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1 Introduction

In this paper we explore the issues in testing for functional forms, especially for neglected nonlinearity in

parametric linear models. Many papers have appeared in the recent literature which deal with the issues of

how to carry out various specification tests in parametric regression models. To construct the tests, various

methods are used to estimate the alternative models. For example, Fan and Li (1996), Li and Wang (1998),

Zheng (1996), and Bradley and McClelland (1996) use local constant kernel regression; Hjellvik, Yao and

Tjøstheim (1998) use local polynomial kernel regression; Cai, Fan and Yao (2000) and Matsuda (1999) use

nonparametric functional coefficient models; Poggi and Portier (1997) use a functional autoregressive model;

White (1989) uses neural network models; Eubank and Spiegelman (1990) use spline regression; Hong and

White (1995) use series regression; Stengos and Sun (1998) use wavelet methods; and Hamilton (2000) uses

a parametric flexible regression model.

There are also many papers which compare different approaches in testing for linearity. For example, Lee,

White, and Granger (1993), Teräsvirta, Lin and Granger (1993), and Teräsvirta (1996) examine the neural

network test of White (1989) and many other tests. Dahl (1999) and Dahl and González-Rivera (2000)

study Hamilton’s (2000) test and compare it with various tests including the neural network test. Blake and

Kapetanios (1999, 2000) extend the neural network test using a radial basis function for the neural network

activation function instead of using the typical logistic function used in Lee, White and Granger (1993).1

Lee and Ullah (2000, 2001) examine the tests of Li and Wang (1998), Zheng (1996), Ullah (1985), Cai, Fan

and Yao (2000), Härdle and Mammen (1993), and Äit-Sahalia, Bickel, and Stoker (1994). Fan and Li (2000)

compare the tests of Li and Wang (1998), Zheng (1996), and Bierens (1990). Whang (2000) generalizes the

Kolmogorov-Smirnov and Cramer-von Mises tests to the regression framework and compare them with the

tests of Härdle and Mammen (1993) and Bierens and Ploberger (1997). Hjellvik and Tjøstheim (1995, 1996)

propose tests based on nonparametric estimates of conditional mean and variances and compare them with

a number of tests such as the bispectrum test and the BDS test.

This paper investigates and compares the kernel-based test of Li and Wang (1998) and Zheng (1996)

(henceforth, LWZ) and the neural network test (henceforth, NN). Both LWZ and NN tests are conditional

moment tests whose null hypothesis consists of conditional moment conditions that hold if the linear model

is correctly specified for the conditional mean. These two tests differ by the choice of ‘test functions’ that

are to be checked for their correlation with the residuals from the linear regression model. In this paper, we

examine the asymptotic tests, the naive bootstrap test, and the wild bootstrap test for weakly dependent

1For radial basis functions, see (e.g.) Campbell, Lo, and MacKinlay (1997, p. 517).
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time series and independent series. We implement the bootstrap for time series data in two ways (as discussed

later in Section 3.2, they are termed as the conditional bootstrap and the recursive bootstrap), and perhaps

surprisingly find that the conditional bootstrap is more reliable than the recursive bootstrap. The size

performance of these tests under the presence of conditional heteroskedasticity (of GARCH form) is also

examined.

The plan of the paper is as follows. In Section 2, based on nonparametric kernel regression and neural

network models, the LWZ test and NN test are discussed. In Section 3, the bootstrap procedures and

their performance for these tests are examined in Section 3 via a monte carlo experiment. Section 4 gives

conclusions.

2 Testing for Linearity

Let {Zt}nt=1 be a stochastic process, and partition Zt as Zt = (yt xt), where yt is a scalar and xt =

(xt1, . . . , xtk). xt may (but need not necessarily) contain a constant and lagged values of yt. Consider the

regression model

yt = m(xt) + εt, (1)

where m(xt) ≡ E (yt|xt) is the true but unknown regression function and εt is the error term such that

E(εt|xt) = 0 by construction. To test for a parametric model g(xt,β) we consider

H0 : m(xt) = g(xt,β
∗) almost everywhere (a.e.) for some β∗ ∈ Rk, (2)

H1 : m(xt) 6= g(xt,β) on a set with positive measure for all β ∈ Rk. (3)

In particular, if we are to test for neglected nonlinearity in the regression models, set g(xt,β) = xtβ. Then

under H0, the process {yt} is linear in mean conditional on xt,i.e.,

H0 : m(xt) = xtβ
∗ a.e. for some β∗ ∈ Rk. (4)

The alternative of interest is the negation of the null, that is,

H1 : m(xt) 6= xtβ on a set with positive measure for all β ∈ Rk. (5)

When the alternative is true, a linear model is said to suffer from ‘neglected nonlinearity’ (à la Lee, White,

and Granger 1993).

