and Watson (1989),

Bernanke (1990), Ang and Piazzesi (2003), Ang, Piazzesi and Wei (2006), and Hillebrand,

Lee, Li, and Huang (2010), use many yields and yield spreads. To predict retail default

probability, a retail credit model uses many borrower-speci�c predictors.

Bernanke and Boivin (2003) con�rm merit of the large data set as follows: �... explores

the feasibility of incorporating richer information sets into the analysis, both positive and

normative, of Fed policy making. We employ a factor-model approach, ... , that permits

the systematic information in large data sets to be summarized by relatively few estimated

factors. With this framework, we recon�rm Stock and Watson�s result that the use of large

data sets can improve forecast accuracy ...�

A natural question is how we should use all those vast data in predicting a target of

interest. Using large data, there are advantages of accessing rich information and robustify-

ing against structural instability which plagues low dimensional forecasting. While we can

exploit these advantages, there are also di¢ culties of using large data due to overwhelming

information, which may be highly correlated and noisy.

When there are many predictors in columns of the predictor matrix X with the column

number N being large, the dimension N needs to be reduced. One way is to select r (� N)

factors of X, and another way is to select r (� N) columns of X: The former, known as

a factor model, has recently been a popular approach in econometric forecasting, due to

pioneering work by Stock and Watson (2002), Bai (2003), and Bai and Ng (2002, 2006),

who have explored theoretical and empirical analysis of factor models based on principal

components. The latter, known as variable selection, has been widely studied in statistics.
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The variable selection is to reduce N by ranking and selecting a subset of X that are most

predictive for a forecast target y; via such methods as LASSO (Tibshirani 1996), least angle

regression (Efron, Hastie, Johnstone and Tibshirani 2004), and elastic net (Zou and Hastie

2005) among many other methods.

While the data rich environment usually refers to the situation where there are many

predictors, it also refers to the situation where there are many forecasts provided by many

�rms, many departments in an organization, many analysts in an investment bank, many

di¤erent government agents, etc. In this paper we consider both cases, namely, the data rich

environment with many predictors withN -vector xt = (xt1; xt2; : : : ; xtN)0; and the data rich

environment with many forecasts with N -vector of forecasts ŷt+h = (ŷ
(1)
t+h; ŷ

(2)
t+h; : : : ; ŷ

(N)
t+h)

0:

Below we will discuss how we form a forecast under these two types of data rich environment.

In both cases, the idea is to combining multiple forecasts. Therefore, we begin with a review

of the literature on combining forecasts.

When multiple forecasts of the same variables are available, it�s typically argued that a

combination of those forecasts should be used instead of using any single forecasts even if

it�s a dominate one (e.g. Timmermann 2006). This is because forecast combinations o¤er

diversi�cation gains and it�s almost impossible to identify ex ante a dominant forecast model.

The success of the forecast combinations will in turn depend on how well the combination

weights are determined. As summarized in Clemen (1989), a simple average (with weights

1
N
) of the multiple forecasts is typically found to be a good forecast combination. However,

the equal weights 1
N
will be very small when N is very large in data rich environment, giving

little chance for a better model to work dominantly against bad models. Before we deal with

the data rich environment, we �rst consider a simplest case with N = 2:
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3 Combining forecasts

Bates and Granger (1969) �rst introduced the idea of combining forecasts. Let us begin with

its brief review when N = 2: Let ŷ(1)t and ŷ(2)t be forecasts of yt+1 with errors

e
(i)
t+1 = yt+1 � ŷ

(i)
t ; i = 1; 2

such that Ee(i)t+1 = 0; Ee
(i)2
t+1 = �

2
i ; and Ee

(1)
t+1e

(2)
t+1 = ��1�2: De�ne a combined forecast with

the weight w 2 (�1 1)

ŷ
(c)
t = wŷ

(1)
t + (1� w)ŷ(2)t ;

its forecast error

e
(c)
t+1 = yt+1 � ŷ

(c)
t = we

(1)
t+1 + (1� w)e

(2)
t+1;

and its expected squared forecast error loss

�2c(w) = w
2�21 + (1� w)2�22 + 2w(1� w)��1�2:

Minimizing the loss, the optimal combining forecast weight is obtained

This expression is minimized for the value of k given by

wopt = argmin�
2
c(w) =

�22 � ��1�2
�21 + �

2
2 � 2��1�2

: (1)

