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Abstract

We examine the Stein-rule shrinkage estimator for possible improvements in estimation and
forecasting when there are many predictors in a linear time series model. We consider the Stein-rule
estimator of Hill and Judge (1987) that shrinks the unrestricted unbiased OLS estimator towards a
restricted biased principal component (PC) estimator. Since the Stein-rule estimator combines the
OLS and PC estimators, it is a model-averaging estimator and produces a combined forecast. The
conditions under which the improvement can be achieved depend on several unknown parameters
that determine the degree of the Stein-rule shrinkage. We conduct Monte Carlo simulations to
examine these parameter regions. The overall picture that emerges is that the Stein-rule shrinkage
estimator can dominate both OLS and principal components estimators within an intermediate
range of the signal-to-noise ratio. If the signal-to-noise ratio is low, the PC estimator is superior.
If the signal-to-noise ratio is high, the OLS estimator is superior. In out-of-sample forecasting with
AR(1) predictors, the Stein-rule shrinkage estimator can dominate both OLS and PC estimators
when the predictors exhibit low persistence.

Keywords: Stein-rule, shrinkage, risk, variance-bias tradeoff, OLS, principal components.

JEL Classifications: C1, C2, C5

1 Introduction

Recent contributions to the forecasting literature consider many predictors in data-rich environments

and principal components, such as Stock and Watson (2002, 2006, 2011), Bai (2003), Bai and Ng

(2006, 2008), Bair et al. (2006), Hung and Lee (2010), Hillebrand et al. (2011), and Inoue and Kilian

(2008), among others. In particular, Stock and Watson (2011) note that many forecasting models in

this environment can be written in a unified framework called the shrinkage representation. Although

the notion of the generalized shrinkage representation can be found in much earlier publications (e.g.,

Judge and Bock 1978), interest in shrinkage has been revived in the recent literature on out-of-sample

forecasting.
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The issue of forecasting using many predictors was discussed earlier in econometrics and statistics

under the subject heading of ill-conditioned data or multicollinearity. In particular, Hill and Judge

(1987) studied “improved prediction in the presence of multicollinearity.” They examined possible

improvements in estimation and forecasting when there are many predictors in a linear regression model.

The Stein-rule estimator proposed in their paper shrinks the unrestricted unbiased OLS estimator

towards a restricted biased principal component (PC) estimator.

Improvements are usually measured employing a risk function of the squared forecast error loss.

While the asymptotic risk functions for the OLS and PC estimators are rather easily obtained, the risk

of the Stein-rule is complicated as it depends on several unknown parameters and data-characteristics.

It is not easy to understand conditions and situations under which improvements can be achieved.

We conduct Monte Carlo simulations to shed light on the issue, both in-sample estimation and out-

of-sample forecasting. In general, a key feature is that the desired improvement through Stein-rule

shrinkage depends on the signal-to-noise ratio, which is affected by multiple determinants. The Stein-

rule shrinkage estimator can dominate both OLS and PC estimators within an intermediate range of

the signal-to-noise ratio. If the signal-to-noise ratio is low, the PC estimator tends to be superior. If

the signal-to-noise ratio is high, the OLS estimator tends to be superior. In out-of-sample forecasting

with AR(1) predictors, the Stein-rule shrinkage estimator can dominate both OLS and PC estimators

when the predictors have low persistence.

Hill and Fomby (1992) examined the out-of-sample performance of a variety of biased estimation

procedures such as ridge regression, principal component regression, and several Stein-like estimators.

Their setup of evaluation was out-of-sample prediction in the sense that the out-of-sample data are

different from the data used for parameter estimation, but not out-of-sample prediction in the context

of the recent time series forecasting literature.

As the Stein-rule estimator of Hill and Judge (1987) combines OLS and PC estimators, it can

be shown that it is a model-averaging estimator and thus produces a combined forecast. In fact,

Hansen (2011) shows that the Stein-type shrinkage estimator is a Mallow-type combined estimator.

Other papers have studied the relation between Stein-like shrinkage and forecast combinations. Fomby

and Samanta (1991) use the Stein-rule for directly combining forecasts. Clark and McCracken (2009)

examine the properties of combined forecasts of two nested models and note that their combined forecast

is a Stein-type shrinkage forecast. Hence, the shrinkage principle provides insights not only into how to

solve the issues of estimation in the presence of multicollinearity and forecasting using many predictors,

but also how forecast combinations in the sense of Bates and Granger (1969) yield improvements.

The paper is organized as follows. Section 2 presents the shrinkage representation for forecasting

using principal components. In Section 3 we consider the OLS and PC estimators and their asymptotic

risk of the squared error loss. In Section 4, the Stein-rule shrinkage estimator that combines the OLS

and PC estimators is presented. Section 5 and Section 6 present Monte Carlo analysis for in-sample and
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out-of-sample performance of these three estimators – OLS, PC and the Stein-rule estimators. Finally,

Section 7 provides some concluding remarks.