If a linear model is capable of an exact representation of the unknown function m(xt), then there exists

a vector β∗ such that (4) holds, which implies

E(ε∗t |xt) = 0 a.e., (6)
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where ε∗t = yt − xtβ∗. By the law of iterated expectations ε∗t is uncorrelated with any measurable functions
of xt, say h(xt). That is,

E[h(xt)ε
∗
t ] = 0. (7)

Depending on how we use these moment conditions and the function h(·), various specification tests may
be considered. The specification tests based on these moment conditions, so called conditional moment

tests, have been studied by Newey (1985), Tauchen (1985), White (1987, 1994), Bierens (1990), Bierens and

Ploberger (1997) and Stinchcombe and White (1998), among others. The neural network test exploits (7)

with h(·) being chosen as the neural network hidden unit activation functions. The LWZ’s nonparametric
kernel test utilizes (7) with h(·) being chosen as E(ε∗t |xt)f(xt), where f(xt) is the density of xt. Now we turn
into more details of these two tests.

2.1 Nonparametric kernel test

If H0 is true, i.e., g(xt,β) = xtβ is a correctly specified family of parametric regression functions, one can

construct a consistent least squares (LS) estimator of m(xt) given by xtβ̂, where β̂ is the LS estimator of

the parameter β, obtained by minimizing
P

ε2t =
P
(yt − xtβ)2 with respect to β. The LS estimator is

β̂ = (X 0X)−1X 0y where X is an n× k matrix with xt in its t-th row. If H0 is not true, then an alternative
model is to use the nonparametric regression estimation of the unknown m(xt). In this paper, we consider

the nonparametric kernel regression and neural network regression.

A kernel estimator is a local LS (LLS) estimator obtained by minimizing
P

ε2tK
¡
xt−x
h

¢
where εt =

yt − g(xt,β), Kt = K
¡
xt−x
h

¢
is a decreasing function of the distances of the regressor vector xt from the

point x = (x1, . . . , xk), and h > 0 is the window width which determines how rapidly the weights decrease

as the distance of xi from x increases. For example, when g(xt,β) = xtβ(x), an explicit expression of the

LLS estimator of β is

β̃(x) = (X 0K(x)X)−1X 0K(x)y, (8)

where K(x) is the diagonal matrix with the diagonal elements
¡
K
¡
xt−x
h

¢¢
, t = 1, . . . , n. The estimator β̃(x)

is the local linear LS (LLLS) or simply the local linear (LL) estimator. For more details, see Fan and Gijbels

(1996) and Pagan and Ullah (1999).

As E(ε∗t |xt) = 0 a.e. under the null (4), by the law of iterated expectations,

E [(ε∗tE(ε
∗
t |xt)] = E

£
E(ε∗t |xt)2

¤
= 0 (9)

if H0 is true. Li and Wang (1998) and Zheng (1996) proposed a conditional moment test based on the density

weighted version of (9) in order to avoid the random denominator problem that arises in nonparametric
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estimation. That is to construct the test based on E [ε∗tE(ε∗t |xt)f(xt)] , where f(xt) is the density function
of xt. This is estimated by

L0 =
1

n

nP
t=1

ε̂tE(ε̂t|xt)f̂(xt) (10)

=
1

n(n− 1)hk
nP
t=1

nP
t0=1,t0 6=t

ε̂tε̂t0Kt0t

where ε̂t = yt − xtβ̂, E(ε̂t|xt) =
P

t0 6=t ε̂t0Kt0t/
P
t0 6=tKt0t and f̂(xt) = [(n− 1)hk]−1

P
t0 6=tKt0t is the kernel

density estimator; Kt0t = K(
xt0−xt
h ). Under the assumptions stated in Li (1999, p. 107), the asymptotic test

statistic is then given by

L = nhk/2
L0

σ̂
d→ N(0, 1), (11)

where σ̂2 = 2(n(n − 1)hk)−1Pt

P
t0 6=t ε̂

2
t ε̂
2
t0K

2
t0t is a consistent estimator of the asymptotic variance of

nhk/2L0, see Zheng (1996), Fan and Li (1996), and Li and Wang (1998) for details.

2.2 Neural network test

Another alternative model we consider is an augmented single hidden layer feedforward neural network model

in which network output yt is determined given input xt as

yt = xtβ +

qX
j=1

δjψ(xtγj) + εt (12)

where β is a conformable column vector of connection strength from the input layer to the output layer; γj is

a conformable column vector of connection strength from the input layer to the hidden units, j = 1, . . . , q; δj

is a (scalar) connection strength from the hidden unit j to the output unit, j = 1, . . . , q; and ψ is a squashing

function (e.g., the logistic squasher) or a radial basis function. Input units x send signals to intermediate

hidden units, then each of hidden unit produces an activation ψ that then sends signals toward the output

unit. The integer q denotes the number of hidden units added to the affine (linear) network. When q = 0,

we have a two layer affine network yt = xtβ + εt. Hornick, Stinchcombe and White (1989) show that neural

network is a nonlinear flexible functional form being capable of approximating any Borel measurable function

to any desired level of accuracy provided sufficiently many hidden units are available.