Substitution yields the minimum achievable error variance as

�2c(wopt) =
�21�

2
2(1� �2)

�21 + �
2
2 � 2��1�2

:

Bates and Granger (1969) showed that the optimal combined forecast error loss is smaller

than the smaller of the two individual forecast error losses

�2c(wopt) � min(�21; �22):

Thus, a priori, it is reasonable to expect in most practical situations that the best available

combined forecast will outperform the better individual forecast. It cannot, in any case, do

worse.
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This result has been used across various disciplines (e.g., economics, �nance, opera-

tions research, meteorology, management, computer science and machine learning) under

the names of combining forecast, ensemble predictor, committees of learners, a team of

forecasts, consensus of learners, mixture of experts, expert system, and etc.

4 Why combine?

The forecast combination problem is similar to that of minimizing the variance of a portfolio,

with the errors from the individual forecasts playing the role of asset returns (Aiol� and

Timmermann 2006). In practice it is quite common that one forecast model performs well

in certain periods while other models perform better in other periods. It is di¢ cult to �nd a

forecast model that outperforms all competing models. Forecast combinations can improve

forecast accuracy over a single model. Hong and Lee (2003) �nd the combined forecasts are

generally the best performer for the mean and sign prediction for the foreign exchange rate

changes.

Aiol� and Timmermann (2006) consider a forecasting strategy that takes average over

the models in the top quartiles or cluster. There is a clear evidence that, in general, a

strategy of selecting one best (top) model based on past forecasting performance does not

work well. This holds both for linear and nonlinear forecasting methods. This is analogous

to the portfolio selection in the stock market.

Why do we combine? Aiol� and Timmermann (2006) have given answers as follows,

�Forecast combination entails using information from a typically large set of forecasts and

emerges as an attractive strategy when individual forecasting models are misspeci�ed in a

way that is unknown to the modeler. Misspeci�cation is likely to be related not simply to

functional form (neglected nonlinearity) but also to instability (structural changes) in the

joint distribution of forecasts and the target variable. In this situation, the identity of the
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best forecasting model is likely to change over time and a key question is for how long the

relative performance of forecasting models persists.�

Aiol� and Timmermann (2006) also wrote:

1. Forecasts are of considerable importance to decision makers throughout economics and

�nance and are routinely used by private enterprises, government institutions and pro-

fessional economists. It is therefore not surprising that considerable e¤ort has gone

into designing and estimating forecasting models ranging from simple, autoregressive

speci�cations to complicated nonlinear models or models with time-varying parame-

ters. A reason why such a wide range of forecasting models is often considered is

that the true data generating process underlying a particular series of interest is un-

known and even the most complicated model is likely to be misspeci�ed and can, at

best, provide a reasonable �local�approximation to the target variable. Particularly

so in practical forecasting situations in macroeconomics with a large cross-section of

forecasting models and a short time-series dimension.

2. Forecasting models are also likely to be subject to structural instability as documented

by Stock and Watson (1996) for a large series of macroeconomic variables. Viewed this

way, it is highly unlikely that a single model will dominate all others at all points in

time and the identity of the best �local�approximation is also likely to change over time.

If the identity of the best �local�model is time-varying, a question immediately arises,

namely whether it is possible to design a forecasting strategy that, at each point in time,

selects the best current model. This strategy can be expected to be successful if the

best current forecasting model outperforms all other models by a suitably large margin

and if the ranking of the forecasting models is persistent. If either of these conditions

fails to be met, a strategy of selecting only a single �best�model is unlikely to work well.

Most obviously, if (ex-ante) the identity of the best model varies randomly from period
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to period, it will not be possible to identify this model by considering past forecasting

performance across models. Similarly, if the best model only outperforms other models

by a margin that is small relative to random sampling variation, it becomes di¢ cult to

identify this model by means of statistical methods based on past performance. Even if

the single best model could be identi�ed in this situation, it is likely that diversi�cation

gains from combining across a set of forecasting models with similar performance will

dominate the strategy of only using a single model.

5 How to combine?

The optimal combination weights in (1) for N = 2 may be extended to a general case with

a larger N: However, the estimation of the weights from the regression of the form (2) may

su¤er from the large estimation error especially when N is large and the forecasts may be

highly correlated. The following methods have been widely used in applications.