2 Shrinkage Representation

This section uses Stock and Watson’s (2011) notation. Let the time series under study be denoted by yt

and let Pit, i = 1, . . . ,K, be a set of K orthonormal predictors such that P ′P/T = IK . These predictors

can be thought of as the principal components of a possibly large data set Xt−1. The statistical model

is

yt = δ′Pt−1 + εt, (1)

where δ ∈ RK is a parameter vector and εt is some error with mean zero and variance σ2. Both yt and Pt

are assumed to have sample mean zero. Let ỹT+1|T be the forecast of y at time T + 1 given information

through time T . The theorems in Stock and Watson (2011) show that an array of forecasting methods,

namely Normal Bayes, Bayesian Model Averaging, Empirical Bayes, and Bagging, have a shrinkage

representation

ỹT+1|T =

K∑
i=1

ψ(κti)δ̂iPiT + oP (1), (2)

where δ̂i = T−1
∑T

t=1 Pi,t−1yt is the OLS estimator of δi, ti =
√
T δ̂i/σ̂ is the t-statistic for δ̂i, σ̂

2 =∑T
t=1(yt − δ̂′Pt−1)2/(T − K) is the consistent estimator of σ2, ψ is a function that is specific to a

forecasting method, and κ is a constant that is specific to a forecasting method. For example, the

shrinkage representation of the OLS estimator is ψ(κti) = 1 for all i. A pre-test estimator has shrinkage

representation ψ(κti) = 1{|ti|>tc} for some critical value tc. The principal components estimator that

retains the firstK1 principal components and discards the others has shrinkage representation ψ(κti) = 1

for i ∈ {1, . . . , K1} and ψ(κti) = 0 else. See also Judge and Bock (1978, p. 231) and Hill and Fomby

(1992, p. 6) for a general representation of a family of minimax shrinkage estimators.

3 Principal Component Model

This section follows Hill and Judge (1987, 1990) and Hill and Fomby (1992), with adapted notation.

Let the model in terms of the original predictor X be

y = Xβ + ε, (3)

where y is a T × 1 time series, X is a T ×K matrix of K predictors, β is a K × 1 parameter vector,

and ε is a T × 1 error time series with the conditional mean zero E(ε|X) = 0 and conditional variance

E (εε′|X) = σ2IK . Note that we do not assume normality of ε in this section while we generate it

from the normal distribution in our simulation study in Sections 5 and 6. Our interest is to forecast y
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when the number K of predictors in X is large. The location vector β is unknown and the objective

is to estimate it by β(y,X). We consider three estimators for β in this paper: (i) the ordinary least

squares (OLS) estimator denoted β̂, (ii) the principal component (PC) estimator denoted β̂∗, and (iii)

the Stein-like combined estimator of β̂ and β̂∗, which is to be denoted as β̃ in the next section. In

this section we examine the sampling properties of β̂ and β̂∗ in terms of the asymptotic risk under

the weighted squared error loss. In Sections 5 and 6 we compare them with the Stein-like combined

estimator β̃.

The sampling performance of an estimator β (y,X) is evaluated by its risk function, the expected

weighted squared error loss with weight Q,

Risk (β, β(y,X), Q) = E [(β (y,X)− β)′Q(β (y,X)− β)] . (4)

As we will examine the performance of the Stein-like estimator in dynamic models for forecasting with

weakly dependent time series, the predictor matrix X is treated as stochastic. Hence, the expectation in

(4) is taken over the joint probability law of (y,X) . In this section we compute the weighted quadratic

risk with a weight Q = X ′X, which gives the squared conditional prediction error risk. In Sections 5

and 6 we also consider a weight Q = IK . The asymptotic risks of β̂ and β̂∗ are computed below based

on the asymptotic covariances of β̂ and β̂∗.

The OLS estimator

β̂ = (X ′X)
−1
X ′y, (5)

conditional on X, has the asymptotic sampling property
√
T
(
β̂ − β

)∣∣∣
X

d→ N
(
0, σ2(X ′X)−1

)
. (6)

The asymptotic quadratic risk weighted with Q = X ′X of the OLS estimator β̂ is

Risk
(
β, β̂,X ′X

)
= E

{(
β̂ − β

)′
X ′X

(
β̂ − β

)}
(7)

= tr E

{
X ′X

(
β̂ − β

)(
β̂ − β

)′}
= tr E

{
X ′XE

[(
β̂ − β

)(
β̂ − β

)′
|X
]}

= tr E
{
X ′X σ2 (X ′X)

−1
}

= tr(σ2IK)

= Kσ2.

Since the bias E
(
β̂ − β|X

)
= 0 conditional on X, the risk contains only a variance component.

Turning to the PC estimator β̂∗, let V be the K × K matrix of eigenvectors of X ′X = T V ΛV ′,

where Λ is the diagonal matrix of eigenvalues in descending order. Then, V ′V = IK and

Y = Xβ + ε = XV Λ−
1
2 Λ

1
2V ′β + ε = Pδ + ε, P = XV Λ−

1
2 , δ = Λ

1
2V ′β. (8)
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This is the principal components regression model; P contains the principal components of X, and

δ̂ = (P ′P )
−1
P ′y = T−1P ′y can be estimated either from the principal components or as δ̂ = Λ

1
2V ′β̂

from the OLS estimator of β. So far, the principal components model is equivalent to the original model.