White (1989) developed a test for neglected nonlinearity likely to have power against a range of alterna-

tives based on neural network models. See also Lee, White, and Granger (1993) and Teräsvirta (1996) on

the neural network test and its comparison with other specification tests. The neural network test is based

on a test function h(xt) chosen as the activations of ‘phantom’ hidden units ψ(xtΓj), j = 1, . . . , q, where Γj

are random column vectors independent of xt. That is,

E[ψ(xtΓj)ε
∗
t |Γj ] = E[ψ(xtΓj)ε∗t ] = 0 j = 1, . . . , q, (13)
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under H0, so that

E(Ψtε
∗
t ) = 0, (14)

whereΨt = (ψ(xtΓ1), . . . , ψ(xtΓq))
0 is a phantom hidden unit activation vector. Evidence of correlation of ε∗t

with Ψt is evidence against the null hypothesis that yt is linear in mean. If correlation exists, augmenting the

linear network by including an additional hidden unit with activations ψ(xtΓj) would permit an improvement

in network performance. Thus the tests are based on sample correlation of affine network errors with phantom

hidden unit activations,

n−1
nX
t=1

Ψtε̂t = n
−1

nX
t=1

Ψt(yt − xtβ̂). (15)

Under suitable regularity conditions it follows from the central limit theorem that n−1/2
Pn
t=1Ψtε̂t

d→
N(0, W ∗) as n → ∞, and if one has a consistent estimator for its asymptotic covariance matrix, say
Ŵn, then an asymptotic chi-square statistic can be formed as

(n−1/2
nX
t=1

Ψtε̂t)
0Ŵ−1n (n−1/2

nX
t=1

Ψtε̂t)
d→ χ2(q). (16)

Elements of Ψt tend to be collinear with Xt and with themselves and computation of Ŵn can be tedious.

Thus we conduct a test on q∗ < q principal components of Ψt not collinear with xt, denoted Ψ∗t , and employ

the equivalent test statistic that avoids explicit computation of Ŵn, denoted Nq,q∗ ,

Nq,q∗ ≡ nR2 d→ χ2(q∗), (17)

where R2 is uncentered squared multiple correlation from a standard linear regression of ε̂t on Ψ
∗
t and xt.

This test is to determine whether or not there exists some advantage to be gained by adding hidden units

to the affine network.

It should be noted that the asymptotic equivalence of (16) and (17) holds under the conditional ho-

moskedasticity, E(ε∗t |xt) = σ2. Under the presence of conditional heteroskedasticity such as ARCH, Nq,q∗

will not be χ2(q∗)-distributed. To resolve the problem in that case, we can either use (16) with Ŵn being

estimated robust to the conditional heteroskedasticity (White 1980 and Andrews 1991), or we may use (17)

with the empirical null distribution of the statistic computed by a bootstrap procedure that is robust to the

conditional heteroskedasticity. We use the latter in this paper by using the wild bootstrap.

3 Monte Carlo

The goal of this paper is to examine the finite sample properties of these tests, especially with the empirical

null distributions being generated by the bootstrap method. We consider LWZ test (denoted as L) together
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with the NN test (denoted as Nq,q∗), for both of which we use both naive bootstrap (Efron 1979) and wild

bootstrap (Wu 1986, Liu 1988).

3.1 Data generating processes (DGP)

To generate data we use the following models, all of which have been used in the related literature. See

Granger and Teräsvirta (1993) and Tong (1990). There are four blocks. All the error term εt below is

i.i.d. N(0, 1). 1(·) is an indicator function which takes one if its argument is true and zero otherwise. All
DGPs below fulfil the conditions for the investigated testing procedures. For those regularity conditions and

moment conditions, see Li (1999, p. 107) for the LWZ tests and see White (1994, Chapter 9) for the NN

tests or other parametric conditional moment tests.

BLOCK 1 (Lee, White, and Granger 1993, and Teräsvirta 1996)

DGP 1.1 Linear AR

yt = 0.6yt−1 + εt,

DGP 1.2 Linear AR with GARCH

yt = 0.6yt−1 + εt,

ht ≡ E(ε2t |yt−1) = 0.01 + 0.3 ε2t−1 + 0.69ht−1,

DGP 1.3 Bilinear

yt = 0.7yt−1εt−2 + εt,

DGP 1.4 Threshold Autoregressive

yt = 0.9yt−11(|yt−1| ≤ 1)− 0.3yt−11(|yt−1| > 1) + εt,

DGP 1.5 Sign Nonlinear Autoregressive

yt = 1(yt−1 > 0)− 1(yt−1 < 0) + εt,

DGP 1.6 Rational Nonlinear Autoregressive

yt =
0.7 |yt−1|
|yt−1|+ 2 + εt.

BLOCK 2 (Lee, White, and Granger 1993)
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DGP 2.1 Linear MA(2)

yt = εt − 0.4εt−1 + 0.3εt−2,

DGP 2.2 Heteroskedastic MA(2)

yt = εt − 0.4εt−1 + 0.3εt−2 + 0.5εtεt−2,

DGP 2.3 Nonlinear MA

yt = εt − 0.3εt−1 + 0.2εt−2 + 0.4εt−1εt−2 − 0.25ε2t−2,

DGP 2.4 Linear AR(2)

yt = 0.4yt−1 − 0.3yt−2 + εt,

DGP 2.5 Bilinear AR

yt = 0.4yt−1 − 0.3yt−2 + 0.5yt−1εt−1 + εt,

DGP 2.6 Bilinear ARMA

yt = 0.4yt−1 − 0.3yt−2 + 0.5yt−1εt−1 + 0.8εt−1 + εt.

