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1 Introduction

The loss function (or cost function) is a crucial ingredient in all optimizing problems, such as statistical

decision theory, policy making, estimation, forecasting, learning, classification, financial investment, etc.

However, for space, the discussion here will be limited to the use of loss functions in econometrics, particularly

in time series forecasting.

When a forecast ft,h of a variable Yt+h is made at time t for h periods ahead, the loss (or cost) will

arise if a forecast turns to be different from the actual value. The loss function of the forecast error et+h =

Yt+h − ft,h, is denoted as c(Yt+h, ft,h). The loss function can depend on the time of prediction and so it can

be ct+h(Yt+h, ft,h). If the loss function is not changing with time and does not depend on the value of the

variable Yt+h, the loss can be written simply as a function of the error only, ct+h(Yt+h, ft,h) = c(et+h).

Granger (1999) discusses the following required properties for a loss function: (i) c(0) = 0 (no error and

no loss), (ii) mine c(e) = 0, so that c(e) ≥ 0, (iii) c(e) is monotonically non-decreasing as e moves away from

zero so that c(e1) ≥ c(e2) if e1 > e2 > 0 and if e1 < e2 < 0.

When c1(e), c2(e) are both loss functions, Granger (1999) shows that further examples of loss functions

can be generated: (i) c(e) = ac1(e) + bc2(e), a ≥ 0, b ≥ 0 will be a loss function. (ii) c(e) = c1(e)
ac2(e)

b,

a > 0, b > 0 will be a loss function. (iii) c(e) = 1(e > 0)c1(e) + 1(e < 0)c2(e) will be a loss function. (iv)

If h(·) is a positive monotonic non-decreasing function with h(0) finite, then c(e) = h(c1(e))− h(0) is a loss

function.
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2 Loss functions and risk

Granger (2002) notes that an expected loss (a risk measure) of financial return Yt+1 that has a conditional

predictive distribution Ft(y) ≡ Pr(Yt+1 ≤ y|It) with Xt ∈ It may be written as

Ec(e) = A1

Z ∞
0

|y − f |θdFt(y) +A2

Z 0

−∞
|y − f |θdFt(y),

with A1, A2 both > 0 and some θ > 0. Considering the symmetric case A1 = A2, one has a class of volatility

measures Vθ = E
£
|y − f |θ

¤
, which includes the variance with θ = 2, and mean absolute deviation with θ = 1.

Ding, Granger, and Engle (1993) study the time series and distributional properties of these measures

empirically and show that the absolute deviations are found to have some particular properties such as the

longest memory. Granger remarks that given that the financial returns are known to come from a long tail

distribution, θ = 1 may be more preferable.

Another problem raised by Granger is how to choose optimal Lp-norm in empirical works, to minimize

E[|εt|p] for some p to estimate the regression model Yt = Xtβ + εt. As the asymptotic covariance matrix

of β̂ depends on p, the most appropriate value of p can be chosen to minimize the covariance matrix. In

particular, Granger (2002) refers to a trio of papers (Nyguist 1983, Money et al. 1982, Harter 1977) who

find that the optimal p = 1 from Laplace and Cauchy distribution, p = 2 for Gaussian and p =∞ (min/max

estimator) for a rectangular distribution. Granger (2002) also notes that in terms of the kurtosis κ, Harter

(1977) suggests to use p = 1 for κ > 3.8; p = 2 for 2.2 ≤ κ ≤ 3.8; and p = 3 for κ < 2.2. In finance, the

kurtosis of returns can be thought of as being well over 4 and so p = 1 is preferred.

We consider some variant loss functions with θ = 1, 2 below.

3 Loss functions and regression functions

Optimal forecast of a time series model extensively depends on the specification of the loss function. Sym-

metric quadratic loss function is the most prevalent in applications due to its simplicity. The optimal forecast

under quadratic loss is simply the conditional mean, but an asymmetric loss function implies a more com-

plicated forecast that depends on the distribution of the forecast error as well as the loss function itself

(Granger 1999), as the expected loss function if formulated with the expectation taken with respect to the

conditional distribution. Specification of the loss function defines the model under consideration.

Consider a stochastic process Zt ≡ (Yt,X 0
t)
0 where Yt is the variable of interest and Xt is a vector of

other variables. Suppose there are T + 1 (≡ R+P ) observations. We use the observations available at time

t, R ≤ t < T +1, to generate P forecasts using each model. For each time t in the prediction period, we use

either a rolling sample {Zt−R+1, ..., Zt} of size R or the whole past sample {Z1, ..., Zt} to estimate model
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parameters β̂t. We can then generate a sequence of one-step-ahead forecasts {f(Zt, β̂t)}Tt=R.