When X has a large degree of collinearity, the eigenvalues in Λ vary greatly in magnitude, and some

are close to zero. Then, the number of components is decomposed into K = K1 +K2, where K1 is the

number of eigenvalues that are relatively large and K2 is the number of eigenvalues that are relatively

close to zero. The K2 principal components that correspond to the small eigenvalues are discarded; the

remaining K1 principal components are kept. The model becomes

y = Pδ + ε = (P1 P2)

(
δ1
δ2

)
+ ε = P1δ1 + P2δ2 + ε, (9)

= X(V1 V2)Λ−
1
2 Λ

1
2 (V1 V2)′β + ε = XV1Λ

− 1
2

1 Λ
1
2
1 V
′
1β +XV2Λ

− 1
2

2 Λ
1
2
2 V
′
2β + ε, (10)

where Λ1 and Λ2 are the K1 × K1 and K2 × K2 diagonal matrices, respectively, that contain the

corresponding eigenvalues, and P2δ2 = XV2Λ
− 1

2
2 Λ

1
2
2 V
′
2β is deleted. Therefore, principal components

regression with deleted components is equivalent to OLS estimation with the restriction

δ2 = Rβ = Λ
1
2
2 V
′
2β = 0, (11)

where R = Λ
1
2
2 V
′
2 imposes K2 linear restrictions on β. Note that R = Λ

1
2
2 V
′
2 is stochastic depending on

X, and the risk of the restricted estimator is the expected loss with expectation taken over (y,X).

The principal components estimator of δ with K2 deleted components, corresponding to the restric-

tions δ2 = 0, is

δ̂1 = (P ′1P1)−1P ′1Y = T−1P ′1Y. (12)

The asymptotic distribution conditional on X is

√
T
(
δ̂1 − δ1

)∣∣∣
X

d→ N
(
0, σ2IK1

)
. (13)

The estimator δ̂1 and setting δ2 = 0 result in the fit

y = P1δ̂1 + ε̂ = X V1Λ
− 1

2
1 δ̂1 + ε̂, (14)

and the principal components estimator of β is therefore

β̂∗ = V1Λ
− 1

2
1 δ̂1. (15)

This is a special case of the restricted least squares (RLS) estimators explored by Mittelhammer (1985).

Fomby, Hill, and Johnson (1978) present an optimality property of β̂∗ that the trace of the asymptotic

covariance matrix of β̂∗ obtained by deleting K2 principal components associated with the smallest

eigenvalues is at least as small as that for any other RLS estimator with J ≤ K2 restrictions. This

optimality is in terms of the asymptotic quadratic risk weighted with Q = IK , i.e., Risk
(
β, β̂∗, IK

)
.
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For forecasting, it is interesting to examine the asymptotic quadratic risk weighted with Q = X ′X

of the PC estimator β̂∗.

Risk
(
β, β̂∗, X ′X

)
= E

(
β̂∗ − β

)′
X ′X

(
β̂∗ − β

)
(16)

= E
(
V1Λ

− 1
2

1 δ̂1 − β
)′

(T V ΛV ′)
(
V1Λ

− 1
2

1 δ̂1 − β
)

= TE
(
V1Λ

− 1
2

1 δ̂1 − β
)′ (

V Λ1/2Λ1/2V ′
)(

V1Λ
− 1

2
1 δ̂1 − β

)
= TE

(
δ̂′1Λ
− 1

2
1 V ′1V Λ1/2 − β′V Λ1/2

)(
Λ1/2V ′V1Λ

− 1
2

1 δ̂1 − Λ1/2V ′β
)

= TE
(
δ̂′1
[
IK1

0
]
− δ′

)([
IK1

0

]
δ̂1 − δ

)
= TE

(
δ̂1 − δ1

)′ (
δ̂1 − δ1

)
+ Tδ′2δ2

= T tr E
(
δ̂1 − δ1

)(
δ̂1 − δ1

)′
+ Tδ′2δ2

= T tr
(
T−1σ2IK1

)
+ Tδ′2δ2

= K1σ
2 + Tδ′2δ2

where the first term corresponds to the variance term which declines as K1 decreases and the second

term corresponds to the bias term. The second to the last equality follows from (13).

To compare the asymptotic risks of the OLS β̂ estimator and the PC estimator β̂∗, look at the risk

difference

Risk
(
β, β̂,X ′X

)
− Risk

(
β, β̂∗, X ′X

)
= Kσ2 −

(
K1σ

2 + Tδ′2δ2
)

= K2σ
2 − Tδ′2δ2,

which is positive when δ′2δ2 is small. This is the case if the restriction in (11) is reasonable. In that

case the OLS estimator β̂ is dominated by the PC estimator β̂∗.