Note that the forecastable part of DGP 2.2 is linear and the final term introduces heteroskedasticity.

BLOCK 3 (Lee, White, and Granger 1993)

DGP 3.1 Square

yt = z
2
t + σεt,

DGP 3.2 Exponential

yt = exp(zt) + σεt.

These are bivariate models where σ = 5, zt = 0.6zt−1 + et, et ∼ N(0, 1), and et, εt are independent.

BLOCK 4 (Zheng 1996)

Four models with xt = (xt1 xt2)
0 are considered. Let zt1 and zt2 be independently drawn from N(0, 1).

Two regressors xt1 and xt2 are defined as xt1 = zt1 and xt2 = (zt1+ zt2)/
√
2.

DGP 4.1 Linear

yt = 1 + xt1 + xt2 + εt,

DGP 4.2 Quadratic

yt = 1 + xt1 + xt2 + xt1xt2 + εt,
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DGP 4.3 Concave

yt = (1 + xt1 + xt2)
1/3 + εt,

DGP 4.4 Convex

yt = (1 + xt1 + xt2)
5/3 + εt.

3.2 Simulation design

For the simulations, the information set is xt = yt−1 for Block 1, xt = (yt−1 yt−2)0 for Block 2, xt = zt for

Block 3, and xt = (xt1 xt2)
0 for Block 4.

For Nq,q∗ , the logistic squasher ψ = [1 + exp(−x0γ)]−1 is used with γ being generated from the uniform

distribution on [−2, 2] and yt, xt being rescaled onto [0, 1]. The number of additional hidden units to the
affine network q = 10 and 20 are used. q∗ = 1, 3, 5 largest principal components (excluding the first principal

component) of these are chosen. The results are reported for (q, q∗) = (10, 1), (10, 3), (20, 3), and (29, 5).

For L, as in Li and Wang (1998, p. 154), we use a standard normal kernel. Note that xt is an 1 × k
vector, and k = 1 for Blocks 1, 3 and k = 2 for Blocks 2, 4. Thus the smoothing parameter h is chosen

as hi = cσ̂in
−1/5 (i = 1) for Blocks 1 and 3, and hi = cσ̂in

−1/6 (i = 1, 2) for Blocks 2, 4, where σ̂i is the

sample standard deviation of i-th element of x. The four values of c = 0.1, 0.5, 1, and 2 are used, and the

corresponding estimated rejection probability will be denoted as Lc. In computing Lc, h
k shown in (10) and

(11) is replaced with
Qk
i=1 hi.

Test statistics are denoted as N i
q,q∗ and L

i
c, with the superscripts i = A,B,W referring to the methods

of obtaining the null distributions of the test statistics; asymptotics (i = A), naive bootstrap (i = B), and

wild bootstrap (i = W ). Monte carlo experiments are conducted with 500 bootstrap resamples and 1000

monte carlo replications.

Let Tn be a statistic (either N or L) computed using the sample {yt xt ε̂t}nt=1. The following steps are
taken to compute the p-values of the naive and wild bootstrap test statistics.

1. Generate the bootstrap residuals {ε∗t } from ε̂t = yt − xtβ̂ :

(a) For naive bootstrap, {ε∗t } is obtained from random resampling of {ε̂t} with replacement.

(b) For wild bootstrap, ε∗t = aε̂t with probability r = (
√
5 + 1)/2

√
5 and ε∗t = bε̂t with probability

1 − r (t = 1, . . . , n), where a = −(√5 − 1)/2 and b = (
√
5 + 1)/2. See Li and Wang (1998, pp.

150-151).

2. Generate the bootstrap sample {y∗t x∗t ε∗t }nt=1 :
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(a) When xt is exogenous (Blocks 3, 4), then x
∗
t = xt and y

∗
t ≡ xtβ̂ + ε∗t (t = 1, . . . , n).

(b) When xt is lagged dependent variables (Blocks 1, 2), we do it in two different ways.

i. Generate y∗t ≡ xtβ̂+ ε∗t (t = 1, . . . , n), conditioning on x∗t = xt. This is equivalent to treating

xt as exogenous. We call this procedure as “the conditional bootstrap”.

ii. Generate initial values of y∗t for t = 1, . . . , k, from N(ȳ, σ̂2Y ), and then get y
∗
t ≡ x∗t β̂ + ε∗t

recursively for t = k + 1, . . . , n. ȳ and σ̂2Y are unconditional sample mean and variance of y.

We call this procedure as “the recursive bootstrap”.

3. Using the bootstrap sample {y∗t x∗t ε∗t }nt=1, calculate the bootstrap test statistic T ∗n .

4. Repeat the above steps B times. We use B = 500. The bootstrap p-value of Tn is the relative frequency

of the event {T ∗n ≥ Tn} in the B bootstrap resamples.

3.3 Results

For weakly dependent processes in Blocks 1 and 2, the results of the conditional bootstrap are presented in

Tables 1 and 2 and the results of the recursive bootstrap are presented in Table 3. For Blocks 3 and 4 where

xt is exogenous, there is no need to distinguish the conditional and recursive bootstrap procedures and the

results are presented in Tables 1 and 2.