Suppose that there is a decision maker who takes an one-step point forecast ft,1 ≡ f(Zt, β̂t) of Yt+1 and

uses it in some relevant decision. The one-step forecast error et+1 ≡ Yt+1−ft,1 will result in a cost of c(et+1),

where the function c(e) will increase as e increases in size, but not necessarily symmetrically or continuously.

The optimal forecast f∗t,1 will be chosen to produce the forecast errors that minimize the expected loss

min
ft,1

Z ∞
−∞

c(y − ft,1)dFt(y),

where Ft(y) ≡ Pr(Yt+1 ≤ y|It) is the conditional distribution function, with It being some proper information

set at time t that includes Zt−j , j ≥ 0. The corresponding optimal forecast error will be

e∗t+1 = Yt+1 − f∗t,1.

Then the optimal forecast would satisfy

∂

∂ft,1

Z ∞
−∞

c(y − f∗t,1)dFt(y) = 0.

When we may interchange the operations of differentiation and integration,Z ∞
−∞

∂

∂ft,1
c(y − f∗t,1)dFt(y) ≡ E

µ
∂

∂ft,1
c(Yt+1 − f∗t,1)|It

¶
the “generalized forecast error”, gt+1 ≡ ∂

∂ft,1
c(Yt+1 − f∗t,1), forms the condition of forecast optimality:

H0 : E (gt+1|It) = 0 a.s.,

that is a martingale difference (MD) property of the generalized forecast error. This forms the optimality

condition of the forecasts and gives an appropriate regression function corresponding to the specified loss

function c(·).

To see this we consider the following two examples. First, when the loss function is the squared error loss

c(Yt+1 − ft,1) = (Yt+1 − ft,1)
2,

the generalized forecast error will be gt+1 ≡ ∂
∂ft

c(Yt+1 − f∗t,1) = −2e∗t+1 and thus E
¡
e∗t+1|It

¢
= 0 a.s., which

implies that the optimal forecast

f∗t,1 = E (Yt+1|It)

is the conditional mean. Next, when the loss is the check function, c(e) = [α− 1(e < 0)] · e ≡ ρα(et+1), the

optimal forecast ft,1, for given α ∈ (0, 1), minimizing

min
ft,1

E [c(Yt+1 − ft,1)|It]
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can be shown to satisfy

E
£
α− 1(Yt+1 < f∗t,1)|It

¤
= 0 a.s.

Hence, gt+1 ≡ α− 1(Yt+1 < f∗t,1) is the generalized forecast error. Therefore,

α = E
£
1(Yt+1 < f∗t,1)|It

¤
= Pr(Yt+1 ≤ f∗t,1|It),

and the optimal forecast is f∗t,1 = qα (Yt+1|It) is the conditional α-quantile.

4 Loss functions for transformations

Granger (1999) note that it is implausible to use the same loss function for forecasting Yt+h and for forecasting

ht+1 = h(Yt+h) where h(·) is some function, such as the log or the square, if one is interested in forecasting

volatility. Suppose the loss functions c1(·), c2(·) are used for forecasting Yt+h and for forecasting h(Yt+h),

respectively. Let et+1 ≡ Yt+1−ft,1 will result in a cost of c1(et+1), for which the optimal forecast f∗t,1 will be

chosen from minft,1
R∞
−∞ c1(y− ft,1)dFt(y), where Ft(y) ≡ Pr(Yt+1 ≤ y|It). Let εt+1 ≡ ht+1−ht,1 will result

in a cost of c2(εt+1), for which the optimal forecast h
∗
t,1 will be chosen from minht,1

R∞
−∞ c2(h− ht,1)dHt(h),

where Ht(h) ≡ Pr(ht+1 ≤ h|It). Then the optimal forecasts for Y and h would respectively satisfyZ ∞
−∞

∂

∂ft,1
c1(y − f∗t,1)dFt(y) = 0,Z ∞

−∞

∂

∂ht,1
c2(h− h∗t,1)dHt(h) = 0.