A natural way is to estimate forecast combination weights by least squares regression or

equivalently using portfolio variance minimization methods. Usual problem with this esti-

mation method is that given the sample sizes typically available in practice, the combination

weights are often imprecisely estimated. In particular, this is a problem when the number of

models is large relative to the length of the time-series so that the covariance matrix of the

forecast errors either cannot be estimated or is estimated very imprecisely. The assumption

of a stable covariance structure is unlikely to be satis�ed in practice and weights may be

time-varying.

A simpler way is to use the equal weights (simple mean). This becomes a common

strategy when the models are of similar quality or because their relative performance is

unknown or unstable over time. Stock and Watson (1999) use trimmed mean and median

to robustify the simple mean weighted combined forecasts.
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Aiol�and Timmermann (2006) used ranking of the forecasting model and use clustering.

The premise of this approach is that, when combining forecasts from a large cross-section

of models, it is generally di¢ cult to distinguish between the performance of the top models,

but one can tell the di¤erence between the best and worst models. This suggests including

a subset of �good�models in the combined forecast. Also popular method is Bayesian model

averaging (BMA) used in many applications, e.g., Lee and Yang (2006) and Wright (2009).

The formula for the optimal combination weights in (1) forN = 2 has an important aspect

that has been ignored in many applications in the literature, although it was discussed in

Granger and Newbold (1986, Ch 9) in some length and detail. That is the role of correlation

� on the forecast combination as studied in Lee, Li, and Huang (2010). Note that the

forecast combination needs not be convex and it is permitted that the weights can be any

real number, w 2 (�1 1). Therefore the optimal forecast combination weight w in (1) may

be negative (< 0) or larger than 1. What does this mean? How does � a¤ect the combined

forecast? To combine multiple forecasts when these forecasts are highly correlated or close

to collinear, the optimal combination places negative weights on the inferior forecasts and

over one on the dominant forecasts similar to the pairs-trading strategy that pro�ts from the

high correlation of the two sock returns. This optimal forecast combination outperform any

individual forecast and explains why an inferior forecast can be included in the combination

to improve forecast. The optimal combination weight has a pattern of the pairs-trading

strategy. Without loss of generality, we assume all the forecasts are one-step ahead forecasts.

The following results can be easily generalized to multi-step forecasts. The situation where

wopt < 0 is interesting. In light of the above condition, it appears that an inferior forecast

may still be worth including with negative weight. This happens when �22 � ��1�2 < 0 or

�2=�1 < �; i.e., when � is a very large positive value, say close to 1, and f
(1)
t is the inferior

forecast with larger forecast error variance �1.

As shown in Granger and Newbold (1986, p. 268), the optimal combining weight wopt
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can be estimated from

ŵt =

Pt
s=1

�
e
(2)2
s � e(1)s e(2)s

�
Pt

s=1

�
e
(1)2
s + e

(2)2
s � 2e(1)s e(2)s

� (2)

which can be obtained from the regression

e
(2)
t+1 = w

�
e
(2)
t+1 � e

(1)
t+1

�
+ e

(c)
t+1: (3)

However, a common popular recommendation is to ignore �: For example, Clemen (1989,

p. 562) suggests �to ignore the e¤ect of correlations in calculating combining weights�.

While the optimal weight ŵt can be negative or overweighted (larger than one) depending

on the value of �, the use of a simpler form obtained with the restriction � = 0 has been a

popular recommendation:

ŵ0t =

Pt
s=1 e

(2)2
sPt

s=1

�
e
(1)2
s + e

(2)2
s

� :
Note that ignoring �; ŵ0t is always constrained on the (0 1) interval (analogous to the short-

sale constraint).

When � is large and positive, the optimal weight on the inferior forecast can be nega-

tive. The forecast combination problem is analogous to that of minimizing the variance of

a portfolio, with the forecast errors playing the role of asset returns (Timmermann 2006).