Table 1 gives the estimated size of the tests for the five data generating processes (DGP) which are linear

in conditional mean. The 95% asymptotic confidence interval of the estimated size is (0.036, 0.064) at 5%

nominal level of significance, and (0.081, 0.119) at 10% nominal level of significance, since if the true size is s

(e.g., s = 0.05, 0.10) the estimated size follows the asymptotic normal distribution with mean s and variance

s(1 − s)/1000 with 1000 monte carlo replications. We observe the following size behavior of the two tests
under the null:

1. For DGP 1.1, 2.1, 2.4 and 4.1, where the conditional variance of yt is constant, both the naive and

wild bootstrap procedures give similar size behavior for the NN test and for the LWZ test.

2. The asymptotic NN test (NA
q,q∗) performs very well even at the small sample size n = 50, and is as

good as the bootstrap tests (NB
q,q∗ and N

W
q,q∗). The size of N

i
q,q∗ (i = A,B,W ) is not sensitive to q and

q∗.
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3. For the LWZ test, both bootstrap tests LBc and L
W
c performs very well even at the small sample size

n = 50, and better than the asymptotic test LAc . The size of L
i
c (i = B,W ) is not sensitive to c but

the size of LAc is sensitive to c.

4. The asymptotic LWZ test (LAc ) does not perform well even at the larger sample size n = 200. Its size

performance is better with smaller values of c as explained by Li (1999, p. 118), who shows the rate

the test converges to the standard normal limiting distribution depends on c (and thus on h) and a

smaller c will lead to a smaller error in the normal approximation. (But as noted above, the bootstrap

tests Lic (i = B,W ) have adequate size for all c in the range considered.)

5. Turning to the DGP 1.2, where yt is conditionally heteroskedastic, the size distortion is severe for the

naive bootstrap tests, NB
q,q∗ and L

B
c . The size distortion generally gets worse as n increases. This is

because the naive bootstrap does not preserve the conditional heteroskedasticity in resampling. The

effect of the conditional heteroskedasticity can be removed using the wild bootstrap that preserves the

heteroskedasticity in resampling. The result shows that the tests with the wild bootstrap procedure

generally have the adequate size for DGP 1.2 for both NN and LWZ tests.

6. Also, it can be noted that the asymptotic NN test NA
q,q∗ is not robust to the presence of conditional

heteroskedasticity because the statistic (17) is obtained from (16) under the conditional homoskedas-

ticity, as noted in Section 2.2. On the other hand, the asymptotic normality of (11) for the LWZ test

does not require the conditional homoskedasticity as long as some moment conditions are satisfied (see

Li 1999, p. 107) and thus the size of LAc may not be affected by the presence of GARCH. But, as

mentioned above, LAc is very sensitive to c.

Table 2 presents the power of the tests Nq,q∗ and Lc at 5% level. The power results at 10% are available

but not reported for space. As the results obtained can be considerably influenced by the choice of nonlinear

models we try to include as many different types of nonlinear models as possible. We observe the following

power behavior of the two tests:

1. Neither test is uniformly superior to the other in terms of power.

2. For quite a few DGP’s the power of the naive bootstrap NN test (NB
q,q∗) is higher than the power of

the wild bootstrap NN test (NW
q,q∗). Those DGPs are DGP 1.2, 1.3, 2.2, 2.3, 2.5, and 2.6, which are

either bilinear processes or nonlinear moving average processes. As noted by Bera and Higgins (1997)

10



and Weiss (1986), these processes are conditionally heteroskedastic or exhibit apparent heteroskedastic

structure. So the use of wild bootstrap could absorb some of these nonlinearities and thus could have

adverse impact on the power of the statistics. Similarly, for LWZ test, power is higher when the naive

bootstrap is used compared to the wild bootstrap, because the test with the naive bootstrap procedure

may have power to detect not only nonlinearity in conditional mean but also is not robust to the

presence of conditional heteroskedasticity or seemingly similar heteroskedastic structures of bilinear

and nonlinear moving average processes.

3. While the size of N i
q,q∗ (i = A,B,W ) is not sensitive to q and q

∗, the power of N i
q,q∗ (i = A,B,W ) is

affected by the choice of q∗ (but not by the choice of q). The results show that although N10,3 is as

powerful as N20,3 when the same q
∗ = 3 is used, N10,1 is less powerful than N10,3, and N20,3 is also

sometimes less powerful than N20,5. The power is substantially reduced if too small a number of the

principal components of the neural network activation functions are used in the NN test. Hence, small

values of q∗ should be avoided in practice and larger values of q∗ are should be recommended as long

as the collinearity/singularity in computing Nq,q∗ in equation (17) may be avoided.

4. As shown in (11), the LWZ test diverges to +∞ at the rate of nhk/2, and thus the higher values of

h and c will make the test more powerful. But due to the severe downward size distortion of the

asymptotic test LA with higher values of c, we actually observe that the power of the asymptotic LWZ

test (LA) may be lower for higher values of c. Thus increasing the bandwidth factor c up to 2 reduces

both the type I and type II errors for the asymptotic test LA as noted in Li (1999). However, the

power of the bootstrap test LB and LW generally increases with higher values of c because the size of

the bootstrap LWZ tests (LB and LW ) is very good for all four values of c considered.