It is easy to see that the optimality condition for f∗t,1 does not imply the optimality condition for h
∗
t,1 in

general. Under some strong conditions on the functional forms of the transformation h(·) and of the two

loss functions c1(·), c2(·), the above two conditions may coincide. Granger (1999) remarks that it would be

strange behavior to use the same loss function for Y and h(Y ).We leave this for further analysis in a future

research.

5 Loss functions for asymmetry

The most prevalent loss function for the evaluation of a forecast is the symmetric quadratic function. Negative

and positive forecast errors of the same magnitude have the same loss. This functional form is assumed

because mathematically is very tractable but from an economic point of view, it is not very realistic. For a

given information set and under a quadratic loss, the optimal forecast is the conditional mean of the variable

under study. The choice of the loss function is fundamental to the construction of an optimal forecast. For

asymmetric loss functions, the optimal forecast can be more complicated as it will depend not only on the
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choice of the loss function but also on the characteristics of the probability density function of the forecast

error (Granger, 1999).

As Granger (1999) notes the overwhelming majority of forecast work uses the cost function c(e) = ae2,

a > 0, largely for mathematical convenience. Asymmetric loss function is often relevant. A few examples

from Granger (1999) are as follows: The cost of arriving 10 min early in the airport is quite different from

arriving 10 min late. The cost of having a computer that is 10% too small for a task is different than being

10% too big. The loss of booking a lecture room that is 10 seats too big for your class is different from that

of a room that is 10 seats too small. In dam construction an underestimate of the peak water is usually

much more serious than an overestimate (Zellner 1986).

There are some commonly used asymmetric loss functions. The check loss function c(y, f) ≡ [α− 1(y < f)]·

(y − f), or c(e) ≡ [α− 1(e < 0)] · e, which makes the optimal predictor f the conditional quantile. The

check loss function is also known as tick function or lil-lin loss. The asymmetric quadratic loss c(e) ≡

[α− 1(e < 0)] · e2 can also be considered. A value of α = 0.5 gives the symmetric squared error loss.

A particularly interesting asymmetric loss is the linex function of Varian (1975) that takes the following

form

c1(e, α) = exp(αet+1)− αet+1 − 1,

where α is a scalar that controls the aversion towards either positive (α > 0) or negative forecast errors

(α < 0). The linex function is differentiable. If α > 0, the linex is exponential for e > 0 and linear for e < 0.

If α < 0, the linex is exponential for e < 0 and linear for e > 0. To make the linex more flexible, it can be

modified to the “double linex loss function” by

c(e) = c1(e, α) + c1(e,−β), α > 0, β > 0,

= exp(αe) + exp(−βe)− (α− β)e− 2

which is exponential for all values of e (Granger 1999). When α = β, it becomes the symmetric double linex

loss function.

6 Loss functions for forecasting financial returns

Some simple examples of the loss function to evaluate the point forecasts of financial returns are the out-

of-sample mean of the following loss functions as studied in Hong and Lee (2003): the squared error loss

c(y, f) = (y − f)2, absolute error loss c(y, f) = |y − f |, trading return c(y, f) = −sign(f) · y (when y is a

financial asset return), and the correct direction c(y, ŷ) = −sign(f)·sign(y), where sign(x) = 1(x > 0)−1(x <

0) and 1(·) takes the value of 1 if the statement in the parenthesis is true and 0 otherwise. The negative
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signs in the latter two is to make them the loss to minimize (rather than to maximize). The out-of-sample

mean of these loss functions are the mean squared forecast errors (MSFE), mean absolute forecast errors

(MAFE), mean forecast trading returns (MFTR), and mean correct forecast directions (MCFD):

MSFE = P−1
TX

t=R

(Yt+1 − ft,1)
2,

MAFE = P−1
TX

t=R

|Yt+1 − ft,1|,

MFTR = −P−1
TX

t=R

sign(ft,1) · Yt+1,

MCFD = −P−1
TX

t=R

1(sign(ft,1) · sign(Yt+1) > 0).

These loss functions may further incorporate issues such as interest differentials, transaction costs and market

depth. Because the investors are ultimately trying to maximize profits rather than minimize forecast errors,

MSFE and MAFE may not be the most appropriate evaluation criteria. Granger (1999) emphasizes the

importance of model evaluation using economic measures such as MFTR rather than statistical criteria such

as MSFE and MAFE. Note that MFTR for the Buy-and-Hold trading strategy with sign(ft,1) = 1 is the

unconditional mean return of an asset because MFTRBuy&Hold = −P−1
PT

t=R Yt+1 → −μ in probability as

P → ∞, where μ ≡ E(Yt). MCFD is closely associated with an economic measure as it relates to market

timing. Mutual fund managers, for example, can adjust investment portfolios in a timely manner if they can

predict the directions of changes, thus earning a return higher than the market average.