Gatev, Goetzmann, and Rouwenhorst (2006) show that the �pairs trading�in �nancial trad-

ing strategy pro�ts from the high correlation in the returns. Analogously, the pro�tability

of using the optimal weight is linked to the high correlation � in the forecasts. Without loss

of generality lets assume ŷ(1)t is the inferior forecast with larger forecast error variance. In

combining forecasts, when � � 0; we short the loser (the worse forecast) with w < 0 and

buy the winner (the better one) with (1 � w) > 1. In this case, the use of ŵ0t ignoring the

correlation � would be too restrictive.
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6 Forecasting in data rich environment

So far, we have considered the case when N = 2: Most of the combining forecast literature

has been limited to the case when N is small. In the present paper we consider the combining

forecasts when N is large. Consider a kitchen-sink model with all predictors xt in one large

model

yt+h = (1 x
0
t)b+ ut (t = 1; 2; : : : ; T )

to generate the h-step forecast

ŷT+h = (1 x
0
T )b̂T :

However, when N is large, the OLS estimator b̂OLS may not be feasible to compute, and the

mean squared forecast error (MSFE) increases withN asMSFE = E(yt+h�ŷt+h)2 = O
�
N
T

�
:

A solution to these problems is not to use OLS estimation of the large model but to reduce

the dimension N; either by selection of relevant variables for the forecast target to reduce

N or by using factor model to reduce N; or both. The variable selection is to reduce N by

ranking variables in X and selecting a subset of X that are most predictive for a forecast

target y; via such methods as forward and backward selection, stepwise regression, LASSO

(Tibshirani 1996), least angle regression (Efron 2004), elastic net (Zou and Hastie 2005),

and so on.

Alternatively, one can combine the large information in xt indirectly through individual

forecasts ŷ(i)T+1 (i = 1; : : : ; N); and then combine the N individual forecasts

y
(1)
t+1 = x1t�1 + "1;t+1

...

y
(N)
t+1 = xNt�N + "N;t+1;

to form the combined forecast (at time T using the estimated �̂i�s)

ŷ
(c)
T+1 = w1ŷ

(1)
T+1 + � � �+ wN ŷ

(N)
T+1:
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Here each partition of the predictor vector xt needs not contain one predictor at a time,

and each partition needs not be disjoint. In general, in practive, the predictor vector xt may

not be observed when only forecasts are available (e.g., survey forecasts). Therefore, we will

consider two types of data rich environments. The �rst is where there are N predictors

xt = (xt1; xt2; : : : ; xtN)
0;

and the second is where there are N forecasts with

ŷt+h = (ŷ
(1)
t+h; ŷ

(2)
t+h; : : : ; ŷ

(N)
t+h)

0:

In each type of data rich environment, we use factor models assuming there are latent factors

of the predictors xt or of the forecasts ŷt+h.

7 Forecasting with many predictors

First, consider forecasting when there are N predictors xt = (xt1; xt2; : : : ; xtN)0 and N is

large. Following Stock and Watson (2002), we use a factor model is based on the factors ft

of the predictors xt

xt = �ft + vt; (4)

where � is the factor loading. Once the factors have been extracted from the predictors, the

forecast of the target can be formed from the regression of

yt = ft�+ ut: (5)

As noted in Hillebrand, Lee, Li, and Huang (2010) and Tu and Lee (2010), in this

approach, the factors are obtained from the marginal model of xt rather than the joint

model of (y xt): Write the above model in (4) and (5) as follows

yt = E(ytjxt; �1) + ut = ft�+ ut (�1 = �)

xt = E(xt; �2) + vt = �ft + vt (�2 = ft;�):
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Note that this assumes that the joint density D(yt;xt; �) = D1(ytjxt; �) �D2(xt; �) operates

a cut

D(yt;xt; �) = D1(ytjxt; �1) �D2(xt; �2);

where (�1 �2) 2 �1 � �2 are variation free, and we estimate the conditional model (5) and

the marginal model (4) separately.

8 Forecasting with many forecasts

Next, we consider forecasting when there are N forecasts ŷt+h = (ŷ
(1)
t+h; ŷ

(2)
t+h; : : : ; ŷ

(N)
t+h)

0 and

N is large. In this situation many forecasts are given either from many survey forecasters

or from many analysts. There are various organizations which operate as an aggregate or a

group, based on many individual analysts which may or may not use the same information

sets. Depending on the shared intersections of various information sets used by survey

forecasters or analysts, the correlations among the many individual forecasts may be strong.