Table 3 presents the size and power performances of the recursive bootstrap tests, while Tables 1, 2

present those results of the conditional bootstrap tests. Comparing these two bootstrap procedures for the

weakly dependent time series (Blocks 1, 2) gives quite useful lessons in using the bootstrap for time series

models.

1. The size of the conditional bootstrap test is better than that of the recursive bootstrap test. The

use of the conditional bootstrap benefits the LWZ test much more than the NN test. The size of the

conditional bootstrap LWZ test is not sensitive to c, while the size of the recursive bootstrap LWZ test

is quite sensitive to c. Hence, even for the time series, it may be recommended to use the conditional
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bootstrap, treating the lagged dependent variables exogenous instead of bootstrapping them recursively

from the estimated models.

2. The power performance of the both bootstrap procedures are rather similar.

4 Conclusions

We have considered two conditional moment tests for neglected nonlinearity in time series regression models

and the finite sample performance. Both naive bootstrap and wild bootstrap are used to generate the critical

values together with the asymptotic distributions. For parametric models, Davidson and MacKinnon (1999)

show that the size distortion of a bootstrap test is at least of the order n−1/2 smaller than that of the

corresponding asymptotic test. For nonparametric models, h also enters to the order of refinement. Li

and Wang (1998) show that if the distribution of L admits an Edgeworth expansion then the bootstrap

distribution approximates the null distribution of L improving over the asymptotic approximation. The

failure of the first order asymptotics for nonparametric tests is well known, see the discussion and some

monte carlo findings reported, e.g., in the survey of Tjøstheim (1999, Sections 2.5 to 2.7). This motivates

the use of bootstrap. The bootstrap tests LB and LW are indeed more accurate than the asymptotic test LA,

as confirmed in our simulation. The asymptotic NN test NA
q,q∗ performs very well while the asymptotic LWZ

test LAc is sensitive to c. The bootstrap is very useful for the L test. The bootstrap LWZ tests (L
B
c , L

W
c )

work really well and are robust to the choice of c. We also find a useful result that the performance of the

conditional bootstrap is much more reliable than that of the recursive bootstrap even for time series models.

12
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TABLE 1. Size

Panel A. Size of NN test at 5% nominal level of significance
DGP n NA

10,1 NB
10,1 NW

10,1 NA
10,3 NB

10,3 NW
10,3 NA

20,3 NB
20,3 NW

20,3 NA
20,5 NB

20,5 NW
20,5

1.1 50 35 32 40 40 40 46 40 42 45 39 41 43
100 40 40 47 34 30 38 31 33 39 42 41 40
200 46 44 49 53 52 55 51 51 50 44 42 50

1.2 50 60 58 32 131 129 40 126 119 40 165 161 35
100 105 104 46 201 187 39 193 172 40 249 225 31
200 172 166 49 276 258 40 269 257 37 365 333 39

2.1 50 45 39 38 48 42 57 50 43 50 45 42 42
100 51 50 57 52 48 57 59 53 49 39 41 42
200 51 48 56 51 50 50 50 49 56 47 42 45

2.4 50 42 41 42 48 33 49 44 40 50 47 49 49
100 38 35 41 55 50 53 43 43 47 38 39 43
200 61 59 57 64 63 56 57 57 56 48 47 50

4.1 50 46 40 43 45 45 41 60 60 58 59 55 56
100 52 49 53 52 52 56 49 43 53 47 44 50
200 54 58 55 51 51 50 49 51 41 44 43 46

Panel B. Size of NN test at 10% nominal level of significance
DGP n NA

10,1 NB
10,1 NW

10,1 NA
10,3 NB

10,3 NW
10,3 NA

20,3 NB
20,3 NW

20,3 NA
20,5 NB

20,5 NW
20,5

1.1 50 89 86 94 95 93 100 88 81 95 84 79 94
100 87 90 90 77 77 86 81 82 82 84 89 86
200 79 84 91 97 96 108 105 101 97 94 93 103

1.2 50 108 107 79 210 190 83 196 187 90 240 222 84
100 165 161 89 279 273 93 272 266 96 343 328 87
200 247 256 108 366 359 101 360 357 92 467 455 88

2.1 50 92 81 91 101 85 105 101 90 105 89 82 91
100 108 110 112 93 91 89 102 96 94 95 91 97
200 112 116 118 110 105 111 118 117 111 92 89 100

2.4 50 93 82 92 112 99 108 112 104 107 104 98 109
100 88 88 93 97 93 102 86 82 94 92 90 96
200 105 102 113 114 111 116 102 105 108 100 99 99

4.1 50 106 96 106 97 89 91 116 98 108 128 113 113
100 92 91 90 116 113 104 102 103 100 116 113 111
200 91 91 90 90 89 94 105 101 98 93 88 101

Notes: Test statistics are denoted as N i
q,q∗ and L

i
c, with the superscripts i = A,B,W refer to the methods

of obtaining the null distributions of the test statistics; using the asymptotics (A), naive bootstrap (B), and

wild bootstrap (W ). The number of bootstrap resamples = 500 and number of monte carlo replications

= 1000. The numbers of rejections out of 1000 replications are reported. The 95% asymptotic confidence

interval of the estimated size is (36, 64) at 5% nominal level of significance and (81, 119) at 10% nominal

level of significance. DGP 1.2 is a linear model with GARCH errors.