4 Stein-Rule Estimator

Hill and Judge (1987, 1990) propose a Stein-rule estimator β̃ that shrinks the standard OLS estimator

β̂ towards the principal components estimator β̂∗:

β̃ = β̂∗ +

(
1− aσ̂2(T −K)

β̂′R′(R(X ′X)−1R′)−1Rβ̂

)
(β̂ − β̂∗) (17)

= β̂∗ + ψ(β̂ − β̂∗)

= ψβ̂ + (1− ψ)β̂∗
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where a is a constant, R is defined from (11), and the Stein coefficient ψ is the shrinkage from the OLS

estimator β̂ to the PC estimator β̂∗. Using R = Λ
1
2
2 V
′
2 and β̂ = V Λ−

1
2 δ̂, we obtain

β̃ = V1Λ
− 1

2
1 δ̂1 +

(
1− 1

T

aσ̂2(T −K)

δ̂′Λ−
1
2V ′V2Λ

1
2
2 (Λ

1
2
2 V
′
2V Λ−1V ′V2Λ

1
2
2 )−1Λ

1
2
2 V
′
2V Λ−

1
2 δ̂

)
(V Λ−

1
2 δ̂ − V1Λ

− 1
2

1 δ̂1).

(18)

Using that

V ′V2 =

[
0
IK2

]
, V ′2V = [0 IK2

] , and (X ′X)
−1

= T−1 V Λ−1V ′,

where IK2 is the K2 ×K2 identity matrix, we obtain that

β̃ =

(
1− 1

T

aσ̂2(T −K)

δ̂′2δ̂2

)
(V Λ−

1
2 δ̂ − V1Λ

− 1
2

1 δ̂1) + V1Λ
− 1

2
1 δ̂1,

= V1Λ
− 1

2
1 δ̂1 + ψ(V Λ−

1
2 δ̂ − V1Λ

− 1
2

1 δ̂1). (19)

Further rearrangement yields the expression

β̃ = V1Λ
− 1

2
1 δ̂1 + ψV2Λ

− 1
2

2 δ̂2, (20)

for the Stein-rule estimator, from which its shrinkage representation can now be read. Since the in-

dividual t-statistics of the principal components are given by ti =
√
T δ̂2,i/σ̂, the coefficient of the K2

terms in δ̂ corresponding to the discarded principal components can be written

1− 1

T

aσ̂2(T −K)

δ̂′2δ̂2
= 1− a(T −K)∑K

K1+1 t
2
i

= 1− a(T −K)

K2FK2,T−K
, (21)

where FK2,T−K =
∑K

K1+1 t
2
i /K2 is the test statistic for H0 : δ2 = 0, the restriction of Equation (11).

Note that

FK2,T−K =

∑K
K1+1 t

2
i

K2
=
T δ̂′2δ̂2/K2

σ̂2
=

signal from K2 discarded variables

noise
.

The Stein coefficient function ψ in the shrinkage representation of Section 2 is given by

ψi =

{
1, i ∈ {1, . . . , K1},
ψ, i ∈ {K1 + 1, . . . , K}. (22)

The asymptotic quadratic risk weighted with Q = X ′X for the Stein estimator β̃

Risk
(
β, β̃,X ′X

)
= E

[(
β̃ − β

)′
X ′X

(
β̃ − β

)]
(23)

can be calculated here but it is rather complicated as it depends on parameters such as β, σ, a, and

on data characteristics such as T, K, K1, X (with X determining Λ, V ). Hence, we use Monte Carlo

analysis in the next two sections to examine the risk of β̃ in comparison with those of β̂ and β̂∗.
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5 In-Sample Performance of Stein-Rule Shrinkage Estimator

We conduct Monte Carlo analysis to compare the risk of β̃ with those of β̂ and β̂∗. The risk of the

Stein-rule estimator depends on β, σ, a, T, K, K1, X. For the risk comparisons we fix T = 200 and

K = 50 while we vary β, σ, a, K1, and X.

5.1 Simulation Design

The elementary model to be studied is the linear equation

y = Xβ + ε, (24)

where y is a T × 1 vector, X is a T ×K matrix of regressors, ε is a T × 1 random vector drawn from

N (0, σ2) distribution, β ∈ RK×1, and σ ∈ R+.

We compare the performance of the Stein-rule estimator in-sample with the standard OLS estimator

and the principal components estimator and employ the following simulation design. We draw a matrix

X0 of N (0, 1) random variables of dimensions T ×K, T = 200, K = 50. We aim to impose different

eigenvalue structures on the regressor matrix X in the spirit of Hill and Judge (1987). To this end, we

singular-value decompose X0 into

X0 = UΛ
1
2
0 V
′

and discard the diagonal matrix Λ
1
2
0 . The regressor matrix X is then constructed as

X = UΛ
1
2V ′, (25)

where Λ is constructed according to three different scenarios.

• The singular values are constant.

Λ
1
2 = diag(2, . . . , 2). (26)

• The singular values are linearly decreasing from 5 to 1.

• The singular values are exponentially decreasing from 5 to 1.

diag(Λ
1
2 ) = 1 + 4e−0.10k, k = 1, . . . , K. (27)

In the data-generating process, we consider different scenarios for the variance σ2 of the error process.

In particular, we set

σ ∈ {1, 3, 5, 7}. (28)
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The data-generating parameter vector β is set to

β =

[
L

K

]
k∈{1,...,K}

, (29)

such that its direction in parameter space is (1/K)k and its length is L. We consider different scenarios

for the length L of the vector, in particular,

L ∈ {0, 1, 2, 3}. (30)

Table 1 lists the population-R2 for the different resulting scenarios, where

population-R2 =
β′E(X ′X)β

β′E(X ′X)β + Tσ2
.