When the number N of individual forecasts is large, we wish to estimate the weights to form

the aggregate forecast (a combined forecast). The N individual forecasts may be given with

or without the prescription on how they have been generated. We apply principal component

analysis on the forecasts to extract factors

ŷt+h = �ft+h + vt+h

f̂t+h = �̂0ŷt+h

and estimate the following forecasting equation

yt+h = f̂
0
t+h�+ ut+h (6)

to form the eventual forecast

ŷT+h = f̂
0
T+h�̂T :
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From the above calculations, note that the weights to combine many forecasts are

ŷT+h = f̂
0
T+h�̂ =

�
ŷ0T+h�̂

�
�̂ = ŷ0T+hŵ;

and therefore the optimal forecast combination weights are

ŵ := �̂�̂:

Hillebrand, Lee, Li, and Huang (2010) and Tu and Lee (2010) consider the above model

when each individual forecast ŷ(i)t+h is generated by using one predictor x
(i)
t at a time. In

their applications, the combined forecast with this weight vector ŵ = �̂�̂ outperforms the

equally-weighted combined forecast. However, it is not necessary to know how each individual

forecast ŷ(i)t+h is generated. In practice, there are various situations where only forecasts are

given to econometricians without telling about how the forecasts are obtained.

It is generally believed that it is di¢ cult to estimate the forecast combination weights

when N is large. Therefore the equal weights
�
1
N

�
have been widely used instead of esti-

mating weights. An exception is Wright (2009), who uses Bayesian model averaging (BMA)

for pseudo out-of-sample prediction of US in�ation, and �nds that it generally gives more

accurate forecasts than simple equal-weighted averaging. He uses N = 107 predictors. It

is often found in the literature that equally-weighted combined forecasts are often the best.

Stock and Watson (2004) call this the �forecast combination puzzle.�See also Timmermann

(2006). Smith and Wallis (2009) explore a possible explanation of the forecast combination

puzzle and conclude that it is due to estimation error of the combining weights. However, the

empirical results are when N is not very large. When N is very large, the equal weights
�
1
N

�
put too little weights to good models, especially when 1

N
! 1; and the equal weights can

be hardly justi�ed. Note that we can consistently estimate the combining weights ŵ = �̂�̂;

as long as �̂ and �̂ are estimated consistently. Note also that combining forecasts with the

weights ŵ = �̂�̂ takes the correlation structure among the forecasts ŷ(i)t+h into the calculation

of the weights as it is based on the regression in (6) just like in the regression (3) to get (2).
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9 Further topics in combining forecasts

We have discussed the combining forecasts for one-step ahead forecasting, for the conditional

mean, of continuous random variables. This can be extended to:

1. multi-step ahead forecasts;

2. for conditional variance forecasts, conditional quantile forecasts, conditional density

forecasts, conditional interval forecasts; and

3. of discrete random variables (categorized data, binary data).

9.1 Combining multi-step forecasting

Lin and Granger (1994) summarize the multi-step mean forecast methods into �ve alternative

categories. Assume the true DGP can be characterized by the following equation:

Yt+1 = g(Yt) + "t+1;

where "t is a zero-mean, independent and identically distributed sequence with distribution

function �.

The optimal one-step forecast using a least square criterion is:

Yt;1 = E[Yt+1jYt�j; j � 0] = g(Yt�1):

When g(�) is known, there should be no problem to generate one-step ahead forecast. When

g(�) is not known in practice, we can approximate g(�) by a �exible function form such as

polynomial family or the neural network family. However, the multi-step forecasts for non-

linear models are much more complicated than the one-step forecast. Consider the simplest

h = 2 case as an example to illustrate the multi-step forecast methods. The optimal 2-step
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ahead forecast at time t is:

Yt;2 = E[Yt+2jYt�j; j � 0]

= E[g(Yt+1) + "t+2jYt�j; j � 0]

= E[g(g(Yt) + "t+1)jYt�j; j � 0]: (7)

There are four possible ways to do multi-step forecasts by iterating one-step ahead fore-

casts as also discussed by Brown and Mariano (1989):

1. naive (or deterministic)

Y nt;2 � g(g(Yt));

so that the presence of "t+1 is ignored by putting its value to zero. For most non-linear

function g(�); Y nt;2 will be biased and the direction of the bias depends on whether g(�)

is convex or concave as discussed by Granger and Newbold (1976).

2. exact (or optimal, or closed form)

Y et;2 �
Z 1

�1
g(g(Yt) + "t+1)d�:

3. Monte Carlo

Y mt;2 �
1

J

JX
j=1

g(g(Yt) + "j);

where "j, j = 1; : : : ; J are random numbers drawn from the distribution �. For J large

enough, Y mt;h and Y
e
t;h should be virtually identical.