7 Loss functions for estimation and evaluation

When the forecast is based on an econometric model, to the construction of the forecast, a model needs to

be estimated. We often observe inconsistent choices of loss functions in estimation and forecasting. We may

choose a symmetric quadratic objective function to estimate the parameters of the model but the evaluation

of the model-based forecast may be based on an asymmetric loss function. This logical inconsistency is not

inconsequential for tests assessing the predictive ability of the forecasts. The error introduced by parameter

estimation affects the uncertainty of the forecast and, consequently, any test based on it. However, in

applications, it is often the case that the loss function used for estimation of a model is different from the

one(s) used in the evaluation of the model. This logical inconsistency can have significant consequences with

regards to comparison of predictive ability of competing models. The uncertainty associated with parameter

estimation may result in invalid inference of predictive ability (West 1996). When the objective function

in estimation is the same as the loss function in forecasting the effect of parameter estimation vanishes. If
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we believe that a particular criteria should be used to evaluate forecasts then it may also be used at the

estimation stage of the modelling process. Gonzalez-Rivera, Lee, and Yoldas (2007) show this in the context

of the VaR model of RiskMetrics, which provides a set of tools to measure market risk and eventually forecast

the Value-at-Risk (VaR) of a portfolio of financial assets. A VaR is a quantile return. RiskMetrics offers a

prime example in which the loss function of the forecaster is very well defined. They point out that a VaR is

a quantile and thus the check loss function can be the objective function to estimate the parameters of the

RiskMetrics model.

8 Loss function for binary forecast and maximum score

Given a series {Yt}, consider the binary variable Gt+1 ≡ 1(Yt+1 > 0). We consider the asymmetric risk

function to discuss a binary prediction. To define the asymmetric risk with A1 6= A2 and p = 1, we consider

binary decision problem of Granger and Pesaran (2000), Granger and Machina (2007), and Lee and Yang

(2006) with the following 2× 2 payoff or utility matrix:

Utility Gt+1 = 1 Gt+1 = 0
Gt,1(Xt) = 1 u11 u01
Gt,1(Xt) = 0 u10 u00

where uij is the utility when Gt,1(Xt) = j is predicted and Gt+1 = i is realized (i, j = 1, 2). Assume

u11 > u10 and u00 > u01, and uij are constant over time. (u11 − u10) > 0 is the utility gain from taking

correct forecast when Gt,1(Xt) = 1, and (u00−u01) > 0 is the utility gain from taking correct forecast when

Gt,1(Xt) = 0. Denote

π(Xt) ≡ EYt+1(Gt+1|Xt) = Pr(Gt+1 = 1|Xt).

The expected utility of Gt,1(Xt) = 1 is u11π(Xt) + u01(1− π(Xt)), and the expected utility of Gt,1(Xt) = 0

is u10π(Xt) + u00(1 − π(Xt)). Hence, to maximize utility, conditional on the values of Xt, the prediction

Gt,1(Xt) = 1 will be made if

u11π(Xt) + u01(1− π(Xt)) > u10π(Xt) + u00(1− π(Xt)),

or

π(Xt) >
(u00 − u01)

(u11 − u10) + (u00 − u01)
≡ 1− α.

By making correct prediction, our net utility gain is (u00 − u01) when Gt+1 = 0, and (u11 − u10) when

Gt+1 = 1. We can put it in another way, our opportunity cost (in the sense that you lose the gain) of

wrong prediction is (u00 − u01) when Gt+1 = 0 and (u11 − u10) when Gt+1 = 1. Since a multiple of a utility

function represents the same preference, (1 − α) can be viewed as the utility-gain from correct prediction
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when Gt+1 = 0, or the opportunity cost of a false-alert. Similarly,

α ≡ (u11 − u10)

(u11 − u10) + (u00 − u01)

can be treated as the utility-gain from correct prediction when Gt+1 = 1 is realized, or the opportunity cost

of a failure-to-alert. We thus can define a cost function c (et+1) with et+1 = Gt+1 −Gt,1(Xt):

Cost Gt+1 = 1 Gt+1 = 0
Gt,1(Xt) = 1 0 1− α
Gt,1(Xt) = 0 α 0

That is

c (et+1) =

⎧⎨⎩ α if
1− α if
0 if

et+1 = 1
et+1 = −1
et+1 = 0

,

which can be equivalently written as c (et+1) = ρα(et+1), where ρα(e) ≡ [α−1(e < 0)]e is the check function.