TABLE 1. Continued.

Panel C. Size of LWZ test at 5% nominal level of significance
DGP n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1.0 LB1.0 LW1.0 LA2.0 LB2.0 LW2.0
1.1 50 47 57 59 13 50 46 1 46 51 0 40 40

100 31 41 42 15 41 43 6 51 42 0 41 43
200 38 43 43 27 57 58 8 49 52 2 50 43

1.2 50 47 59 51 31 73 50 10 81 45 0 70 45
100 46 55 53 34 70 47 24 92 54 4 116 56
200 62 74 59 46 100 50 43 125 50 19 169 56

2.1 50 26 52 31 20 39 37 6 41 43 0 46 51
100 30 46 37 26 48 55 11 49 43 0 48 48
200 44 53 48 26 55 53 9 50 45 0 38 41

2.4 50 21 47 32 19 45 44 7 44 39 0 47 52
100 46 54 48 38 62 58 10 55 48 1 52 51
200 57 58 61 34 61 66 18 52 52 0 52 51

4.1 50 26 53 31 31 60 61 10 65 61 1 55 53
100 32 44 38 27 45 45 13 46 47 0 59 54
200 51 60 60 30 55 59 14 54 51 2 43 45

Panel D. Size of LWZ test at 10% nominal level of significance
DGP n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1.0 LB1.0 LW1.0 LA2.0 LB2.0 LW2.0
1.1 50 89 121 115 33 103 97 5 102 102 0 78 94

100 60 91 88 29 86 88 11 94 95 0 91 98
200 65 101 95 50 97 99 20 105 102 3 90 91

1.2 50 80 102 87 48 134 95 17 145 104 0 130 94
100 78 112 94 51 135 93 40 147 101 6 176 100
200 103 134 107 76 179 109 60 201 100 29 241 104

2.1 50 99 107 79 36 98 97 13 94 98 1 89 117
100 95 96 92 51 100 106 17 111 107 0 98 91
200 100 102 104 61 102 99 15 101 99 1 83 90

2.4 50 102 108 76 47 95 90 14 96 95 0 98 103
100 100 102 94 62 108 112 20 108 103 3 101 110
200 105 112 112 73 119 115 27 104 104 2 104 105

4.1 50 95 103 91 51 122 115 18 110 104 1 100 99
100 83 86 79 43 86 90 20 109 109 0 112 113
200 117 120 120 60 110 113 26 106 107 4 102 102



TABLE 2 Power

Panel A. Power of NN test at 5% nominal level of significance
DGP n NA

10,1 NB
10,1 NW

10,1 NA
10,3 NB

10,3 NW
10,3 NA

20,3 NB
20,3 NW

20,3 NA
20,5 NB

20,5 NW
20,5

1.3 50 143 135 56 184 170 43 170 163 34 268 257 39
100 188 190 54 291 280 57 291 285 61 407 388 46

1.4 50 79 79 88 448 446 481 461 450 494 480 482 505
100 84 83 100 785 778 798 790 785 812 879 880 877

1.5 50 140 137 130 643 643 618 637 624 619 592 595 547
100 205 209 196 930 928 933 946 940 947 951 949 926

1.6 50 97 93 89 63 64 55 61 65 60 54 56 49
100 145 137 148 101 97 98 95 93 95 73 74 69

2.2 50 65 56 57 85 78 71 64 59 56 100 89 75
100 79 71 67 120 107 78 106 103 82 113 107 81

2.3 50 147 132 124 358 335 257 399 366 297 375 354 262
100 189 181 144 636 626 534 696 685 606 710 705 584

2.5 50 163 141 130 477 460 338 458 447 351 679 663 507
100 249 241 183 715 707 581 697 689 562 934 927 819

2.6 50 142 131 109 284 255 184 279 253 181 424 402 271
100 202 200 138 491 477 339 495 479 353 685 669 500

3.1 50 649 632 543 554 540 362 545 543 372 460 456 254
100 914 904 868 855 849 713 850 848 739 796 798 546

3.2 50 461 452 374 461 460 287 459 459 307 437 441 193
100 738 732 628 765 763 559 762 756 577 737 732 366

4.2 50 560 538 396 976 968 893 987 987 930 987 988 901
100 652 646 492 996 996 983 1000 1000 995 1000 1000 994

4.3 50 129 120 112 210 202 175 211 197 188 208 200 189
100 195 191 182 397 389 366 391 377 367 397 389 356

4.4 50 652 642 477 997 996 980 1000 1000 998 1000 1000 1000
100 746 734 565 998 998 989 1000 1000 1000 1000 1000 1000



TABLE 2. Continued.