4. bootstrap (or residual based)

Y bt;2 �
1

t

tX
j=1

g(g(Yt) + "̂j);

where "̂j j = 1; : : : ; t are the t values of the residual estimated over the sample period.
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An alternative way for multi-step mean forecast is to model the relationship between

Yt+h and Yt directly by a new function gh(�)

Yt+h = gh(Yt) + et;h;

though et;h is usually not a white noise as mentioned by Lin and Granger (1994). Therefore,

the �fth method for multi-step forecast is:

Y dt;h � gh(Yt):

Using any of these �ve methods, the factor models considered in the previous sections

may be used for multi-step forecasts when there are many predictors or many forecasts.

9.2 Combining quantile forecasts

The optimal forecast ŷt+1 may be estimated, for given � 2 (0; 1); from minimizing the check

loss

min
ŷt+1

��(et+1) = [�� 1(et+1 < 0)] � et+1;

where et+1 = yt+1 � ŷt+1: Since ��(�) is convex, the results of Bates and Granger (1969) as

discussed in Section 3 can be carried over. The proof of the results are left for exercise.

Note that the optimal forecast ŷ�t+1 = q� (yt+1jxt) satis�es the following �rst order con-

dition

E
�
�� 1(yt+1 < ŷ�t+1)jxt

�
= 0; a.s.

See e.g., Giacomini and Komunjer (2005). Hence, gt+1 � � � 1(yt+1 < ŷ�t+1) may be called

as the generalized residual or generalized forecast error. From this, we obtain

� = E
�
1(yt+1 < ŷ

�
t+1)jxt

�
= Pr(yt+1 � ŷ�t+1jxt):

It is interesting to note that this corresponds exactly to the equation (8) in Section 9.4 for

evaluating interval forecasts, while here we apply to the optimal forecast ŷ�t+1:

17



We can consider two types of data rich environments �one where there are N predictors

xt = (xt1; xt2; : : : ; xtN)
0;

and another where there are N quantile forecasts with

ŷt+h = (ŷ
(1)
t+h; ŷ

(2)
t+h; : : : ; ŷ

(N)
t+h)

0:

A potential di¢ culty is to generalize the principal component regression for conditional

quantiles under the check loss ��(�):

9.3 Combining density forecast

Suppose that fytg1t=�1 is a time series (e.g., the return of a portfolio over a certain period)

with unknown conditional density function ft(y) � ft(yjxt�1): Let pt(y; �) � pt(yjxt�1; �) be

a 1-step-ahead conditional density forecast model, where � is a �nite-dimensional parameter.

Suppose that pt(y; �0) = ft(y) for some �0: Then, show that the 1-step-ahead density forecast

is optimal in the sense that it dominates all other density forecasts for any loss function

(Diebold et al. 1998, Granger 1999, Granger and Pesaran 2000). In practice it is not

uncommon that a suboptimal forecast model does better than another in predicting a certain

aspect of the distribution (e.g., value at risk at the 5% level) but vice versa in predicting

another aspect of the distribution (e.g., value at risk at the 1% level). This makes forecast

users (who may not be forecast producers) di¢ cult to choose a suitable forecast model. The

fact that the optimal forecast model is preferred by all forecast users regardless of their loss

functions resolves this di¢ culty. It is therefore important and useful to check whether a

density forecast model is optimal, and if not, what useful information can be provided for

further improvement in density forecasts. In fact, even if point forecasts are of interest, the

optimal conditional density forecasts are needed to construct optimal point forecasts under

a general asymmetric loss function (Christo¤ersen and Diebold 1996, 1997).
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Suppose that fytg is generated from conditional densities fft(y)g. If a sequence of density

forecasts fpt(y; �0)g coincides with fft(y)g, then under the usual condition of a nonzero

Jacobian with continuous partial derivatives, fZtg is IID U [0,1]. That is, when the forecast

model pt(y; �) is optimal, the series of PITs, fZtg; where

Zt �
Z yt

�1
pt(y; �0)dy;

is IID U [0,1]. See Diebold, Gunther and Tay (1998). Berkowitz (2001) considered the inverse

normal transform of the PIT which follows IIDN(0, 1). Bao, Lee and Saltoglu (2007) discuss

how KLIC of Kullback and Leibler (1951) based on PIT may be used to compare the density

forecasts. See Mitchell and Hall (2005) for combining density forecasts. Combining many

density forecasts (with large N)

(f̂
(1)
t+h(y); f̂

(2)
t+h(y); : : : ; f̂

(N)
t+h (y))

0;

would require the combinations of conditional moments or the conditional quantiles and with

mixtures of several distributions, which will be complicated.