Our simulation design considers only a limited region of the space of simulation design parameters (T ,

K, L, σ, Λ). Estimating a response surface for a larger region could give some more indication on

the range of data-sets where gains from Stein-rule estimation can be expected. This is left for future

research.

Table 1: Population R2 for the different simulation scenarios.

Eigenvalues constant linear exponential
L / σ2 1 3 5 7 1 3 5 7 1 3 5 7

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0.020 0.007 0.004 0.003 0.049 0.017 0.010 0.007 0.019 0.007 0.004 0.003
2 0.074 0.026 0.016 0.011 0.172 0.065 0.040 0.029 0.073 0.026 0.016 0.011
3 0.153 0.057 0.035 0.025 0.319 0.135 0.086 0.063 0.151 0.056 0.034 0.025

The performance of the estimators is measured in terms of their risk. The general risk function

considered is

Risk (β, β(y,X), Q) = E
[
(β (y,X)− β)

′
Q (β (y,X)− β)

]
,

as shown in (4). We study the particular case where Q = I, which results in the standard mean squared

error considered in James and Stein (1961) and Judge and Bock (1978) and the second case where

Q = X ′X as considered in Judge and Bock (1978), Hill and Judge (1987, 1990), and Hill and Fomby

(1992). This risk measure can be interpreted as the square of the distance (Xβ − Xβ̂) of the fitted

value from the signal part of y.

There are a few estimator-specific settings to consider as well, in particular the number K1 of

principal components for the principal components estimator and the value of the parameter a in the

Stein-rule shrinkage estimator. We consider K1 ∈ {1, 5, 10, 20} and a ∈ (0, 1). The two numbers
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interact through the bounds for a given in Judge and Bock (1978, p. 193) and Hill and Judge (1987, p.

87):

0 ≤ a ≤ 2(K −K1 − 2)

T −K + 2
. (31)

Here, for K1 ∈ {1, 5, 10, 20}, we obtain

0 ≤ a ≤ 0.62, 0.57, 0.50, 0.37,

so that we expect the region for a in which the Stein-rule shrinkage estimator performs better than

OLS and PC estimators to move towards the origin as the number of components increases.

5.2 Choosing the Number of Principal Components

Selecting the number of principal components is a problem that has spawned a large literature (see, for

example, Anderson 2003, Bai & Ng 2002, Hallin & Liska 2007, and Onatski 2009). In this paper, we

restrict ourselves to studying the behavior of the Stein-rule estimator for a set of number of components,

including the one-factor model, few components (K1 = 5), a moderate number (K1 = 10), and many

factors (K1 = 20). Recall that the number of regressors is K = 50.

Figures 1 to 3 show the risk of the three estimators, Stein-rule shrinkage, OLS, and PC, as functions

of the parameter a of the Stein-rule shrinkage estimator. Since the OLS and PC estimators do not

depend on this parameter, they are constants in the graphs. The risk of the OLS estimator is depicted

by a dotted line; the risk of the PC estimator is shown as a dashed line. The risk of the Stein-rule

shrinkage estimator is shown as connected dots. The left panel of four plots in each figure shows the

MSE risk (Q = I); the right panel of four plots shows the risk for Q = X ′X. The four plots show the

different scenarios for the number K1 ∈ {1, 5, 10, 20} of principal components. Each figure shows a

different singular value scenario, Figure 1 shows the case of constant singular values equal to two; Figure

2 shows the case of linearly decreasing singular values, and Figure 3 shows the case of exponentially

decreasing singular values.

The graphs show that the risk of the Stein-rule follows a parabola in a, which indicates that there

is an optimal a, at least in the simulation scenarios considered. Unlike in the case of the original James

and Stein (1961) estimator, this optimal a is not analytically known at this point. The minimum of the

parabola is moving inwards toward the origin as the number K1 of components increases, as expected.

For the scenarios where the singular values are constant and where they are linearly decreasing, the OLS

estimator performs generally better than the PC estimator. For exponentially decreasing singular values,

the PC estimator often performs better than the OLS estimator. The Stein-rule shrinkage estimator has

a greater relative advantage over PC and OLS estimators for small number of components (K1 = 1, 5).

For larger K1, the performance of the Stein-rule shrinkage estimator approaches that of the relatively

better estimator among OLS and PC. Note that the singular value scenarios considered in this paper
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do not include values close to zero as in Hill and Judge (1987). We found that for most scenarios of

this nature, where a strong degree of multicollinearity is present, the principal components estimator

performs better than the Stein-rule shrinkage estimator.

5.3 Different Variance Scenarios

Figures 4 through 6 report the performance of the estimators for different noise levels

σ ∈ {1, 3, 5, 7}.

The organization of the graphs is the same as described in Section 5.2. Again, the risk of the Stein-rule

shrinkage estimator describes a parabola in a, indicating the existence of an optimal parameter value.