Hence, the optimal binary predictor G†t,1(Xt) = 1(π(Xt) > 1 − α) maximizing the expected utility

minimizes the expected cost E(ρα(et+1)|Xt). A general result on the utility functions and the loss functions

is derived in Granger and Machina (2007).

The optimal binary prediction that minimizes EYt+1(ρα(et+1)|Xt) is the conditional α-quantile of Gt+1,

denoted as

G†t,1(Xt) = Q†α(Gt+1|Xt) = arg min
Gt,1(Xt)

EYt+1(ρα(Gt+1 −Gt,1(Xt))|Xt).

This is a maximum score problem of Manski (1975).

Also, as noted by Powell (1986), using the fact that for any monotonic function h(·), Qα(h(Yt+1)|Xt) =

h(Qα(Yt+1|Xt)), which follows immediately from observing that Pr(Yt+1 < y|Xt) = Pr[h(Yt+1) < h(y)|Xt],

and noting that the indicator function is monotonic, Qα(Gt+1|Xt) =Qα(1(Yt+1 > 0)|Xt) = 1(Qα(Yt+1|Xt) >

0). Hence,

G†t,1(Xt) = 1(Q
†
α(Yt+1|Xt) > 0).

where Qα(Yt+1|Xt) is the α-quantile function of Yt+1 conditional on Xt. Note that Q
†
α(Gt+1|Xt) = argmin

EYt+1(ρα(et+1)|Xt) with et+1 ≡ Gt+1 −Qα(Gt+1|Xt), and Q†α(Yt+1|Xt) = argminEYt+1(ρα(ut+1)|Xt) with

ut+1 ≡ Yt+1 − Qα(Yt+1|Xt). Therefore, the optimal binary prediction can be made from binary quantile

regression for Gt+1. Binary prediction can also be made from a binary function of the α-quantile for Yt+1.

9 Loss functions for probability forecasts

Diebold and Rudebush (1989) consider the probability forecasts for business cycle turning points. To measure

the accuracy of predicted probabilities, that is the average distance between the predicted probabilities

and observed realization (as measured by a zero-one dummy variable). Suppose we have time series of P
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probability forecast {pt}Tt=R+1 where pt is the probability of the occurrence of a turning point at date t.

Let {dt}Tt=R+1 be the corresponding realization with dt = 1 if a business cycle turning point (or any defined

event) occurs in period t and dt = 0 otherwise. The loss function analogous to the squared error is Brier’s

score based on quadratic probability score (QPS):

QPS = P−1
TX

t=R

2(pt − dt)
2.

The QPS ranges from 0 to 2, with 0 for perfect accuracy. As noted by Diebold and Rudebush (1989), the

use of the symmetric loss function may not be appropriate as a forecaster may be penalized more heavily

for missing a call (making a type II error) than for signaling a false alarm (making a type I error). Another

loss function is given by the log probability score (LPS)

LPS = −P−1
TX

t=R

ln
³
pdtt (1− pt)

(1−dt)
´
,

which is similar to the loss for the interval forecast. A large mistakes are penalized more heavily under LPS

than under QPS. More loss functions are discussed in Diebold and Rudebush (1989).

Another loss function useful in this context is the Kuipers score (KS), which is defined by

KS = Hit Rate− False Alarm Rate,

where Hit Rate is the fraction of the bad events that were correctly predicted as good events (power, or

1−probability of type II error), and False Alarm Rate is the fraction of good events that had been incorrectly

as bad events (probability of type I error).

10 Loss function for interval forecasts

Suppose Yt is a stationary series. Let the one-period ahead conditional interval forecast made at time t from

a model be denoted as

Jt,1(α) = (Lt,1(α), Ut,1(α)), t = R, . . . , T,

where Lt,1(α) and Ut,1(α) are the lower and upper limits of the ex ante interval forecast for time t+1 made

at time t with the coverage probability α. Define the indicator variable Xt+1(α) = 1[Yt+1 ∈ Jt,1(α)]. The

sequence {Xt+1(α)}Tt=R is IID Bernoulli (α). The optimal interval forecast would satisfy E(Xt+1(α)|It) = α,

so that {Xt+1(α)− α} will be an MD. A better model has a larger expected Bernoulli log-likelihood

EαXt+1(α)(1− α)[1−Xt+1(α)].
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Hence, we can choose a model for interval forecasts with the smallest out-of-sample mean of the negative

predictive log-likelihood defined by

−P−1
TX

t=R

ln
³
αxt+1(α)(1− α)[1−xt+1(α)]

´
.