Panel B. Power of LWZ test at 5% nominal level of significance
DGP n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1.0 LB1.0 LW1.0 LA2.0 LB2.0 LW2.0
1.3 50 69 80 44 48 118 47 31 153 45 4 168 43

100 69 83 54 91 158 55 72 215 51 30 269 61
1.4 50 320 356 355 435 580 588 247 602 612 2 376 424

100 660 701 687 872 923 920 780 937 939 82 829 844
1.5 50 404 452 439 523 718 662 293 716 683 6 530 504

100 840 864 865 942 977 973 864 978 971 192 929 927
1.6 50 46 59 54 28 69 64 11 74 75 0 76 87

100 40 53 58 37 84 84 20 114 106 3 131 135
2.2 50 35 62 44 37 67 59 12 72 73 0 81 70

100 48 55 49 47 75 64 33 91 83 2 115 93
2.3 50 31 71 45 94 170 139 99 287 230 33 431 346

100 75 91 73 179 253 224 266 493 425 183 743 636
2.5 50 79 109 73 290 383 318 262 556 433 10 589 446

100 142 162 139 643 728 647 753 916 815 337 962 810
2.6 50 76 96 60 222 330 222 126 420 237 3 362 177

100 155 173 128 515 623 481 469 752 513 75 728 364
3.1 50 123 147 134 195 322 269 198 456 378 62 584 505

100 207 248 237 443 572 537 492 723 676 365 865 810
3.2 50 132 152 125 190 289 231 187 375 306 108 464 386

100 227 254 222 374 488 415 411 600 508 326 717 611
4.2 50 102 182 107 745 829 695 884 968 870 859 995 955

100 343 378 315 978 986 968 999 999 993 999 1000 997
4.3 50 27 61 36 69 129 118 59 219 213 9 293 272

100 51 67 57 146 229 223 186 395 388 73 509 515
4.4 50 538 627 491 1000 1000 992 1000 1000 997 1000 1000 1000

100 946 964 930 1000 1000 1000 1000 1000 1000 1000 1000 1000



TABLE 3. Recursive Bootstrap for Blocks 1, 2

Panel A. Size of NN and LWZ tests at 5% nominal level of significance
DGP n NB

10,3 NW
10,3 NB

20,3 NW
20,3 LB0.5 LW0.5 LB1.0 LW1.0 LB2.0 LW2.0

1.1 50 47 47 43 50 27 30 18 15 2 2
100 48 45 45 48 29 27 20 18 9 12
200 55 52 53 51 36 36 26 23 9 10

1.2 50 140 55 141 56 51 38 52 24 26 6
100 178 39 190 38 71 50 70 37 49 20
200 309 59 314 49 91 53 118 47 133 37

2.1 50 26 27 32 26 28 27 22 18 2 2
100 22 24 31 38 30 35 28 26 7 6
200 42 35 40 46 32 45 18 20 3 7

2.4 50 38 35 39 40 25 26 19 16 3 4
100 36 40 47 44 30 29 18 21 6 6
200 38 38 45 51 41 37 31 30 6 4

Panel B. Size of NN and LWZ tests at 10% nominal level of significance
DGP n NB

10,3 NW
10,3 NB

20,3 NW
20,3 LB0.5 LW0.5 LB1.0 LW1.0 LB2.0 LW2.0

1.1 50 97 99 102 99 63 63 42 44 10 13
100 118 114 109 109 75 74 52 48 23 24
200 113 114 111 109 85 82 63 59 33 30

1.2 50 220 120 233 132 105 79 90 58 47 22
100 279 103 287 115 123 91 118 70 93 38
200 424 129 427 128 163 101 185 103 188 81

2.1 50 72 71 62 64 75 74 52 44 13 11
100 59 71 77 82 72 70 54 54 17 14
200 77 88 87 96 87 91 49 58 21 22

2.4 50 85 91 77 87 61 58 35 35 13 12
100 87 84 87 95 68 66 38 39 18 15
200 86 87 96 93 85 83 65 63 18 17

Panel C. Power of NN and LWZ tests at 5% nominal level of significance
DGP n NB

10,3 NW
10,3 NB

20,3 NW
20,3 LB0.5 LW0.5 LB1.0 LW1.0 LB2.0 LW2.0

1.3 50 166 56 162 49 69 40 84 31 82 15
100 273 76 276 86 121 44 162 52 179 42

1.4 50 404 412 416 419 482 461 410 398 69 74
100 781 797 785 812 902 908 884 881 527 546

1.5 50 658 639 685 672 629 621 529 534 145 143
100 962 965 971 968 971 972 955 960 678 710

1.6 50 94 86 92 83 62 61 52 47 21 26
100 92 87 95 85 57 57 60 57 36 39

2.2 50 50 45 50 46 60 48 27 25 10 9
100 71 68 74 67 60 50 63 50 27 19

2.3 50 284 231 285 255 101 91 141 125 157 128
100 609 553 657 601 211 205 359 346 479 419

2.5 50 453 390 440 358 344 309 425 362 255 155
100 717 624 710 610 680 651 855 798 802 652

2.6 50 250 200 239 193 242 184 253 153 124 34
100 458 342 392 283 540 478 657 474 449 171