For low values of variance, OLS performs better than principal components, and as the noise level

increases, the PC estimator outperforms OLS. The Stein-rule shrinkage estimator can outperform both

OLS and PC estimators within an intermediate noise range.

5.4 Different Lengths of the Parameter Vector β

Figures 7 through 9 display the performance of the estimators for different lengths L of the parameter

vector β = L/K. The four plots of each panel show the risks of the estimators for

L ∈ {0, 1, 2, 3}.

The organization of the graphs is the same as described in Section 5.2. If L = 0, that is, there is no

signal in y, the PC estimator outperforms both OLS and the Stein-rule shrinkage estimators. For large

values of L, OLS performs better than the other estimators. On an intermediate range, the Stein-rule

shrinkage estimator can outperform both other estimators.

Recall from Equation (11) that δ2 = Λ
1
2
2 V
′
2β where β =

[
L
K

]
. Hence, the length L for β determines

the length of δ2. Because Tδ′2δ2 is the second term in the asymptotic risk of the PC estimator corre-

sponding to the bias due to the omission of the K2 principal components, as shown in (16), a large

value of L increases the risk of the PC estimator compared to the risk of the OLS estimator.

For the Stein-rule estimator, a large value of L increases Tδ′2δ2, which in turn will increase the F

statistic defined from (21)

FK2,T−K =
T δ̂′2δ̂2/K2

σ̂2

and hence increases the Stein-rule coefficient ψ and thus reduces the shrinkage from the OLS estimator

β̂ to the PC estimator β̂∗.
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6 Out-of-Sample Performance of Stein-Rule Shrinkage Estima-
tor

6.1 Simulation Design

We assess the out-of-sample (OOS) performance of the Stein-rule shrinkage estimator in two different

simulation setups. One is exactly the same as described in Section 5.1, only that the forecast perfor-

mance on T2 = 100 out-of-sample observations is evaluated. The two risk functions considered for the

OOS comparison are the mean squared forecast error (MSFE)

MSFE (β(y, X)) = E[(ŷ − y)′(ŷ − y)], (32)

where ŷ = Xβ(y,X), and the squared signal-to-prediction distance as considered in (4) with Q = X ′X,

Risk(β, β(y,X), X ′X) = E[(β(y,X)− β)′X ′X(β(y,X)− β)]. (33)

The second simulation environment that we study has AR(1) time series in the columns of the

regressor matrix X. That is,

X = [{x1,t} {x2,t} . . . {xK,t}]t∈{1,...,T}, (34)

and the individual columns follow

xk,t = φxk,t−1 + σX,kξt,k, k = 1, . . . ,K, ξt,k ∼ N (0, 1). (35)

The standard deviations of the AR(1) processes in the columns of X are chosen to correspond to the

exponentially decaying sequence employed in Equation (27):√
Var xk,t =

σX,k√
1− φ2

= 1 + 4e−0.10k, k = 1, . . . , K. (36)

Thus, σX,k = σX,k(φ) = (1+4e−0.10k)
√

1− φ2. Varying φ replaces the variance dimension considered in

the in-sample study. The standard deviation of the noise in y is set to σ = 3 and T2 = 100 out-of-sample

observations are evaluated.

Note that principal components are linear combinations of the columns of X,

P1 = XV1Λ
− 1

2
1 , (37)

and therefore the individual components are, with some coefficients wk,j determined by V1 and Λ1,

Pj,t =

K∑
k=1

wk,jxk,t = φ

K∑
k=1

wk,jxk,t−1 +

K∑
k=1

wk,jσX,kξt,k,

= φPj,t−1 + ηj,t,
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where ηj,t =
∑K

k=1 wk,jσX,kξt,k. As long as the AR(1) parameter φ is the same across all columns of

X, the principal components will themselves be AR(1) processes with the same decorrelation length as

the individual columns. If different φk are chosen across the columns, the principal components will be

linear combinations of AR(1) processes with different persistence parameters, which can lead to long

memory behavior of the components, as described in Granger (1980).

6.2 Choosing the Number of Principal Components

Figures 10 and 11 display the out-of-sample performance of the estimators for different numbers of

principal components

K1 ∈ {1, 5, 10, 20}.

The organization of the graphs is similar to the one described in Section 5.2. Instead of different singular

value scenarios, two different simulation designs are considered. Figure 10 shows the case where the

regressor matrix X is drawn from independent N (0, 1) distributions; Figure 11 shows the case where

the regressors are AR(1) time series. Unlike in the in-sample study, here the relative performance of PC

and OLS estimators changes with the number K1 of principal components. For small numbers, OLS

performs better than PC, and for large K1, PC performs better than OLS. The Stein-rule shrinkage

estimator dominates for up to ten components. There is no obvious difference between the i.i.d. and

the AR(1) simulation scenarios.

6.3 Different Variance Scenarios

Figure 12 shows the performance of the estimator when X is drawn from an N (0, 1) distribution.

Similar to the in-sample study, OLS performs best for low noise levels and PC performs best for high

noise levels. The Stein-rule shrinkage estimator can outperform both in an intermediate noise range.

Figure 13 shows the performance for the estimators when the columns of X follow AR(1) dynamics.