9.4 Combining interval forecasts

Consider a stationary series fytgTt=1: Let the one-period ahead conditional interval forecast

made at time t from a model be denoted as

Jt;1(�) = (Lt;1(�); Ut;1(�)); t = R; : : : ; T;

where Lt;1(�) and Ut;1(�) are the lower and upper limits of the ex ante interval forecast for

time t + 1 made at time t with the coverage probability �; i.e., � = Pr[yt+1 2 Jt;1(�)jxt]:

If we de�ne the indicator variable dt+1(�) = 1[yt+1 2 Jt;1(�)]; the sequence fdt+1(�)gTt=R is

IID Bernoulli (�): The optimal interval forecast would satisfy

E(dt+1(�)jxt) = �; (8)
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so that fdt+1(�) � �g will be a martingale di¤erence sequence. As the fdt+1(�)g has the

expected Bernoulli log-likelihood

E�dt+1(�)(1� �)[1�dt+1(�)];

we can choose a model with the largest out-of-sample mean of

P�1
TX
t=R

log
�
�d̂t+1(�)[1� �][1�d̂t+1(�)]

�
:

See Bao, Lee, and Saltoglu (2006).

To combine interval forecasts that are generated from multiple models, one can use the

conditional quantile forecasts from using regression quantiles, for Lt;1(�) and Ut;1(�); and

combine them; or one can use the conditional density forecasts, combine them, and invert the

combined density forecast to get the conditional quantile forecasts for Lt;1(�) and Ut;1(�);

using the methods discussed in Section 9.2.

9.5 Combining binary forecasts

Lee and Yang (2006) consider a binary forecasts using bagging to form a (weighted) average

over all bootstrap training samples drawn from the same distribution. The idea can be

extended to the cases where there are many predictors or many forecasts to form a combined

forecast of many binary forecasts. As in Lee and Yang (2006), the combined binary predictor

ŷ
(c)
t can be constructed by the majority voting over the N individual binary forecasts ŷ(i)t

(i = 1; : : : ; N), i.e.,

ŷ
(c)
t = 1

 
NX
i=1

wiŷ
(i)
t >

1

2

!
;

where
PN

i=1wi = 1: It is not clear how to estimate the combination weights fwig when N is

large. Simple cases are where we can assume a perfect democracy with wi = 1
N
for all i; and

where we assume a dictator with wi = 1 for some i: Neither cases can be optimal in terms

of the binary loss functions.
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10 Conclusions

We have considered how to combine forecasts in data rich environment with many predictors

xt = (xt1; xt2; : : : ; xtN)
0 or with many forecasts ŷt+h = (ŷ

(1)
t+h; ŷ

(2)
t+h; : : : ; ŷ

(N)
t+h)

0 (when N

is large). In practice there are situations where we, econometricians or forecasters, do not

observe the predictors but only the forecasts (e.g., survey forecasts of Philadelphia Federal

Reserve Bank). In such situations one needs to aggregate many forecasts into a consensus

group forecast. A common way is to use the simple average or majority voting. While

many empirical results on out-of-sample forecasting have shown that the simple average of

multiple forecasts tends to work well, it assumes that all individual forecasts are equally

good by assigning the equal weights. It can be improved if the weights can be estimated

consistently and without su¤ering from the usual large N problem (so called the curse of

dimensionality). We use a factor model of many forecasts to derive the forecast combination

weights without su¤ering from the curse of dimensionality.

In a data-rich environment with many predictors or many forecasts, it is often necessary

to use reduced-dimension speci�cations that can span a large number of predictors. In the

recent forecasting literature, the use of factor models and principal component estimation

has been advocated for forecasting in the presence of many predictors. In that situation we

decompose the space spanned by many predictors using principal components as in Stock

and Watson (2002). We can also project the forecast target to many subspaces spanned by

the predictors, obtain many arti�cially generated forecasts, and then combine those forecasts

generated from the subspaces, as in Chan, Stock, and Watson (1999), Hillebrand, Lee, Li,

and Huang (2010), and Tu and Lee (2010)
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