11 Loss function for density forecasts

Consider a financial return series {yt}Tt=1. This observed data on a univariate series is a realization of a

stochastic process YT ≡ {Yτ : Ω→ R, τ = 1, 2, . . . , T} on a complete probability space (Ω,FT , PT
0 ), where

Ω = RT ≡ ×T
τ=1R and FT = B(RT ) is the Borel σ-field generated by the open sets of RT , and the joint

probability measure PT
0 (B) ≡ P0[Y

T ∈ B], B ∈ B(RT ) completely describes the stochastic process. A

sample of size T is denoted as yT ≡ (y1, . . . , yT )0.

Let σ-finite measure νT on B(RT ) be given. Assume PT
0 (B) is absolutely continuous with respect to ν

T

for all T = 1, 2, . . . , so that there exists a measurable Radon-Nikodým density gT (yT ) = dPT
0 /dν

T , unique

up to a set of zero measure-νT .

Following White (1994), we define a probability model P as a collection of distinct probability measures

on the measurable space (Ω,FT ). A probability model P is said to be correctly specified for YT if P

contains PT
0 . Our goal is to evaluate and compare a set of parametric probability models {PT

θ }, where

PT
θ (B) ≡ Pθ[Y

T ∈ B]. Suppose there exists a measurable Radon-Nikodým density fT (yT ) = dPT
θ /dν

T for

each θ ∈ Θ, where θ is a finite-dimensional vector of parameters and is assumed to be identified on Θ, a

compact subset of Rk. See White (1994, Theorem 2.6).

In the context of forecasting, instead of the joint density gT (yT ), we consider forecasting the conditional

density of Yt, given the information Ft−1 generated by Yt−1. Let ϕt (yt) ≡ ϕt(yt|Ft−1) ≡ gt(yt)/gt−1(yt−1)

for t = 2, 3, . . . and ϕ1 (y1) ≡ ϕ1(y1|F0) ≡ g1(y1) = g1(y1). Thus the goal is to forecast the (true, unknown)

conditional density ϕt (yt).

For this, we use an one-step-ahead conditional density forecast model ψt (yt;θ) ≡ ψt(yt|Ft−1;θ) ≡

f t(yt)/f t−1(yt−1) for t = 2, 3, . . . and ψ1 (y1) ≡ ψ1(y1|F0) ≡ f1(y1) = f1(y1). If ψt(yt;θ0) = ϕt(yt)

almost surely for some θ0∈Θ, then the one-step-ahead density forecast is correctly specified, and it is said

to be optimal because it dominates all other density forecasts for any loss functions as discussed in the

previous section (see Granger and Pesaran, 2000a, 2000b; Diebold et al., 1998; Granger 1999).

In practice, it is rarely the case that we can find an optimal model. As it is very likely that “the true

distribution is in fact too complicated to be represented by a simple mathematical function” (Sawa, 1978),

all the models proposed by different researchers can be possibly misspecified and thereby we regard each
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model as an approximation to the truth. Our task is then to investigate which density forecast model can

approximate the true conditional density most closely. We have to first define a metric to measure the

distance of a given model to the truth, and then compare different models in terms of this distance.

The adequacy of a density forecast model can be measured by the conditional Kullback-Leibler (1951)

Information Criterion (KLIC) divergence measure between two conditional densities,

It (ϕ : ψ,θ) = Eϕt [lnϕt (yt)− lnψt (yt;θ)],

where the expectation is with respect to the true conditional density ϕt (·|Ft−1), Eϕt lnϕt (yt|Ft−1) < ∞,

and Eϕt lnψt (yt|Ft−1;θ) <∞. Following White (1994), we define the distance between a density model and

the true density as the minimum of the KLIC

It
¡
ϕ : ψ,θ∗t−1

¢
= Eϕt

£
lnϕt (yt)− lnψt

¡
yt;θ

∗
t−1
¢¤
,

where θ∗t−1 = argmin It (ϕ : ψ,θ) is the pseudo-true value of θ (Sawa, 1978). We assume that θ∗t−1 is an

interior point of Θ. The smaller this distance is, the closer the density forecast ψt
¡
·|Ft−1;θ∗t−1

¢
is to the

true density ϕt (·|Ft−1).