The four plots in each panel show the situation for different values φ ∈ {0.30, 0.50, 0.90, 0.99} of the

AR-parameter. The standard deviation of the error in the AR model is then set through σX,k(φ) =

(1+4e−0.10k)
√

1− φ2 such that the standard deviation of the column follows Equation (36). The figure

shows that the Stein-rule shrinkage estimator outperforms OLS and PC estimators in low persistence

scenarios (φ = 0.30, 0.50), whereas in high persistence scenarios (φ = 0.90, 0.99) the PC estimator

outperforms both Stein-rule and OLS. The relative performance of OLS and PC estimators also changes

with persistence: In low persistence scenarios, OLS performs better than PC, and vice versa for high

persistence.

13



6.4 Different Lengths of the Parameter Vector β

Figures 14 and 15 show the performance of the estimators for different lengths L ∈ {0, 1, 2, 3} of the

parameter vector. As in the in-sample case, when L = 0, PC performs best. For L = 1, OLS performs

better than PC, but both are dominated by the Stein-rule shrinkage estimator. For higher values of L,

OLS performs best among all three estimators. This holds true for both simulation environments, i.i.d.

regressors and AR(1) regressors.

7 Concluding Remarks

In this paper, we have shown that the Stein-rule shrinkage estimator that shrinks the OLS estimator

towards the PC estimator, as proposed in Hill and Judge (1987, 1990), can be represented as a shrinkage

estimator for a forecasting model as proposed in Stock and Watson (2011). We examined the perfor-

mance of the estimator in a variety of simulation environments, both in-sample and out-of-sample. The

overall picture that emerges is that the Stein-rule shrinkage estimator can dominate both OLS and

principal components estimators within an intermediate range of the signal-to-noise ratio. If the noise

level is high (high variance of noise terms) or if the signal is low (short parameter vector), the principal

components estimator is superior. If the noise level is low (low variance of noise terms) or if the signal

is high (long parameter vector), OLS is superior. In out-of-sample simulations with AR(1) regressors,

the Stein-rule shrinkage estimator can dominate both OLS and principal components estimators in low