However, It
¡
ϕ : ψ,θ∗t−1

¢
is unknown since θ∗t−1 is not observable. We need to estimate θ

∗
t−1. If our

purpose is to compare the out-of-sample predictive abilities among competing density forecast models, we

split the data into two parts, one for estimation and the other for out-of-sample validation. At each period t

in the out-of-sample period (t = R+ 1, . . . , T ), we estimate the unknown parameter vector θ∗t−1 and denote

the estimate as θ̂t−1. Using {θ̂t−1}Tt=R+1, we can obtain the out-of-sample estimate of It
¡
ϕ : ψ,θ∗t−1

¢
by

IP (ϕ : ψ) ≡
1

P

TX
t=R+1

ln[ϕt(yt)/ψt(yt; θ̂t−1)]

where P = T −R is the size of the out-of-sample period. Note that

IP (ϕ : ψ) =
1

P

TX
t=R+1

ln
£
ϕt(yt)/ψt

¡
yt;θ

∗
t−1
¢¤
+
1

P

TX
t=R+1

ln[ψt
¡
yt;θ

∗
t−1
¢
/ψt(yt; θ̂t−1)],

where the first term in IP (ϕ : ψ) measures model uncertainty (the distance between the optimal density

ϕt(yt) and the model ψt
¡
yt;θ

∗
t−1
¢
) and the second term measures parameter estimation uncertainty due to

the distance between θ∗t−1 and θ̂t−1.

Since the KLIC measure takes on a smaller value when a model is closer to the truth, we can regard

it as a loss function and use IP (ϕ : ψ) to formulate the loss-differential. The out-of-sample average of the

loss-differential between model 1 and model 2 is

IP (ϕ : ψ1)− IP (ϕ : ψ2) =
1

P

TX
t=R+1

ln[ψ2t (yt; θ̂
2

t−1)/ψ
1
t (yt; θ̂

1

t−1)],
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which is the ratio of the two predictive log-likelihood functions. With treating model 1 as a benchmark model

(for model selection) or as the model under the null hypothesis (for hypothesis testing), IP (ϕ : ψ1)−IP (ϕ : ψ2)

can be considered as a loss function to minimize. To sum up, the KLIC differential can serve as a loss function

for density forecast evaluation as discussed in Bao, Lee, and Saltoglu (2007).

12 Loss functions for volatility forecasts

González-Rivera, Lee, and Santosh Mishra (2004) analyze the predictive performance of various volatility

models for stock returns. To compare the performance, they choose loss functions for which volatility esti-

mation is of paramount importance. They deal with two economic loss functions (an option pricing function

and an utility function) and two statistical loss functions (the check loss for a Value-at-Risk calculation and

a predictive likelihood function of the conditional variance).

13 Loss functions for testing Granger-causality

In time series forecasting, a concept of causality is due to Granger (1969), who defined in terms of conditional

distribution. Lee and Yang (2007) use loss functions to test for Granger-causality in conditional mean, in

conditional distribution, and in conditional quantiles. The causal relationship between money and income

(output) has been an important topic that has been extensively studied. However, those empirical studies are

almost entirely on Granger-causality in the conditional mean. Compared to conditional mean, conditional

quantiles give a broader picture of a variable in various scenarios. Lee and Yang (2007) explore whether

forecasting the conditional quantile of output growth may be improved using money. They compare the check

(tick) loss functions of the quantile forecasts of output growth with and without using the past information

on money growth, and assess the statistical significance of the loss-differential of the unconditional and

conditional predictive abilities. As conditional quantiles can be inverted to the conditional distribution, they

also test for Granger-causality in the conditional distribution (via using a nonparametric copula function).

Using U.S. monthly series of real personal income and industrial production for income, and M1 and M2

for money, for 1959-2001, they find that out-of-sample quantile forecasting for output growth, particularly

in tails, is significantly improved by accounting for money. On the other hand, money-income Granger-

causality in the conditional mean is quite weak and unstable. Their results have an important implication

on monetary policy, showing that the effectiveness of monetary policy has been underestimated by merely

testing Granger-causality in mean. Money does Granger-cause income more strongly than it has been known

and therefore the information on money growth can (and should) be more utilized in implementing monetary

policy.
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