persistence situations.
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Figure 1: Risk(β(y,X)) = E[(β(y,X)− β)′Q(β(y,X)− β)] as function of a. Left panel: Q = I (MSE),
right panel: Q = X ′X. The data-generating singular values are constant and equal to two. Other
parameters are set to L = 1, σ = 3. The connected dots line shows the performance of the Stein-like
estimator. For comparison, the performance of the standard OLS estimator is shown in dots. The
performance of the principal components estimator is plotted with dashes.
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Figure 2: Risk(β(y,X)) = E[(β(y,X)− β)′Q(β(y,X)− β)] as function of a. Left panel: Q = I (MSE),
right panel: Q = X ′X. The data-generating singular values are linearly decreasing from 5 to 1. Other
parameters are set to L = 1, σ = 3. The connected dots line shows the performance of the Stein-like
estimator. For comparison, the performance of the standard OLS estimator is shown in dots. The
performance of the principal components estimator is plotted with dashes.
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Figure 3: Risk(β(y,X)) = E[(β(y,X)− β)′Q(β(y,X)− β)] as function of a. Left panel: Q = I (MSE),
right panel: Q = X ′X. The data-generating singular values are exponentially decreasing from 5 to 1 at
a rate of 0.10. Other parameters are set to L = 1, σ = 3. The connected dots line shows the performance
of the Stein-like estimator. For comparison, the performance of the standard OLS estimator is shown
in dots. The performance of the principal components estimator is plotted with dashes.
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Figure 4: Risk(β(y,X)) = E[(β(y,X)− β)′Q(β(y,X)− β)] as function of a. Left panel: Q = I (MSE),
right panel: Q = X ′X. The data-generating singular values are constant and equal to two. Other
parameters are set to L = 1, K1 = 1. The connected dots line shows the performance of the Stein-like
estimator. For comparison, the performance of the standard OLS estimator is shown in dots. The
performance of the principal components estimator is plotted with dashes.
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Figure 5: Risk(β(y,X)) = E[(β(y,X)− β)′Q(β(y,X)− β)] as function of a. Left panel: Q = I (MSE),
right panel: Q = X ′X. The data-generating singular values are linearly decreasing from 5 to 1. Other
parameters are set to L = 1, K1 = 1. The connected dots line shows the performance of the Stein-like
estimator. For comparison, the performance of the standard OLS estimator is shown in dots. The
performance of the principal components estimator is plotted with dashes.
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Figure 6: Risk(β(y,X)) = E[(β(y,X)− β)′Q(β(y,X)− β)] as function of a. Left panel: Q = I (MSE),
right panel: Q = X ′X. The data-generating singular values are exponentially decreasing from 5 to
1 at a rate of 0.10. Other parameters are set to L = 1, K1 = 1. The connected dots line shows
the performance of the Stein-like estimator. For comparison, the performance of the standard OLS
estimator is shown in dots. The performance of the principal components estimator is plotted with
dashes.
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Figure 7: Risk(β(y,X)) = E[(β(y,X)− β)′Q(β(y,X)− β)] as function of a. Left panel: Q = I (MSE),
right panel: Q = X ′X. The data-generating singular values are constant and equal to two. Other
parameters are set to K1 = 1, σ = 3. The connected dots line shows the performance of the Stein-like
estimator. For comparison, the performance of the standard OLS estimator is shown in dots. The
performance of the principal components estimator is plotted with dashes.
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Figure 8: Risk(β(y,X)) = E[(β(y,X)− β)′Q(β(y,X)− β)] as function of a. Left panel: Q = I (MSE),
right panel: Q = X ′X. The data-generating singular values are linearly decreasing from 5 to 1. Other
parameters are set to K1 = 1, σ = 3. The connected dots line shows the performance of the Stein-like
estimator. For comparison, the performance of the standard OLS estimator is shown in dots. The
performance of the principal components estimator is plotted with dashes.
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Figure 9: Risk(β(y,X)) = E[(β(y,X)− β)′Q(β(y,X)− β)] as function of a. Left panel: Q = I (MSE),
right panel: Q = X ′X. The data-generating singular values are exponentially decreasing from 5 to
1 at a rate of 0.10. Other parameters are set to K1 = 1, σ = 3. The connected dots line shows
the performance of the Stein-like estimator. For comparison, the performance of the standard OLS
estimator is shown in dots. The performance of the principal components estimator is plotted with
dashes.
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Figure 10: Left panel MSFE(β(y, X)) = E[(ŷ − y)′(ŷ − y)], where ŷ is a T2-vector of forecasts of y, as
function of a. Right panel: Risk(β, β(y,X), X ′X) = E[(β(y,X) − β)′X ′X(β(y,X) − β)] for the T2-
period forecast sample. The data-generating eigenvalues are exponentially decreasing from 5 to 1 at a
rate of 0.10. Other parameters are set to L = 1, σ = 3. The connected dots line shows the performance
of the Stein-like estimator. For comparison, the performance of the standard OLS estimator is shown
in dots. The performance of the principal components estimator is plotted with dashes.
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Figure 11: Left panel MSFE(β(y, X)) = E[(ŷ − y)′(ŷ − y)], where ŷ is a T2-vector of forecasts of y, as
function of a. Right panel: Risk(β, β(y,X), X ′X) = E[(β(y,X) − β)′X ′X(β(y,X) − β)] for the T2-
period forecast sample. The columns of the regressor matrix X are AR(1) processes. Other parameters
are set to L = 1, σ = 3. The connected dots line shows the performance of the Stein-like estimator.
For comparison, the performance of the standard OLS estimator is shown in dots. The performance of
the principal components estimator is plotted with dashes.
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Figure 12: Left panel MSFE(β(y, X)) = E[(ŷ − y)′(ŷ − y)], where ŷ is a T2-vector of forecasts of y, as
function of a. Right panel: Risk(β, β(y,X), X ′X) = E[(β(y,X) − β)′X ′X(β(y,X) − β)] for the T2-
period forecast sample. The data-generating eigenvalues are exponentially decreasing from 5 to 1 at a
rate of 0.10. Other parameters are set to K1 = 1, L = 1. The connected dots line shows the performance
of the Stein-like estimator. For comparison, the performance of the standard OLS estimator is shown
in dots. The performance of the principal components estimator is plotted with dashes.
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Figure 13: Left panel MSFE(β(y, X)) = E[(ŷ − y)′(ŷ − y)], where ŷ is a T2-vector of forecasts of y, as
function of a. Right panel: Risk(β, β(y,X), X ′X) = E[(β(y,X) − β)′X ′X(β(y,X) − β)] for the T2-
period forecast sample. The columns of the regressor matrix X are AR(1) processes. Other parameters
are set to K1 = 1, L = 1. The connected dots line shows the performance of the Stein-like estimator.
For comparison, the performance of the standard OLS estimator is shown in dots. The performance of
the principal components estimator is plotted with dashes.
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Figure 14: Left panel MSFE(β(y, X)) = E[(ŷ − y)′(ŷ − y)], where ŷ is a T2-vector of forecasts of y, as
function of a. Right panel: Risk(β, β(y,X), X ′X) = E[(β(y,X) − β)′X ′X(β(y,X) − β)] for the T2-
period forecast sample. The data-generating eigenvalues are exponentially decreasing from 5 to 1 at a
rate of 0.10. Other parameters are set to K1 = 1, σ = 3. The connected dots line shows the performance
of the Stein-like estimator. For comparison, the performance of the standard OLS estimator is shown
in dots. The performance of the principal components estimator is plotted with dashes.
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Figure 15: Left panel MSFE(β(y, X)) = E[(ŷ − y)′(ŷ − y)], where ŷ is a T2-vector of forecasts of y, as
function of a. Right panel: Risk(β, β(y,X), X ′X) = E[(β(y,X) − β)′X ′X(β(y,X) − β)] for the T2-
period forecast sample. The columns of the regressor matrix X are AR(1) processes. Other parameters
are set to K1 = 1, σ = 3. The connected dots line shows the performance of the Stein-like estimator.
For comparison, the performance of the standard OLS estimator is shown in dots. The performance of
the principal components estimator is plotted with dashes.
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